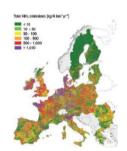


Quels leviers alimentaires pour réduire l'empreinte environnementale du lait?

Sylvain Foray, Institut de l'Elevage (France)

L'élevage au coeur de nombreux enjeux


Contribution au réchauffement climatique

• Au niveau international, l'activité d'élevage incluant les maillons production -transport-transformation représente 14,5% des matter l'actualité de l émissions de gaz à effet de serre (Gerber et al., 2013)

Dégradation des milieux (systèmes intensifs et concentrés)

- Eutrophisation des milieux (nitrate, P)
- Emissions d'ammoniac et acidification de l'air
- Elevage intensif et réduction de la biodiversité

Faible efficience de l'utilisation des ressources (feed vs food)

- Faible efficacité des animaux (surtout des ruminants)
- Utilisation de surfaces
- Moteur de la déforestation
- Utilisation de 8 à 15% de l'eau

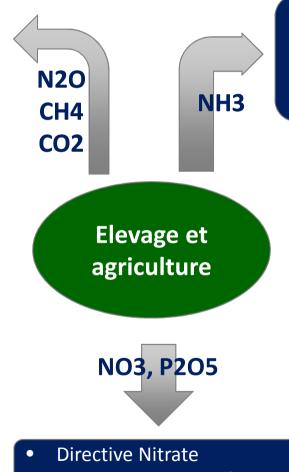
Débats sociétaux autour

- Du bien être animal
- Consommation de viande (et lait)

Peyraud, 2015

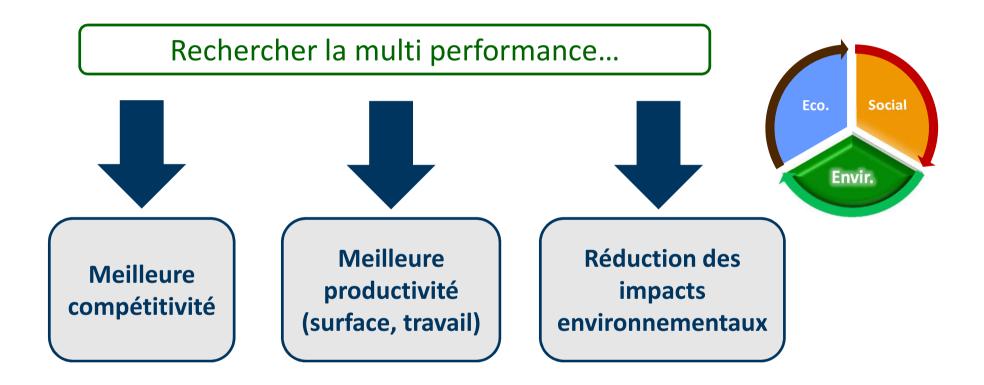
Mais l'élevage c'est aussi

- 40% du chiffre d'affaire de l'agriculture française
- Source d'emploi (> 700 000) notamment dans les territoires ruraux
- Valorisation des coproduits des filières végétales
 - 8 M t de coproduits
 - 23 M t de grains non adaptés aux marchés
- Valorisation de surfaces non utilisables pour d'autres productions alimentaires
 - Entretien et valorisation de 11,5 M ha STH
 - Préservation de la biodiversité et de paysages variés
- Entretien de la qualité des sols
 - Prairie, amendements organiques
 - Teneur en C et stockage de C
- Partie intégrante de notre l'héritage culturel



