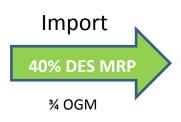
Diversification des matières premières en aviculture et durabilité des productions

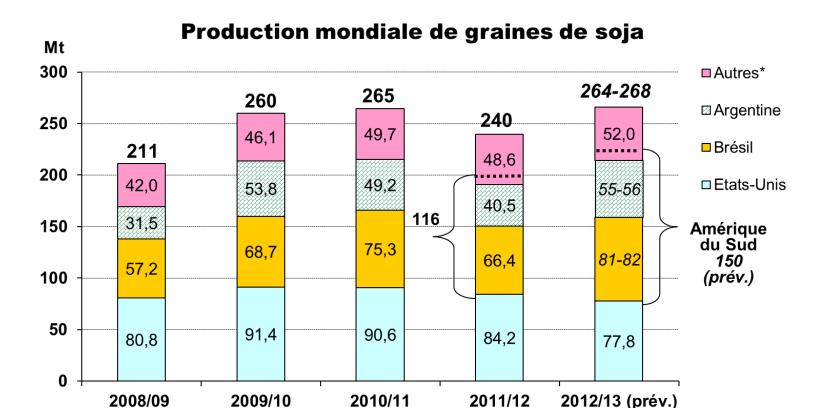
Isabelle Bouvarel

Une faible autonomie protéique pour la production de volailles

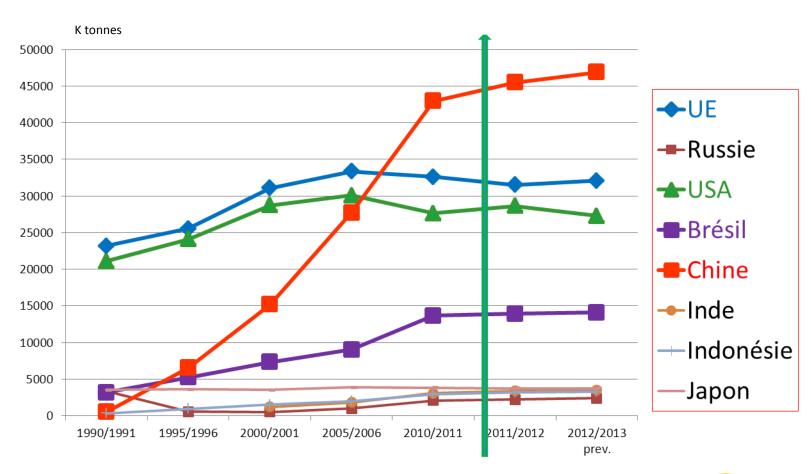


Une forte part de soja dans les aliments

Une forte importation sud-américaine



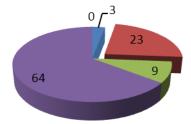
Une production de soja qui est stable



* dont Chine: 13,6 Mt en 2011/12, 12,5 Mt en 2012/13 (Oil World)

Sources: Oil World (jusqu'en 2011/12) et USDA/Oil World (prévision 2012/13)

Avec une demande croissante de la Chine


Source: Oil World Statistics

Une faible utilisation des tourteaux métropolitains en volailles en France

soja

source: CEREOPA Modèle Prospective Aliment campagne 2011-2012

Conséquences sur la durabilité de la production

ECO.

- Limitation de la création de valeurs sur le territoire
- Impacts environnementaux : déforestation, transport,...
- Ne permet pas une information sur le produit : origine

Une faible autonomie protéique Pourquoi?

Les matières premières riches en protéines disponibles

	% Amidon	% Maïs	% Protéines	% SOYA
Maïs	61,8	100%	7,5	16%
Orge	53,4	86%	10,1	22%
Blé	59	95%	11,4	25%
Blé Dur	57,8	94%	14,2	31%
Pois	45,5	74%	19,5	43%
Tx Tournesol 28	3,7	6%	26,2	57%
Féverole	39,2	63%	26,3	57%
Drèche maïs	4	6%	27,7	60%
Drèche blé	9,5	15%	30	66%
Tx Tournesol 35	4	6%	32,3	71%
Tx Colza	6	10%	32,8	72%
Tx Tournesol HP	4	6%	36,5	80%
Tx Soya 48	4,9	8%	45,8	100%

Forces

Leur niveau énergétique Leur teneur en protéines

Opportunités

Une source de protéines locales Une diversification des sources

Faiblesses

Leur déséquilibre en acides aminés Leur teneur possible en FAN

Menaces

Le niveau de l'offre Leur prix vis-à-vis du blé et du tourteau de soja

Quelles voies d'amélioration?

- Des améliorations de process ?
- De nouvelles matières premières ?

La sélection de volailles plus adaptables ?

