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A chemometric challenge was posed at the annual ‘Chimiométrie’ congress organized by the French
Chemometrics Society in 2010. The congress was held in Paris on 2–3 December and the data relating to the
challenge are available on the congress website (http://www.chimiometrie.fr/chemom2010). The aim of the
challenge was to test the ability of congress participants to discriminate Trappist Rochefort 8° beer (one of
seven authentic Trappist beers in the world) from other Trappist beers, as well as other special beers. All the
beers were measured using three vibrational spectroscopic techniques (NIR, MIR and Raman). Three
participants took up the challenge and, as in previous congress challenges, the organizing committee asked
them to describe their approaches to face the challenge. This paper summarizes the three approaches put
forward by participants, as well as the approach put forward by the organizers.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Trappist monks brew beer to provide for their needs and to earn
the income necessary for abbey operations and charity work [1]. In
order to better protect the name, the International Trappist
Association specified certain criteria for defining an Authentic
Trappist Product. According to these criteria, the beer should be
brewed at a Trappist abbey, by or under the control of Trappist monks.
The brewery, the brewing procedures and the commercial factors
involved depend upon the monastic community, and the economic
purpose of the brewery is oriented towards providing for the monks'
needs and social assistance activities, rather than financial profit.
Currently, there are seven breweries that are allowed to use the
Authentic Trappist Product logo on their products, indicating their
authentic Trappist origin. Six of these beers are from Belgium (Achel,
Chimay, Orval, Rochefort, Westmalle and Westvleteren) and one is
from The Netherlands (La Trappe).

Until now, only a few studies have focused on the authenticity of
beer products [2–8]. The published work concerns mainly on the

detection of fraud, the authentication of the beer ingredients and the
authentication of beer brands, using such techniques as gas
chromatography–isotope ratio mass spectrometry [2], head-space
solid-phase microextraction (HS–SPME) [3], isotope analysis [4] and
gas chromatography–time-of-flight mass spectrometry (GC–TOFMS)
[5]. Recently, three papers have been published on the confirmation of
brand identity and the authentication of Belgian Trappist beers by
LC–MS [6], UV spectroscopy [7] and near infrared (NIR) transflectance
spectroscopy [8], respectively.

As in previous years [9–13], a challenge was posed at the
‘Chimiometrie’ congress held in Paris in December 2010, concerning
the applicability of spectroscopy and multivariate analysis for
guaranteeing the authenticity of a particular brand of beer. In
particular, it focused on the discrimination of Trappist Rochefort 8°
beer (one of seven authentic Trappist beers) from other Trappist
beers, as well as other selected special beers. It involved using three
vibrational spectroscopic techniques to measure several beers from a
study conducted within the framework of the EU TRACE project
(www.trace.eu.org). Spectroscopy is an analytical technique based on
the interaction between a species and electromagnetic radiation. The
electromagnetic radiation that is absorbed, emitted or scattered by
the molecule is then analyzed. In vibrational absorption spectroscopy,
by varying the frequency of the radiation, a spectrum can be produced
that indicates the intensity of the exiting radiation for each frequency.
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This spectrum shows which frequencies of radiation have been
absorbed by the molecule to raise it to higher vibrational energy
states. Each molecule has its own characteristic spectrum, making
spectroscopy indispensible in analytical chemistry.

The three vibrational techniques applied in the challenge were
near infrared (NIR), mid-infrared (MIR) and Raman spectroscopy.
From a chemical point of view, both IR and Raman spectroscopy are
based on the vibrational transitions that occur in the ground
electronic state of molecules. Raman spectroscopy concerns the
scattering of radiation by the sample, rather than an absorption
process. Raman scattering arises from the changes in the polarisability
or shape of the electron distribution in the molecule as it vibrates; in
contrast, IR absorption requires a change in the intrinsic dipole
moment with the molecular vibration. Although the mechanism of
Raman scattering differs from that of IR absorption, Raman and IR
spectra provide complementary information about the vibrations of
molecules. Typical applications of vibrational spectroscopy techniques
are in structure determination, multicomponent qualitative and
quantitative analysis.

The aim of the challenge at the ‘Chimiometrie’ congress was to
guarantee the authenticity of Rochefort 8° beer through multivariate
analysis; that is, to discriminate as accurately as possible between
Rochefort 8° and the rest of the beers included in the datasets, and
then to predict the blind spectra included in an available test set.

