

Conférence Ferme du Futur

L'énergie dans les bâtiments de stockage des produits agricoles

Foire agricole de Libramont, samedi 23 juillet 2011

Fabienne Rabier, Chargée de projets - Unité Machines et Infrastructures agricoles

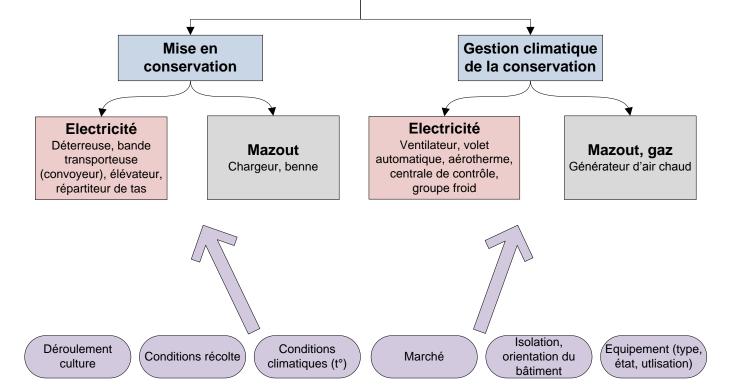
Centre Wallon de Recherches agronomiques www.cra.v

La conservation

- Décalage entre disponibilité des produits agricoles et utilisation ⇒ conservation pour des périodes de quelques semaines à plusieurs mois
- ⇒ Stockage (passif) <> conservation (actif)
 - maintenir la qualité du produit (exigences du marché)
 - ⇒ éviter le développement de maladies et/ou ravageurs
 - ⇒ spéculation
- ⇒ Ventilation de séchage (PDT, 25% du froment)
- ⇒ Ventilation de refroidissement (PDT, céréales)
- ⇒ Réfrigération (PDT : plant et marché du frais)

Quelles énergies pour quelle conservation?

1 145 348 tonnes de froment en RW (*Projet Alt4CER*, 2011)

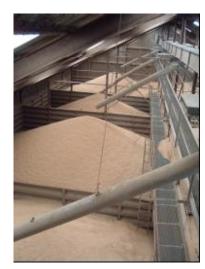

-+/- 87% sont collectés chez des négociants (65% chez 2 opérateurs principaux, 125 dépôts)

- +/- 13% : autoconsommation, pertes, stockage à la ferme

Bâtiments de stockage céréales, pommes de terre

1 382 000 tonnes de PDT (Eurostat, 2010)

- +/- 100 000 tonnes de capacité de stockage dans l'industrie de la transformation (*CRA-W*, 2006)
- capacité estimée entre 1 050 000 1 300 000 tonnes chez les agriculteurs (*CRA-W*, 2006)



Energie pour la conservation des céréales

cra-w

- ⇒ Les équipements utilisés pour la mise en conservation consomment peu d'énergie et les temps d'utilisation sont limités
 - ⇒ convoyeur, transporteur : 1-3 kW, élévateur à godets 1-3,5 kW, vis : 2-6,5 kW
- C'est la part liée à la ventilation qui consomme le plus d'énergie
 - chez 1 négociant (conservation de 40% de la production wallonne) 65% de l'électricité est utilisée pour la ventilation de refroidissement (moyenne 2007-2009)
 - ⇒ moyenne essais: mise en conservation +/-15% <> ventilation de refroidissement +/- 85%

Energie pour la conservation des céréales

- Chiffre repère moyen pour la consommation d'énergie par tonne de céréale stockée?
- ⇒ Quelques données relevées lors de suivis (CRA-W, 2007/2008)
 - ⇒ sur 1 dépôt de capacité de stockage de 15 000 tonnes : 160 000 kW / an (moyenne sur 3 ans) (+/- 15 000 € selon factures)
 - ⇒ 5 sites (17 silos), consommation ventilation de refroidissement (1 ou 2 paliers) entre 0,065 et 2,16 kW par tonne de froment pour ↓ la t° d'1°C