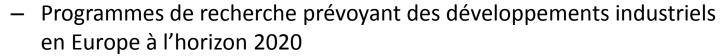
Des améliorations de process

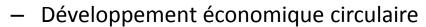
Décorticage

- Un tourteau de tournesol à très haute teneur en protéines → Blutage ? (> 40% protéines)
- Tourteau de colza

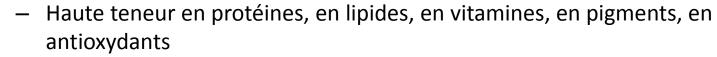
Dépelliculage

La féverole : des essais ont montré une augmentation de 2 points de protéines,
 200 kcal/kg (Communication Unip)


De nouvelles matières premières ?

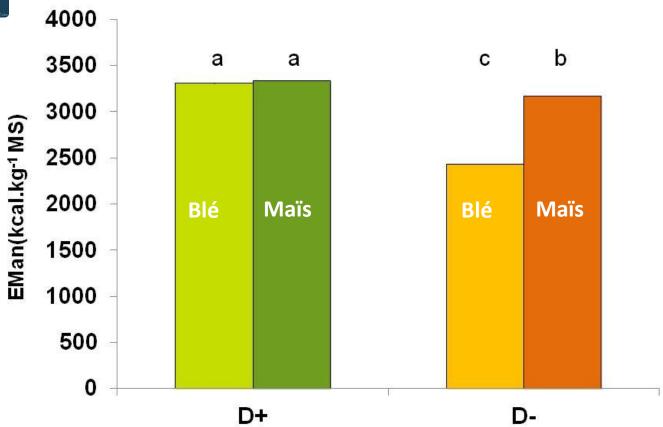

Du soja ?

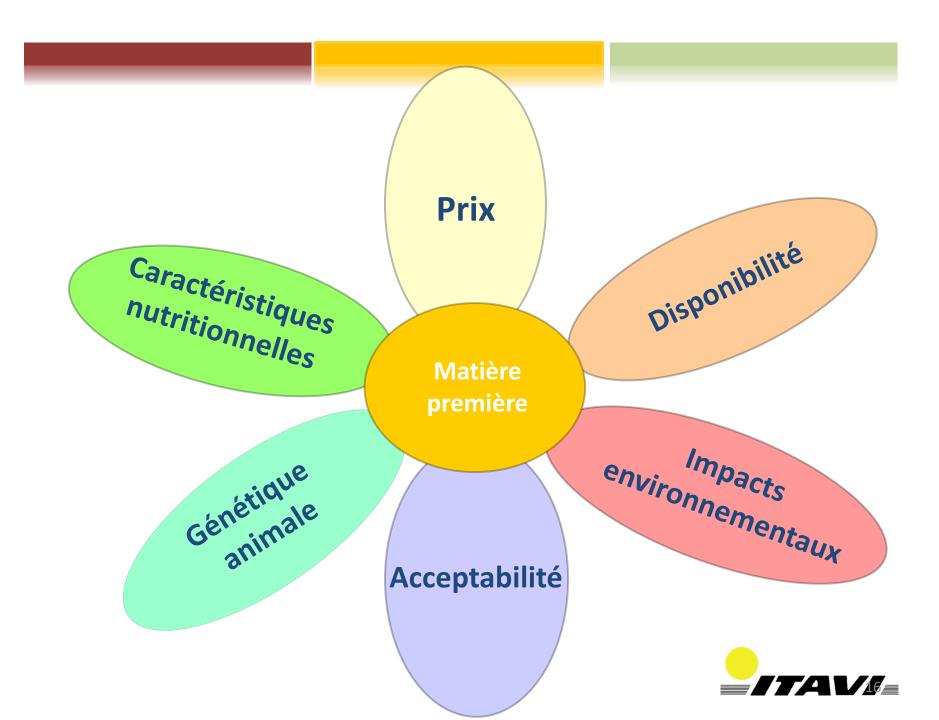
- Développer un savoir-faire
- Variétés adaptées à nos régions
- Process adapté à des petits volumes : tourteau gras (6% MG, 40% MAT)


Des larves d'insecte ?

Des algues ?

- Nécessite peu d'intrants, fort rendement
- Avenir via les filières biocarburants : quantités disponibles et prix ?




Des volailles adaptées aux MP locales ?

Sélection durant 8 générations avec un aliment à base de blé Rialto Critère de sélection: EMAn

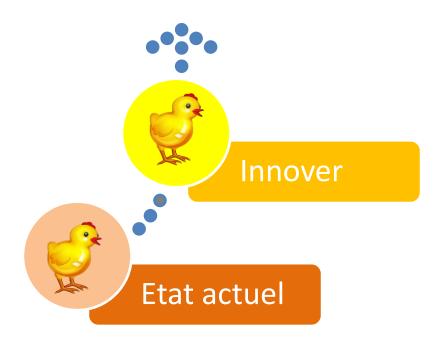
Les conditions d'utilisation des matières premières