2. Material and methods

2.1. Instrumentation

Table 1 shows the characteristics of the instruments used in the
study, including the number of spectra obtained by sample, the mode
of measurement, the background used and the acquisition parameters
(resolution, number of scans and laser power).

2.2. Datasets

All the samples used in the study came from the TRACE project in
which a complete experimental design was used. For the congress
challenge, a set of 130 bottles of Trappist and non-Trappist beers was
used. All the bottles were measured randomly on the same day and
each beer was measured twice with each instrument (NIR, MIR and
Raman), in line with the parameters shown in Table 1. From this set,
100 beers were selected for the calibration set and given to the
congress participants, with information about the samples; the
remaining 30 beers were selected for the blind test set. For the
calibration data set, three data files of 200 spectra (corresponding to
the 100 samples measured in duplicate) with information about the
samples were provided, corresponding to each of the spectroscopic
techniques used (see Figs. 1–3). Table 2 shows the list of beers used

for the calibration set, including the number of bottles for each beer.
Because the aim was to discriminate between Rochefort 8° and the
rest of the beers, there were more bottles of this beer. For the test set,
three data files of 60 spectra were provided (corresponding to the 30
samples measured in duplicate), but without any information about
the samples.

3. Results

3.1. Participant N° 1

From an initial analysis of the calibration dataset it was clear that
the number of Rochefort 8° samples was very low in comparison with
the total number of beers (only 9%). Therefore, to build a Rochefort
8°/non-Rochefort 8° classification model would be risky. This
imbalance in numbers would lead to overtraining whatever classifi-
cation and cross-validation methods were used. In addition, it was not
possible to develop a good classification model without a validation
step in order to check its accuracy. Even the calibration dataset would
probably have to be split, thus further reducing again the number of
Rochefort 8° cases.

Table 1
Characteristics of the different spectral data obtained from the analysis of the samples.

NIRS MRI Raman

Instrument XDS (Foss) Vertex 70
(Bruker)

Vertex 70
(Bruker)

Number of spectra
per sample

2 spectra/sample 3 spectra/sample 2 spectra/sample

Background Internal reference Pure water NA
Mode of
measurement

Transflexion Reflectance 180° geometry

Sample holder transflexion
cell

Diamond ATR
accesory

test tube

Acquisition parameter
Resolution: 2 nm 4 cm−1 4 cm−1

Number of scans: 16 64 128
Range: 400–2498 nm 4000–600 cm−1 3500–100 cm−1

Laser power: NA NA 600 mW

Fig. 1. NIR data: calibration set.

Fig. 2. MIR data: calibration set.
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The aim was therefore to find some criteria from the spectroscopic
data in order to classify a maximum number of samples as non-
Rochefort 8°. Thiswasanartificialway to increase the relativenumber of
Rochefort 8° samples in the calibration dataset. It was possible that
interlinked classificationswould solve this problem, discriminating first
the non-Trappist beers from the Trappist ones, then the non-Rochefort
beers from the Rochefort ones, and finally the non-Rochefort 8° beers
from theRochefort 8° ones. The chemical composition of thebeers in the
studywas80–90%water, 5–11.3%alcohol, a lowpercentage of sugar and
less than 1% protein. Given a specific alcohol spectral contribution, it
might be possible to classify Rochefort 8° beers because of the high
alcohol levels due to successive fermentations. The problem was,
however, that Rochefort 8° beers do not have the highest alcohol
content (only 9.2%). The classification would therefore have to use
information about minor compounds. This might be close to the
detection limits of the proposed spectroscopy techniques, and it would
therefore be necessary to find a good pre-processingmethod in order to
identify these small variances.