Dans un contexte politique et réglementaire en constante évolution

• Protocole de Kyoto

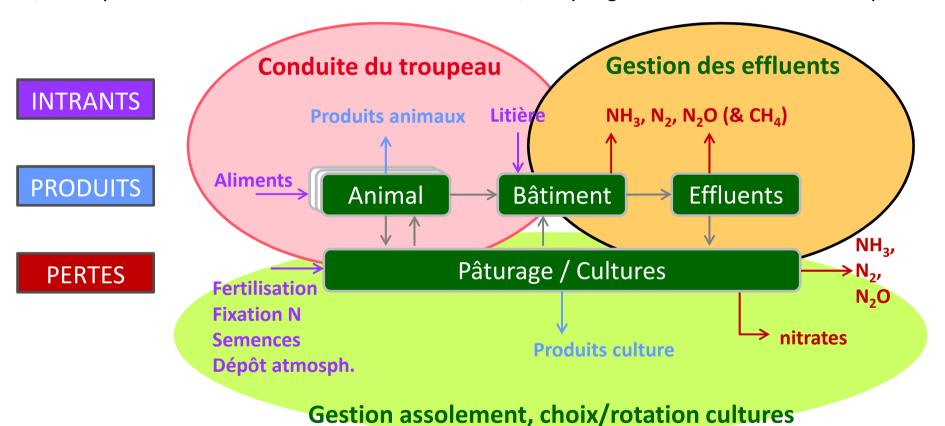


- Protocole de Göteborg
- Directive NEC
- Directive IED
- Directive sur la qualité de l'air

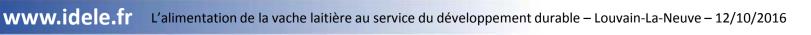
Directive cadre sur l'eau

Face à ce constat, que faire ?

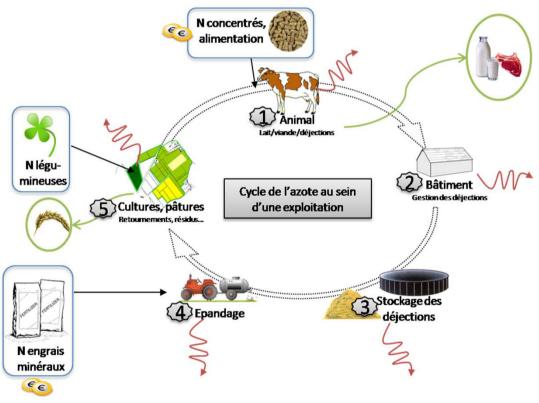
... Tout en amélioration l'évaluation des services rendus par l'élevage



Les flux d'azote dans les systèmes d'élevage


1/ Multiplicité des flux entrants

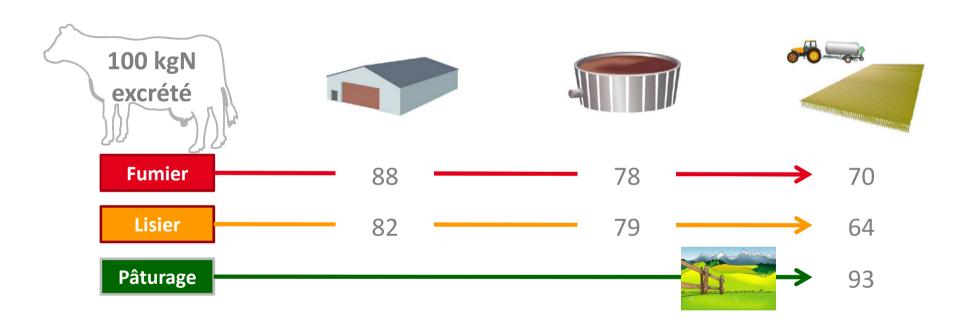
2/ Recyclage de l'azote au sein de l'exploitation



=> 3 ateliers de gestion de l'azote

3/ Des pertes importantes vers l'environnement

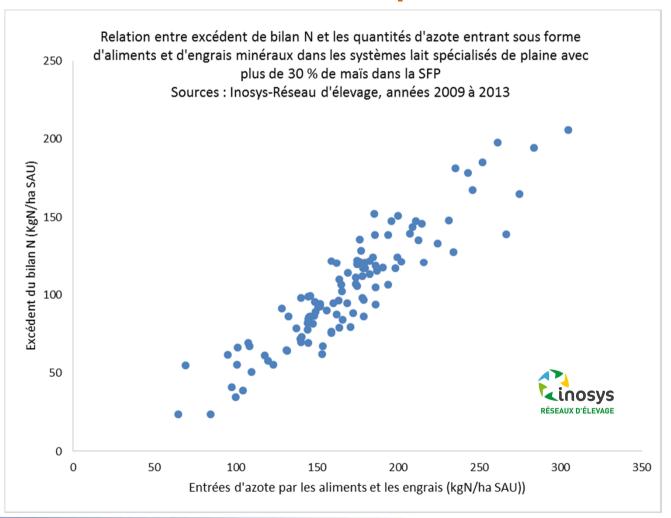
Le cycle de l'azote : des pertes d'azote à différents niveaux