Energie pour la conservation des céréales

- ⇒ Grande variabilité observée entre les données
 - ⇒ entre années (conditions climatiques, culture)
 - entre lots (humidité récolte, température)
 - ⇒ gestion manuelle de la descente de température
 - infrastructure de stockage

Energie pour la conservation des pommes de terre

- Les équipements utilisés pour la mise en conservation sont peu puissants. De plus, il ne fonctionnent que quelques heures, ex :
 - déterreur (2 à 3m) : 5-10 kW, convoyeurs: 2-3,5 kW, élévateur répartiteur (10-22 m): 4-7,5 kW
- C'est lors de la conservation que les consommations en énergie sont les plus importantes
 - ⇒ Ventilation (2-5 kW)
 - ⇒ groupe froid (de 60 à 70 watts/tonne) entre 40-60 kW pour hall 500 à 1000 tonnes
 - ⇒ canon à chaleur entre 45 et 100 kW

Centre wallon de Recherches agronomiques

Département Productions et Filières

www.cra.wallonie.be

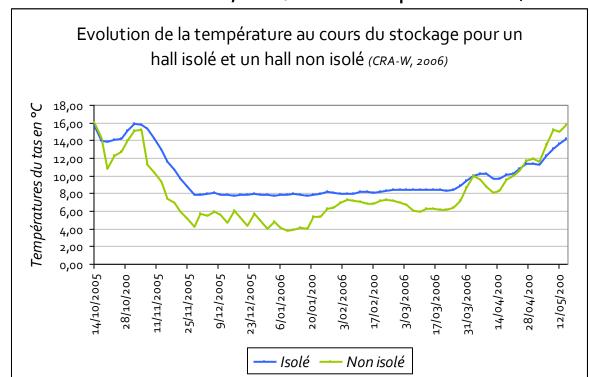
Energie pour la conservation des pommes de terre

⇒ En pratique, situations sont très variables : marché, lot, conduite de l'exploitant, infrastructure (année 2006/2007, suivi 14 halls, *CRA-W*)

		Capacité du hall	Heures de ventilation externe/6 mois	Consommation kW/6 mois	kW/Tonne /6 mois
PDT marché transfo	Minimum observé	6oo tonnes	97	582	0,97
	Maximum observé	700 tonnes	992	11 904	17,01
Frigo (marché du plant)	Minimum observé	700 tonnes	1511	60 440	86,34
	Maximum observé	850 tonnes	1721	123 912	145,78

CRA-W, 2006/2007

Economiser l'énergie...en isolant!

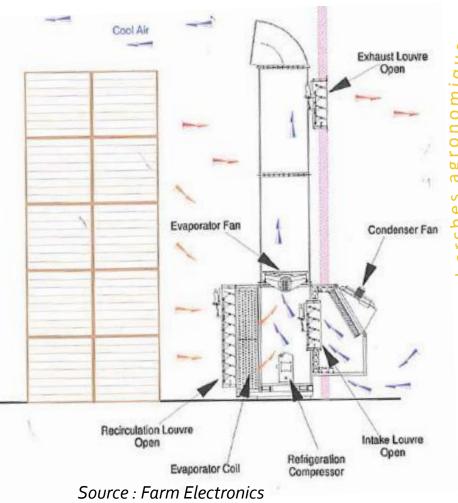


- ⇒ L'isolation permet de limiter les variations de t° + conserver une t° de consigne adaptée
 - impact important sur la qualité du produit (prix de vente)
 - impact sur les consommations énergétiques
- ⇒ Conservation de PDT marché de la transformation, 43% des bâtiments sont non spécifiques et parmi ceux-ci 56% sont peu ou pas isolés (*Enquête CRAW*, 2006)
- K (coefficient de transmission de chaleur) recommandés
 ≤ 0,3 W/m²°C et ≤ 0,2 W/m²°C (plant en frigo)
 - ⇒! 60% des frigos ne sont pas suffisamment isolés (enquête CRA-W, 2006)!