It was decided to use Principal Component Analysis (PCA) to
prepare the classification models. It is a very good visualization tool
for multivariate datasets. Therefore, based on the principle that the
classification had to be based on minor compounds, it was necessary
first to study the spectroscopy technique with the highest spectral

specificity (i.e., the lowest bandwidth) as well as the highest
sensitivity. Mid-Infrared and Raman spectroscopy were both good
candidates. When looking at the data, it was easy to observe a lower
signal to noise ratio in Raman spectroscopy than in Mid-Infrared. A
high fluorescence background was also observed, which masked the
Raman scattering. PCA was then applied to the MIR dataset. The aim
was to find a factorial plane that roughly presented clusters for the
non-Trappist/Trappist groups, the non-Rochefort/Rochefort groups
and the non-Rochefort 8°/Rochefort 8° groups. Many pre-processing
combinations were tested, but without any interesting results.
Various selections of spectral domains were also investigated, such
as the well-known fingerprint region of the MIR domain. Considering
the bad signal to noise ratio of the Raman dataset, the focus was then
on the NIR spectral domain. Fig. 1 shows the two well-known
absorption bands of water (the major compounds) centered approx-
imately on 1450 nm and 1930 nm. At this stage, both the visible range
and the water absorption domains were removed in order to prevent
overlap with other variables needed for the classification. Again, the
aim was to find clusters with numerous factorial planes and various
pre-processing combinations, but the results were the same as
previously.

The Raman dataset was then analyzed. Derivative and baseline
correction algorithms were explored in order to try to remove the
fluorescence background contribution, but once again no interesting
factorial planes were found. As Raman scattering is very sensitive to
laser instability, a spectral normalization was only tested directly on
the raw data (i.e. without background removal). Fig. 4 presents the
first factorial plane (PC1 vs. PC3) with its Hotelling confidence ellipse
where defined zones for Rochefort 8° beers were evident. When
looking at the loadings, the first PCs showed that the fluorescence
background provided important information for Rochefort 8° beer
classification. The blind test samples were then projected onto the
selected plane (Fig. 5).

Thus, it was possible to declare, with near certainty, that the test
samples outside the rectangular zone were non-Rochefort 8° beers. A
decision had to be taken about the 14 remaining test samples within
the zone. From this subspace, there was a new distribution of
calibration samples consisting of fourteen Rochefort 8° beers and
eight non-Rochefort 8° beers (four Binchoise Brune and four
Maredsous). It was assumed that the color of the beers could be
used to classify them, even if all the samples of this sub-population
were amber. PCA was then performed with samples belonging to the
previous box zone on the visible spectral range. Fig. 6 presents a
factorial plane (PC2 vs. PC3) for a first derivative used as spectral
pre-processing. Well-defined clusters were observed for Rochefort 8°
and non-Rochefort 8° beers. At this stage, the fourteen remaining

Fig. 3. Raman data: calibration set.

Table 2
List of the beers used for the calibration set.

Trappist beers Number of bottles Non-trappist beers Number of bottles Number of bottles

Achel Blond 2 Affligem Triple 1 Jupiler 2
Achel Brune 2 Binchoise Brune 2 Kwak 2
Chimay Bleu 1 Bon Secoures 2 Leffe Blonde 2
Chimay Rouge 2 Brugges Triple 2 Leffe Brune 2
Chimay Triple 2 Delirium Tremens 2 Maredsous 8 2
La Trappe Blance 2 Duvel 2 Moinette Blonde 2
La Trappe Blonde 2 Gueuze Girardin 2 Moinette Brune 2
La Trappe Double 2 Gouden Carolus 1 Primator 22 1
La Trappe Quadrupple 1 Grimbergem Double 2 Primator 24 1
La Trappe Triple 2 Grimbergem Triple 2 Quintine 2
Orval 2 Hapkin 1 St Bernardus Prior 2
Rochefort 10 9 Hercule 1 St Feuillien 1
Rochefort 6 5 Het Kapitel Watou 2 Triple Karmeliet 2
Rochefort 8 9 Hoegarden Grand cru 2 Val-Dieu Triple 2
Westmalle Double 2 Hotteuse Grand cru 2
Westvleteren 3 Judas 1
Total bottles 48 52

4 J.A. Fernández Pierna et al. / Chemometrics and Intelligent Laboratory Systems 113 (2012) 2–9



Author's personal copy

samples from the blind test set were unambiguously declared to be
Rochefort 8° beers.

In conclusion, it would have been possible to go further in this
classification challengewith the proposed hierarchical approach. Even if
no real classification model was developed, the interpretation of
sequential PCA applied to different spectroscopic techniques succeeded
in providing solutions to meet the challenge.