Légende

Pertes d'azote (vers l'air, l'eau et le sol) Sorties de N sur l'exploitation (culture de ventes, viande lait)

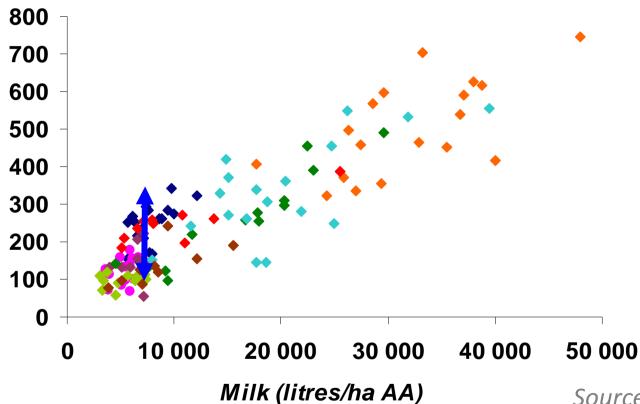
Entrées de N sur l'exploitation (Concentrés, engrais)

Devenir des flux d'azote : les pertes sur la chaine de gestion des déjections



Des pertes en majorité sous forme NH₃

Gac et al 2006


A l'échelle du système, l'excédent est d'autant plus grand que les entrées d'azote sont importantes...

... tout comme le degré d'intensification

Scotland South Ireland South W. England **Brittany** Pays de la Loire

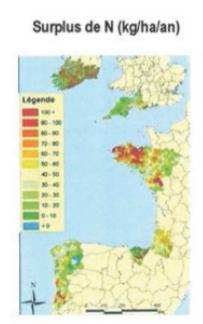
Aquitaine

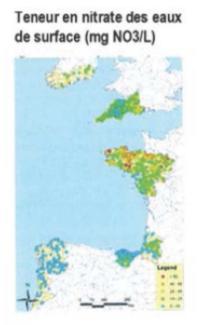
Basque Country

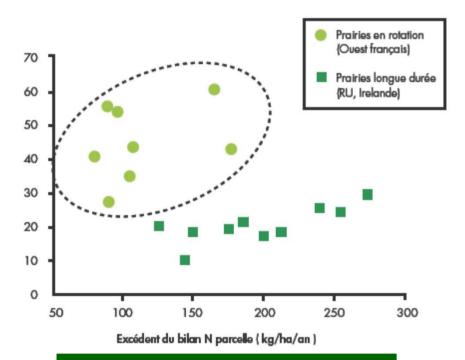
Galicia

North Portugal

Source: Raison, 2008 Projet Green Dairy

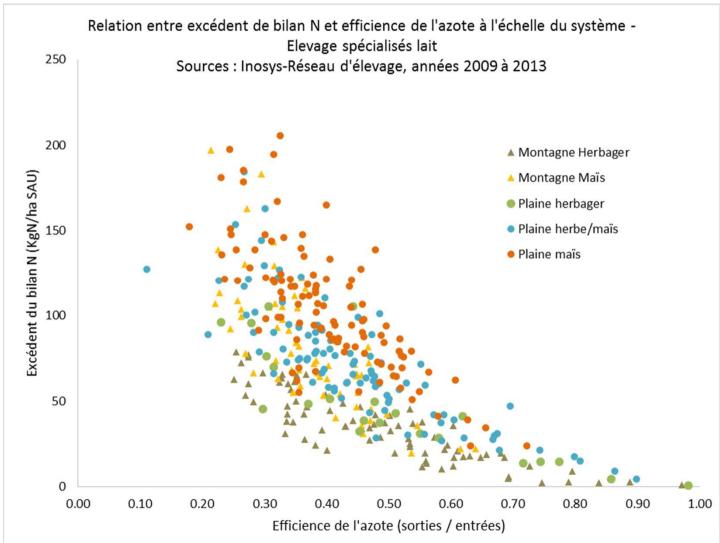

Mais, une grande variabilité!