Economiser l'énergie...en isolant!

- cra-w
- Déperdition de chaleur fonction de K et différence de température entre l'intérieur et l'extérieur
 - ⇒ polyuréthane panneau 12 cm (K=0,2 W/m²°C) <> 6 cm (K=0,35 W/m²°C); surcoût 5 €/m²
 - ⇒ pour une différence de t° = 12°C
 - \Rightarrow 6 cm <>12 cm = + 1,8 W/m² de déperdition (1600 m² \Rightarrow 2,88 kWh)

CRA-W, 2006



Economiser l'énergie...avec des équipements améliorés

Groupe froid

- ⇒ avec utilisation d'un système de mélange d'air qui permet l'utilisation de l'air extérieur quand cela est possible
- ⇒ valve d'admission de l'air extérieur
- ⇒ réduction du nombre d'heure de fonctionnement du groupe froid (50%?)

Economiser l'énergie...avec des équipements améliorés

- > Ventilateur à vitesse variable
 - > variation de o à 100% de la vitesse maximale
 - intéressant en PDT car le séchage demande des capacités de ventilation > par rapport à la ventilation durant la conservation (maintient de la température de consigne évacuation du CO2)
 - plus adapté aux besoins de ventilation pour une conservation de longue durée en PDT (maintient d'une légère circulation continue de l'air plutôt que des périodes de ventilation importantes)

Economiser l'énergie...avec des équipements améliorés

⇒ Evaporateur avec ventilateurs indépendants du système de ventilation du frigo, permet de réduire la vitesse de ventilation dans le hall indépendamment du fonctionnement de l'évaporateur

Economiser l'énergie...par une installation adaptée

- ⇒ Choix des ventilateurs
 - ⇒ courbe débit-pression
 - pour un diamètre plus important qui tourne moins vite, le même volume d'air est apporté mais avec une pression dynamique plus faible = réduction de la puissance du ventilateur
 - ⇒ 80 cm 4 à 5,5 kW <> 100 cm 3 kW
- ⇒ Comparaison de l'utilisation de ventilateurs axiaux et centrifuges dans des silos couchés (*CRA-W 2006/2007*)
 - consommation efficace = énergie consommée pour diminuer la température d'1 tonne de froment d'1°C 0,078 kW/T°C (ventilateur axial, 3 kWh) <> 0,18 kW/T°C (centrifuge, 22 kWh)

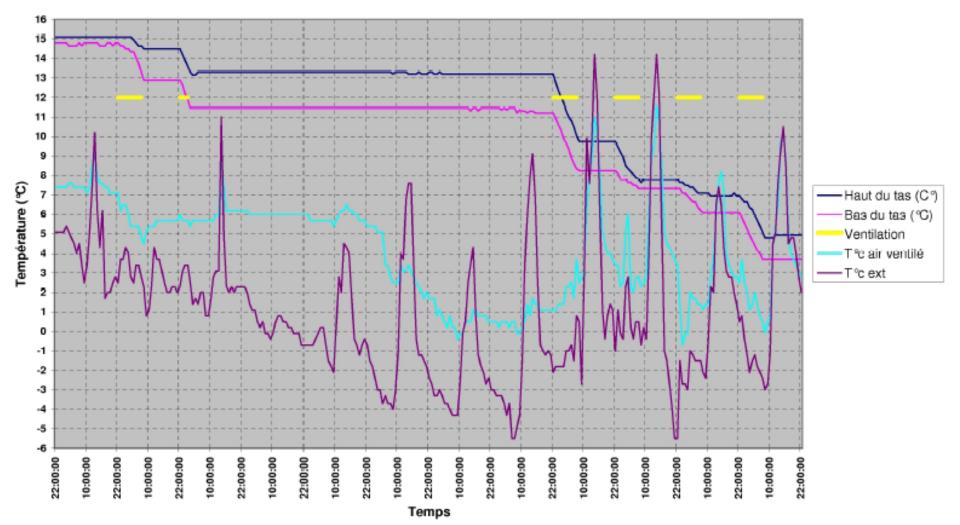
Economiser l'énergie...par une installation adaptée