3.2. Participant N° 2

Considering that only 9% of the samples are Rochefort 8°, the first
objective was to try to better define the classification problem by
reducing the calibration dataset, excluding the non-Rochefort 8°
samples that were found to play no relevant role in the classification
process (e.g., those that were far from the boundary of the class). After
this initial step, it was expected that, ideally, there would be two classes
of about the same size. In order to reduce the calibration dataset, the
data were analyzed mainly by performing PCAs on individual Raman,

NIR and MIR calibration data. The second step involved applying
supervised classification methods to the reduced dataset, either Soft
Independent Modeling of Class Analogies (SIMCA) [14] or High-
Dimensional Discriminant Analysis (HDDA) [15]. The first method,
which incorporates dimensionality reduction in a classification model
by conducting disjoint PCA analyses for each group, is a standard
chemometric classification tool. In contrast, the second method, HDDA,
has only recently been introduced and applied in chemometrics [16]. It
is a parametric method for clustering and classification, based on
Gaussian mixture models for high-dimensional data. HDDA offers an
alternative way of dealing with the specific problems related to
high-dimensional data. In particular, it has two main advantages over
other generative classification methods. First, the formulation of the
inverse covariance matrix is explicit. Second, it is possible to build the
classifier when the number of learning observations (samples) is
smaller than the number of variables (dimension).

PCA was applied on MIR and Raman data and a rapid inspection of
the results showed clear clustering of the Rochefort data in both cases.

Fig. 4. PC1 vs. PC3 plot for the NIR data.

Fig. 5. Projection of the blind test samples onto the PC1 vs. PC3 plane for the NIR data.
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A deeper investigation led to the following conclusions: (i) all the
Rochefort 8° calibration samples had positive PC3 scores with the MIR
calibration data and (ii) all of them had positive PC1 scores with
Raman calibration data.

The combination of findings (i) and (ii) meant that 161 samples
could be excluded from the calibration (i.e., all the samples that did
not fulfill the conditions with regard to the PC scores). The reduced
calibration set consisted of 39 samples, of which 20 were Rochefort 8°.
Fig. 7 was obtained by building a PCA model on this ‘new’ reduced
calibration set (results shown for MIR data only).

The first objective had been reached in that there were now two
groups of about the same size. The reliability of this approach should
be treated with some caution, however, particularly because it was
based on the assumption that the calibration and test data showed
quite good overlap, without much extrapolation.

Once this clear group separation had been observed in the PCs
subspace, the SIMCA and HDDA methods were applied to the reduced
calibrationMIRdataset. Validationwasperformedusingcross-validation
in bothmethods. ForHDDA, theBayesian informative criterion (BIC)was
also used for model selection [16]. The main result was that a 100%
accurate classification rate was obtained in cross-validation in both
cases. With regard to the prediction ability of both models for the test
samples, 12 samples were predicted as Rochefort 8° using the SIMCA

model, whereas only 11 were predicted with HDDA (the same samples,
except for one). It should be noted that with the SIMCA model,
classification predictionwas based on the projection of the samples into
the models built around each class. Both methods gave reliable and
consistent results, but this does not guarantee accurate group-
membership predictions if the assumptions made are not true enough.
Considering the information available for the challenge, no conclusion
can be reached about the prediction of these particular samples and it
was thus decided to put forward the prediction results obtained with
HDDA. In addition, to roughly evaluate the risk taken by applying the
proposed procedure, which actually consists in “sample pruning”, it was
found interesting to project the test set into the PCA subspaces obtained
previously for the full calibration set. It was observed that quite strong
extrapolation is required for theprediction and the classification of some
samples, for which the prediction should be regarded more cautiously.

3.3. Participant N° 3

In this approach, the repetitions were considered as independent
tables. An initial examinationof thedata tables led tovarious conclusions:

The vector correlation (or RV) coefficients between instrument data
matrices were computed [17] (Table 3). These coefficients indicate
consensusbetweenpairs of tables. They take the valueof 1where the
tables provide the same (linear) type of information. A value of
0 indicates that the tables cannot be rotated in order to have
superimposed observations (as in the procrustean approaches). It
therefore seemed inappropriate to use a multi-table approach such
as those developed by Tenenhaus and Hanafi [18].
The spectral repetitions were not very stable.
The qualitative groups seemed to form complex ‘clouds’ in a
multidimensional space.

Fig. 6. PC2 vs. PC3 plot for the Raman data after the first derivative.

Fig. 7. PCA of MIR calibration data reduced by applying rules (i) and (ii), see text for
details.