Mais tous les milieux et systèmes d'élevage ne sont pas égaux face au même bilan azoté

Influence de la température, de la pluviométrie, de la nature des sols, des pratiques...

=> Sensibilité des milieux


Projet GreenDairy, Pflimlin et al 2006

Prairies fréquemment retournées => lessivage N

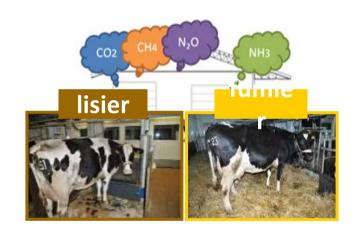
Une meilleure efficience de l'utilisation de l'azote peut réduire les pertes

Une faible efficience de l'utilisation de l'azote par les bovins

30-90% de l'azote ingéré est excrété!

	Vache laitière	Vache allaitante	Jeune bovin viande	Génisses laitières
N ingéré (g/j)	460	240	200	180
N fixé (lait ou muscle – g/j)	128	40	38	20
N total excrété (g/j)	332	200	200 162	
Valorisation (%)	28	17	19	11

Peyraud et al. 2014



Leviers d'action : stratégie d'alimentation Les interactions entre alimentation azotée et mode de conduite

Rations +/- riches en

Logement et gestion des déjections

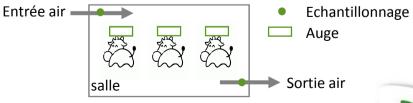
Comment la gestion des effluents (liquides / solides) influence les processus d'émission de gaz et l'utilisation de l'azote en relation avec la quantité d'azote excrété

> Edouard et al 2013 IEPL Méjusseaume

Leviers d'action : stratégie d'alimentation Les interactions entre alimentation azotée et mode de conduite

- 2 lots de 3 vaches laitières, 4 périodes de 4 semaines
- 2 systèmes contrastés en salles expérimentales contrôlées
- 2 Rations : ensilage de maïs (80 %), concentrés (20 %)

Edouard et al 2013 IEPL Méjusseaume



N+ 18 %MAT 97 gPDIE/kgMS 114 gPDIN/kgMS

N-12 %MAT 95 gPDIE/kgMS 82 gPDIN/kgMS

 Mesures des émissions gazeuses en cinétique : CO₂, CH₄, N₂O, NH₃

Leviers d'action : stratégie d'alimentation Les interactions entre alimentation azotée et mode de conduite

- Meilleure utilisation de N sur N-

	Fumier		Lisier	
	N-	N+	N-	N+
Ingestion kgMS/j	23.4 ±0.5	24.8 ±0.5	23.3 ±0.7	24.5 ±0.6
Prod. lait kg/j	22.1 ±0.7	24.1 ±0.7	20.4 ±0.9	21.8 ±0.9
	0.28	0.18	0.26	0.18

- Emissions d'NH₃ plus élevées N+, en interaction avec le type de déjections

g/j/vache	N-NH ₃		
	N-	N+	
Fumier	23	85 🖊	
Lisier	21	63	

Les rations pauvres en azote ≥ pertes vers l'environnement et ⊅ utilisation de l'azote

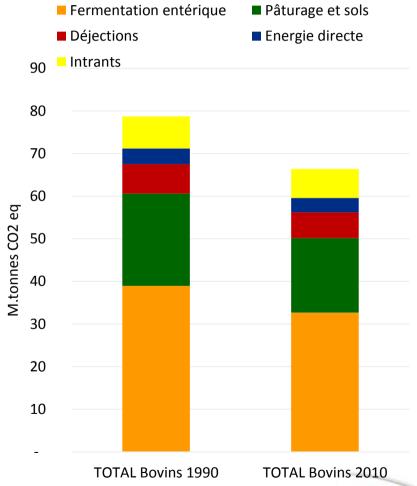
Résultats amplifiés sur fumiers

=> combiner des apports ajustés en azote à une gestion des déjections minimisant les émissions