- ⇒ La pression statique est la résistance que rencontre l'air dans les gaines de ventilation et à travers le produit
 - ⇒ entretien et nettoyage
 - \Rightarrow si les sections des gaines de ventilation sont réduites = \uparrow pression statique et \downarrow débit = \uparrow de la consommation
- ⇒ Dimensionnement initial du système, ne pas surdimensionner l'installation
 - ⇒ ex: entre 27 et 496 m³/heure/Tonne PDT installés pour 28 halls suivis, 100 m³/heure/tonne recommandés (CRA-W, 2006-2008)
 - ⇒ gaspillage d'énergie + (investissement! + qualité)
- ⇒ Placement des ventilateurs : si cône d'aspiration face/face, les débits \(\sigma \) et les consommations \(\cap \)

Economiser l'énergie...par une installation adaptée

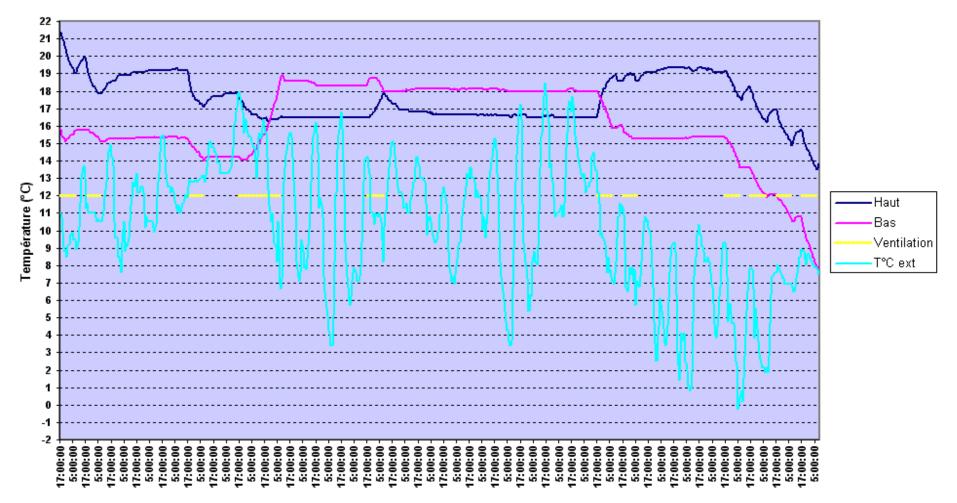
⇒ Les cellules à faible hauteur demandent moins d'énergie pour la ventilation de refroidissement des céréales

- l'air est réparti sur une plus grande surface
- vitesse réduite, perte de charge réduite donc le réchauffement de l'air dans le grain est réduit
- consommation efficace silo couché 0,113 kWh/T°C < ACMB 0,152 kWh/T°C (CRA-W, 2007)</p>



⇒ En RW, marges de progrès sont importantes (suivi lots froment, *CRA-W 2006/2007*): seulement 47,5% des heures de ventilation efficaces (= entraînent un refroidissement)

- cra-w
- ⇒ Exemple de descente en température idéale (graphique précédent)
 - ⇒ 6 périodes de ventilation distinctes (jaune)
 - ⇒ le gradient de température entre la température du lot et la température extérieure est adapté pour chaque ventilation (> 7,5°C)
 - chaque période de ventilation entraine un refroidissement effectif du grain pour arriver à la température de consigne idéale pour une longue conservation (5°C)