Table 3
RV coefficients between the (pre-treated) data tables (the RV or vector correlation
coefficients evaluate the ‘similarity’ between tables).

Raman MIR NIR

Raman 1 0.04 0.13
MIR 0.04 1 0.04
NIR 0.13 0.04 1
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As an initial step, the data were pre-treated. The choice of the
spectral pre-treatments used for each technique was drawn from
previous Analysis of Variance (ANOVA) studies. MIR and Raman
spectra were corrected by using the standard normal variate (SNV)
method, and NIR spectra were corrected using a second derivative.
Then, in order to build the classification models, the k-nearest
neighbor (kNN) approach was used. With this approach, a new
sample was projected into the space created by the calibration
dataset, and then a set of distance calculations was done; this sample
was in the same class as most of the pre-defined number of neighbors
in the dataset. The approach involved constructing independent
models for each of the six tables (3 methods x 2 replicates). It was
necessary to select the variables involved in the kNN discrimination.
For this purpose, a simple forward introduction of the variables was
followed. For a fixed number of neighbors, the variable giving the best
discrimination in the calibration set was identified and selected. A
second variable was then introduced. Once a variable had been
introduced, there was no attempt to remove the previously
introduced ones (as in a stepwise approach). The neighbors were
computed using a type of Mahalanobis distance. This involved
applying PCA to the matrices of the selected variables. A subset of
the scores associated with the highest eigenvalues was then defined.
By dividing each score by the corresponding standard deviation
(reduction), it was possible to build a new data matrix. The Euclidian
distances on this new matrix were equivalent to the Mahalanobis
distances on the original dataset.

Several models for discriminating the samples have been tested
with neighbors ranging from 1 to 6 and PCA-dimensions from 1 to 10.
For each table among the 6 ones available, there were thus 10×60
discriminant models. These models were independently tested on the
data of the blind test. As there were 60 observations in the blind test,
the eventual results could be gathered in 6 matrices T(i) with i=1…6.
An element tjk

(i) of the matrix T(i) took the value 1 if the application of

the discriminant model numbered k (among 60 available) led to
attribute the nature Rochefort 8° to the observation j, and 0 otherwise.
Fig. 8 illustrates these predictions (with the observations in rows, and
the discriminant models in columns). A black color indicates that the
observation was not classified in the Rochefort 8° group. Gray and
white colors indicate that the tested discriminant model led to a
positive classification. White color gives the eventual decision based
on the agreement between instruments, while gray one indicates that
there is no consensus.

3.4. Challenge organizers' approach

The organizers' approach was based on using ensemble classifiers
constructed by the supervised classification algorithm Support Vector
Machines (SVM), where the important point is the decision rule,
which determines whether a new sample belongs to a predicted
group or not. Like other supervised classifiers, a training dataset is
needed to define the decision boundaries within the feature space,
and based upon this the classification decision rules are made. This
technique works according to the principle of structural risk
minimization, which is controlled bymaximizing the margin between
the training data and the decision boundary [19,20]. SVM projects, in a
non-linear way, the training data from the original space to a feature
space of higher dimension through the use of a kernel function. In this
higher dimensional space, the decision boundary becomes linear in
order to separate the groups of interest and is equivalent to placing a
non-linear separator in the original space. The Gaussian radial basis is
commonly used as a kernel function and SVM then has only two
parameters to optimize: the width of the Gaussian and the C
parameter in relation to the minimization of the classification errors.
A good balance has to be found between both parameters in order to
guarantee a maximization of the margin and a minimization of the
misclassified points. In order to perform an accurate optimization of

Fig. 8. Predictions for the blind test set. Rows: sample number. Columns: the discriminant models. Black: sample not classified in the Rochefort 8° group. Gray: Rochefort 8° detected,
but no consensus between instruments. White: Rochefort 8° detected, with consensus.
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the parameters, all the datasets (NIR, MIR and Raman) were split into
three subsets: a calibration dataset to build the model, a stop set to
optimize the SVM parameters, and a test set to validate the models.
Once the optimal parameters had been selected, the final model was
constructed by combining the calibration and stop sets. The three sets
of blind samples were then predicted using the ensemble classifier
technique. The idea behind this technique is to produce a final
classification result that is dependent upon a pool of classifiers instead
of on a single equation. As explained by Parikh and Palikir, combining
classifiers ensures diversity because each classifier will make a different
error, and by combining them the total error can be reduced [21,22]. In
this work, having samples measured in different instruments to train
different classifiers ensured diversity. Each individual NIR, MIR or
Raman blind spectrum then went through its equation and the
corresponding prediction class was obtained. For each blind sample,
three predictions corresponding to each spectroscopic technique were
obtained. The final results for the new samples were based on a
combination rule through the simple majority voting ensemble
technique. This majority voting strategy constructs multiple decision
terms to estimate the performance of the decision function.