> Edouard et al 2013 IEPL Méjusseaume

1990 – 2010, le chemin parcouru en France sur les émissions de GES

A l'échelle nationale

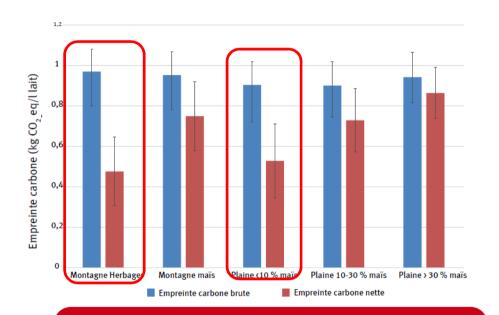

- 14 % de GES en élevage bovin

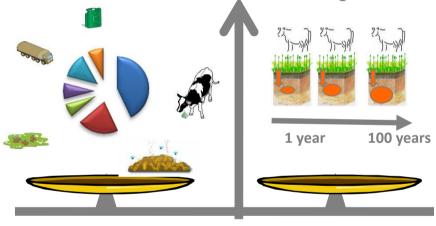
Sur l'empreinte carbone des produits

• Lait : - 20 %

• Viande : - 5 %

Gac et al, à paraître


L'empreinte environnementale du lait



EC brute = $0.93 \text{ kg éq. CO}_2/I \text{ de lait cor.}$

EC nette = 0.71 kg éq. CO_2/I de lait cor.

Emissions GES

Une variabilité intra-système importante Des atouts liées au prairies Une compensation C : entre 10 et 50% Compensation comprise entre 5 et 50 % des émissions totales

Dollé et al., 2015

Stockage de carbone

Des leviers d'action à chaque poste d'émission

Dépendance aux intrants

Pâturage, optimisation concentrés et engrais, légumineuses, engrais verts, rotation

Fioul et électricité

Travail simplifié du sol, conduite, matériel, organisation

Intrants

19%

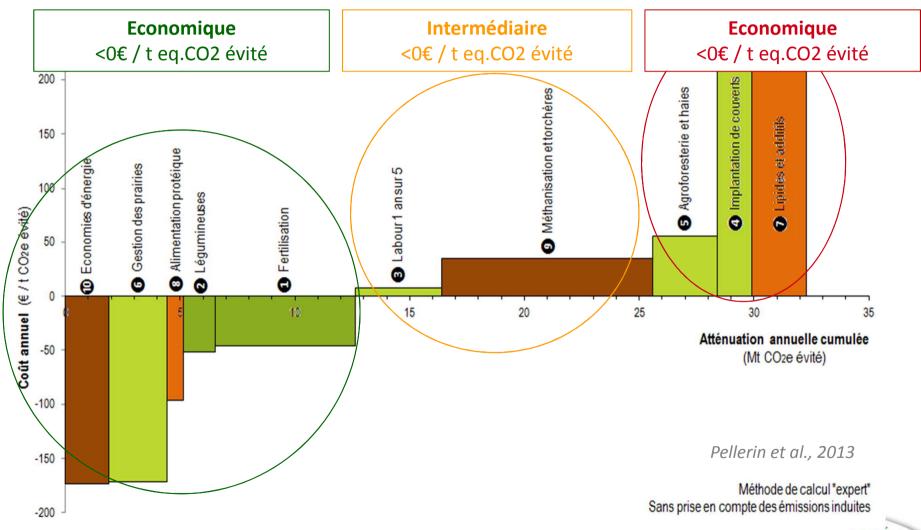
Légumineuses, couverture de sols, optimisation de la fertilisation

Gestion des cultures et azote

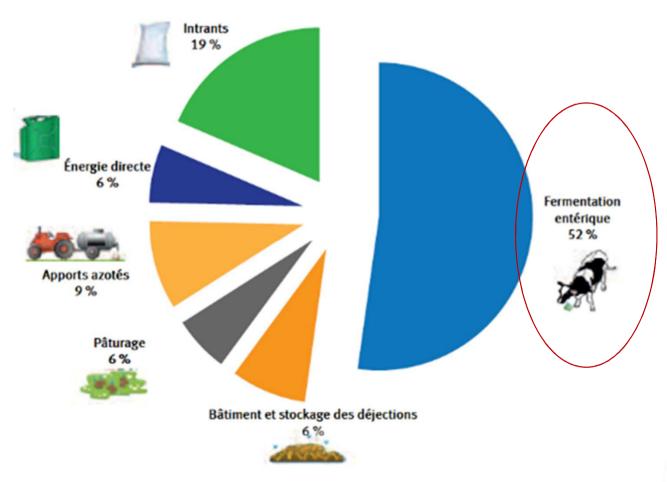
Alimentation

Equilibre de la ration, qualité des fourrages, quantités de concentrés, choix des MP (tourteaux, coproduits,...)