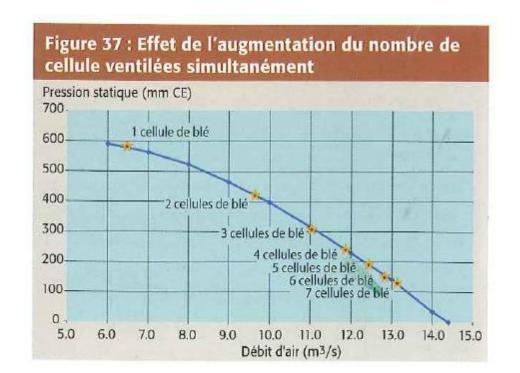


- erreurs fréquentes
 - gradient thermique insuffisant
 - > température du lot méconnue
 - ⇒ arrêt de la ventilation trop tôt (front chaud/front froid) ou trop tard (réchauffement)
- ⇒ impact financier! + 883 € pour 2 paliers pour une conservation de 10 984 tonnes

⇒ Exemple de ventilation lors de conditions climatiques inadaptées

- ⇒ Exemple de ventilation lors de conditions climatiques inadaptées
 - première période de ventilation effectuée alors que les températures extérieures sont trop élevées
 - quatrième période de ventilation: température extérieure supérieure à celle du grain lors du démarrage!
 - ⇒ fronts chauds dans le silo : gradient de température dans le grain

- cra-w
- ⇒ Ventilation manuelle : sonde de température silo et extérieure
 + être disponible. Coût sonde : 50-200€
- ⇒ Gestion semi-automatisée : thermostat sur le ventilateur qui commande sa mise en route pour une température de consigne extérieure encodée par l'utilisateur. Coût : 500 €
- ⇒ Gestion automatisée complète (sondes, capteurs et ordinateur de contrôle) = mise en route et arrêt de la ventilation complètement automatisée. Coût 3000 -3500 € (PDT)



- ⇒ Comparaison ventilation manuelle et semi-automatique pour 4 silos , *CRA-W 2008/2009*)
 - ⇒ lots de froment (4 silos/infrastructure)
 - ⇒ ventilation manuelle 0,355 kW/T°C (+/- 0,26)<> ventilation semi-automatisée 0,184 kW/T°C (+/-0,22)
- ⇒ Le nombre de cellules ventilées
 - ⇒ la ventilation simultanée de plusieurs cellules permet de ¼ la durée de refroidissement = ¼ énergie
 - ⇒ l'air passe sur une superficie ↑ = vitesse et perte de charge ↘ donc efficacité du refroidissement est meilleure

⇒ tendance observée lors des essais *CRA-W*, 2006/2007 pour des essais de ventilation menés dans 2 et 4 cellules simultanément ⇒0,145 kW/T°C (4 cellules) <> 0,154 kW/T°C (2 cellules)

Source : Arvalis, Ventilation des grains, Guide Pratique

Pour conclure...

⇒ Pas de réelle innovation en ce qui concerne les bâtiments de stockage (PDT, céréales)

- équipements qui consomment généralement peu (quelques kwh), quelques améliorations sont proposés
- ⇒ la marge de progrès réside dans la durée d'utilisation de ces équipements
 - meilleure gestion climatique de la conservation
 - ⇒! qualité du produit stocké (culture, récolte)
- chaque équipement/option supplémentaire a un coût qu'il convient d'évaluer <> économies potentiellement réalisables (très variables d'un cas à l'autre et d'une année à l'autre)
- ⇒ + impact sur la qualité du produit? Prix de vente?

Pour conclure...

Afin de limiter les consommations d'énergie liées à la conservation, pour un nouvel investissement pensez à:

Un système de gestion automatisé

Des ventilateurs de plus grands diamètres mais moins puissants avec variateurs de vitesse

Bien dimensionner
le système de ____
ventilation et le
bâtiment

Isoler le bâtiment

Des cellules de stockage moins hautes ou à la ventilation de plusieurs cellules simultanément

Un système airmix pour le groupe froid (fonction spéculation)

Centre wallon de Recherches agronomiques

Département Productions et Filières

www.cra.wallonie.be

Questions?

Pour plus d'information

Fabienne Rabier

rabier@cra.wallonie.be

Tél.: 081.627.169