In this case, an individual SVM model between Rochefort 8° and
non-Rochefort 8° beers was constructed for each spectroscopic
dataset (NIR, MIR and Raman) and the prediction of the blind
samples was performed as previously explained. The NIR data were
pre-processed by SNV and first derivative SG (9:2:1), the MIR data
had no pre-processing and the peak of CO2 (around 2400 cm−1) was
removed, and for the Raman data the best results were obtained
without pre-processing.

4. Final results

All the results presented were obtained taking into account only
individual spectroscopic datasets by proposing either the use of
individual discriminationmodels or the use of sequential PCAmodels.
But in all the cases, the evaluation of the approaches was conducted
on the basis of the best assignment of the 60 beers in the blind test set.
Table 4 shows the success rates expressed as the percentage of
correctly classified samples, as well as the sensitivity and specificity
(in %) obtained for the blind test set. The success rate was defined as:

success rate =

∑
K

i=1

correctly classified samples in class i
total number of samples in class i

 !

K
× 100

with K being the number of classes. A success rate of, for example, 92
indicated that 92% of the objects are correctly classified.

In this study, the sensitivity was defined as the probability of
Rochefort 8° beers correctly identified as such, while the specificity

measured the probability of non-Rochefort 8° beers that were
correctly identified as such [23].

In all cases, good sensitivity and specificity values were obtained.
The results indicated that Participant 1 obtained a sensitivity and
specificity of 100% (i.e. all the samples were correctly classified as
Rochefort 8° or non-Rochefort 8°). Participant 2 had a specificity of
97.8%, and participant 3 and the challenge organizers had a specificity
of 100%, but in all cases they had lower sensitivity than Participant 1,
indicating the presence of a number of false negative results, which
should be avoided. In terms of the overall classification rate,
participant 1 has 100% of samples correctly classified, followed by
the challenge organizer with 93% and participants 2 and 3 with 84.5%
and 82% respectively. The perfect results obtained by participant 1
could be explained by the fact that they are based on the use of PCA
exclusively, which is a non-parametric approach and which is valid
only for this dataset.

5. Conclusion

The main feature of the challenge was the use of three vibrational
spectroscopy techniques (NIR, MIR and Raman) to characterize the
beers. This is a rather unusual situation when working on classification
problems and some questions need to be asked. How should all this
spectral information be used? Is it necessary to use the three spectral
datasets at the same time, or even two of them? Is it necessary to
develop one classification model per spectroscopic technique? Should
only one of these models be chosen or is it possible to obtain
predictions working with several models? All the participants in the
challenge took into account the individual spectroscopic datasets by
proposing the use of individual discrimination models or the use of
sequential PCA models. In view of the results, and of the very few
papers on this topic, it is difficult to answer these questions yet.
Nevertheless, they will need to be addressed because such datasets will
soon become increasingly common.
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Table 4
Results for all the participants expressed in terms of success rates and number of samples (between brackets), as well as the sensitivity and specificity values (in %).

Participant 1 Participant 2 Participant 3 Challenge organizer

Rochefort 8° Other Rochefort 8° Other Rochefort 8° Other Rochefort 8° Other

Rochefort 8° 100% (14) 0% 71% (10) 29% (4) 64% (9) 36% (5) 86% (12) 14% (2)
Other 0% 100% (46) 2% (1) 98% (45) 0% 100% (46) 0% 100% (46)
Overall classification rate 100% 84.5% 82.0%

93.0%
Sensitivity 100.0% 84.5% 82.0%

93.0
Specificity 100.0% 97.8% 100.0%

100.0%

Rochefort 8° Other

Sensitivity=a/(a+c) Rochefort 8° a c
Specificity=d/(b+d) Other b d
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