Bâtiment et stockage des déjections

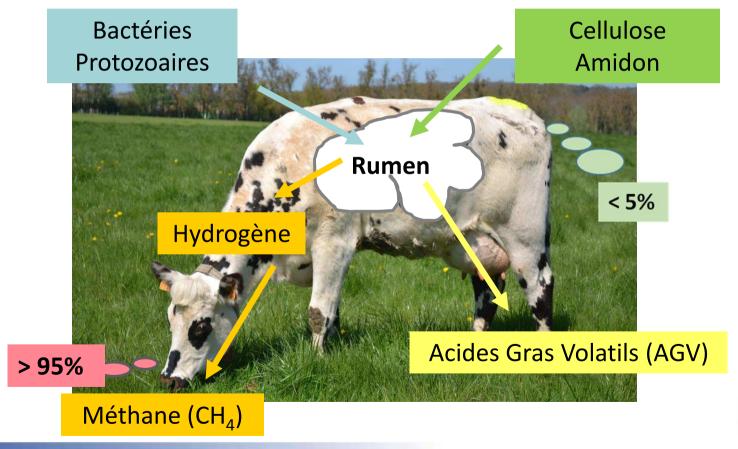

Gestion de déjections bâtiment et pâturage

Efficience de l'azote dans la ration, temps de présence au bâtiment et pâturage, méthanisation



Le coût des techniques de réduction des GES

En France, tous secteurs d'activité confondus, 80% des émissions de CH4 sont issues de l'élevage



L'origine du méthane entérique

[Delaby, 2015]

La digestion des polyosides végétaux de la ration entraine la production d'AGV et de CH₄.

Le CH₄ issu de la rumination est excrété par voie orale

Alimentation et potentiel laitier

Les quantités de CH₄ émises par jour dépendent d'abord des quantités de matière sèche ingérées (MSi)

Exprimé en g de CH₄ par kg de MSi, les quantités émises varient avec la matière organique digestible de la ration (MOd)

$$CH_4$$
 (g/kg MSi) = 7,14 + 0,22 x MOd (%MS) [Sauvant et al, 2011]

Si 18 kg MSi et 70% MOd alors environ 400 g de CH₄ émis / jour

Lait Pic (kg)	Lait s16	CH ₄ g/jour	CH ₄ g/kg lait	
30	24	450	19,1	
40	32	500	15,7	
50	39	530	13,4	

Avec l'augmentation du potentiel,

- Une augmentation des émissions par vache
- Une réduction des émissions par kg de lait produit

Influence du type de prairies sur les émissions de CH4

[Delagarde, Edouard et Eugène, 2014]

	RGA pur	RGA + TB (30%)	RGA + Chicorée (30%)
Lait (kg / jour)	20,8	25,0	22,5
CH4 (g / jour)	459	465	389
CH4 (g / kg lait)	22,8	18,6	17,3
CH4 (g / kg MSi)	31,3	26,7	24,6
CH4 (g / kg MOd)	41,5	36,4	33,5

[Delagarde, Edouard et Eugène, 2014]

- L'association avec le trèfle blanc a des effets très favorables sur l'ingestion et la production laitière
- L'association avec la chicorée réduit les émissions de méthane journalière
- Le trèfle blanc ou la chicorée, fourrages très digestibles, permettent de réduire les émissions de méthane par kg de MS ingéré et par kg de lait
- La maitrise de la composition de ces mélanges et leur pérennité reste des difficultés agronomiques à résoudre

Conclusion

Des marges de progrès importantes existent

- Pour accroitre l'efficience de conversion des ressources en produits animaux
- Pour limiter les pertes et les émissions
- Pour conjuguer compétitivité et productions de services

Penser plus globalement à l'ensemble des impacts (N₂O NO₃ NH₃ CH₄) et réfléchir sur l'ensemble du système : du local au global