Améliorer le durabilité des systèmes de production

Une grille d'évaluation de la durabilité co-construite

<u>Partenaires</u>: ITAVI, INRA, Chambres Régionales d'Agriculture des Pays de la Loire et de Bretagne, SYNALAF

DGER 2012-2014


Prendre en compte les différentes attentes

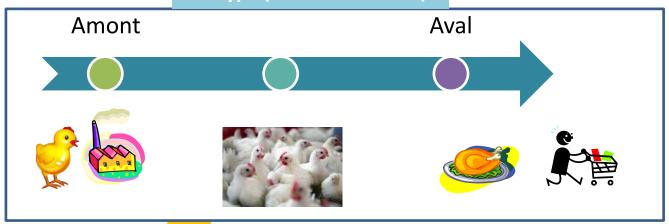
INNOVATIONS ENERGIE ACCEPTABILITE
RESSOURCES AUTOSUFFISANCE
GES COMPETITIVITE SANTE AUTONOMIE
RENTABILITE
PAYSAGE ORIGINE
MARCHE
EAU

AVOIR UNE DEMARCHE DE PROGRES POUR LES FILIERES AVICOLES

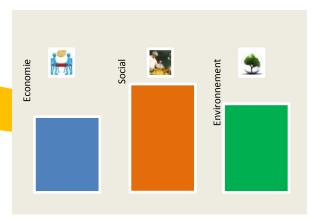
Besoin d'évaluer pour progresser

LES DIFFERENTES ETAPES

FILIERES POULETS DE CHAIR



Etat actuel


- 3. Evaluation des effets de changement
- 2. Evaluation de l'état actuel sur des cas-types
- 1. Co-construction d'une grille d'évaluation : 45 indicateurs

Cas-type (filière x territoire)

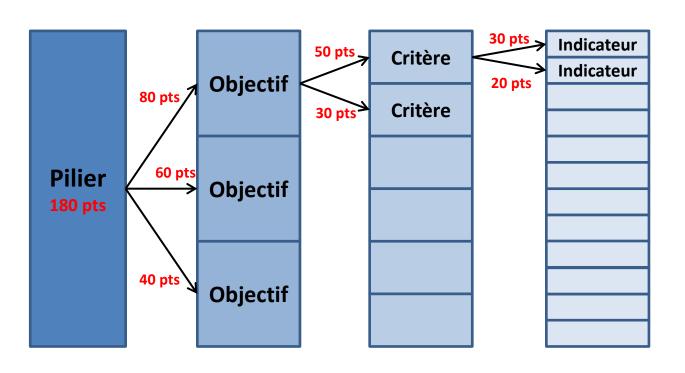
Gri<mark>lle</mark> d'indicateurs

UN GROUPE PARTICIPATIF Rencontres régulières

Acteurs filière

Organisations professionnelles

Recherche, Développement, Enseignement


Société civile

Consommateurs

Construction de la grille QVALI

Score:

Poids attribué à chaque indicateur.

Le score maximum pour un pilier est de 180 points.

Pondérations à titre d'exemple

Pilier: Objectif: Critère: Indicateur:

Aspect de la durabilitélat ou priorotéjegéinépéleifidélibroins direction de le variable mesurable : Economie, Social converson d'emponter du développement rotitiatible, qualitative ou subjective.

Il doit être pertinent, fiable, sensible, simple à calculer et simple à comprendre.

Les objectifs de durabilité

Pilier économique	Pilier social	Pilier environnemental	
Créer de la valeur sur le territoire	Répondre aux attentes des citoyens	Optimiser la gestion des ressources	
Connecter les filières au marché	Favoriser l'acceptabilité sociale de la filière	Maîtriser les impacts environnementaux	
Participer à l'autosuffisance alimentaire française	Renforcer le lien avec le territoire	Préserver les milieux naturels sur les sites	

Des scénarios d'utilisation de matières premières

Cas-type: Poulet standard, en Pays de la Loire

- Etat actuel: Rations alimentaires classiquement utilisées
- Scénario 1 : Tourteau soja gras français
- Scénario 2:0 % soja (sauf démarrage Std), oléo-protéagineux
 = Tx colza, tx tournesol HP, pois, féverole

Evaluation sur les 3 piliers

Comparaison Formule de base / Soja Gras / Oléo-protéagineux

Formule	ECONOMIE	SOCIAL	ENVIRONNEMENT
Standard base	89	82	105
Soja Gras	111	92	130
Oléo-pro	111	90	128

Une diversification des matières premières pour plus de durabilité

Pour l'exercice réalisé

- Amélioration des scores de durabilité
- Pas d'antagonismes entre performances économique, sociale et environnementale

Aller plus loin

- Elargir à de nouvelles matières premières
- Prendre en compte différents contextes de prix

CONCLUSIONS

Amélioration de l'autonomie protéique

= Challenge important

Innovations : process, nouveaux produits sélections végétale et animale

Plus grande coordination entre acteurs Rechercher la multiperformance

Merci pour votre attention

