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Abstract 

 

Since adulteration can have serious consequences on human health, it affects market growth by 

destroying consumer confidence. Therefore, authentication of food is important for food 

processors, retailers and consumers, but also for regulatory authorities. However, a complex 

nature of food and an increase in types of adulterants make their detection difficult, so that food 

authentication often poses a challenge. This review focuses on analytical approaches to 

authentication of food of animal origin, with an emphasis put on determination of specific 

ingredients, geographical origin and adulteration by virtue of substitution. This review highlights a 

current overview of the application of target approaches in cases when the compound of interest is 

known and non-target approaches for screening issues. Papers cited herein mainly concern milk, 

cheese, meat and honey. Moreover, advantages, disadvantages as well as challenges regarding the 

use of both approaches in official food control but also in food industry are investigated. 
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1. Introduction 

Authentication of food products involves procedures capable of verifying that the product 

matches the label statements and that it conforms to the provisions of applicable laws and 

regulations. Different types of food fraud, including adulteration, counterfeiting, substitution and 

deliberate mislabelling of goods, can occur for a variety of reasons, but are often linked to 

financial profit achieved by adulteration intended to improve the perceived quality of products, 

mimic an established brand, reduce manufacturing costs or enableshelf life extension. Research 

conducted in this area aims to prevent food adulteration and other practices that may mislead 

consumers, who are entitled to truthful information about the food they consume (Reid, 

O'Donnell, & Downey, 2006), as stated under the Regulation 178/2002 (EC, 2002). Even though 

regulations transposed into national and international legislation mandate the trueness of label 

information, they are unfortunatelyunable to prevent food fraud (Ballin, 2010). 

The ability to trace and authenticate food products is of the outermost importance for the 

food industry, not only for economical, but also for safety reasons (Cubero-Leon, Peñalver, & 
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Maquet, 2014). In order to protect consumer interests and public health, in addition to combating 

the growing problems of food fraud and adulteration, scientific expertise and technologies are 

constantly being developed and advanced to test the authenticity of different food products. 

Furthermore, depending on the nature of adulterants, admixtures can also represent a health risk 

for the consumer. The most common type of food fraud, reported in 95 % of publications, is 

substitution (Stamatis et al., 2015) of an original ingredient with a similar cheaper one, difficult to 

recognise by the consumer and difficult to detect by routine analytical techniques. 

The main fraudulent practices met in the meat industry sector are substitutions of meat 

ingredients with other animal species, breeds, tissues, proteins; faking of meat origin and animal 

feeding regime (especially when it comes to traditional/ regional meat products); modifications of 

processing methods, and the addition of non-meat components such as water (Ballin, 2010). Other 

important food frauds concern the food of animal origin such as honey, milk and dairy products, 

fish and seafood (Cubero-Leon, Peñalver, & Maquet, 2014). Identification of the species’ origin is 

also important to consumers due to the economic loss arising on the grounds of fraudulent 

substitution, as well as for health-related (food allergies) and religious reasons (Asensio, 

Gonzalez, Garcıa, & Martın, 2008).  

Testing of authenticity includes the analysis of ingredients, determination of geographical 

origin, and the production technology analysis. The use of rapid, effective and reliable analytical 

methods, when correctly applied to verify authenticity and traceability of a product, represents a 

valuable and irreplaceable tool for the authorities which aim to establish control over food 

products in market circulation. The authenticity and the origin of ingredients have to be labelled 

on the final product. The feeding regime of livestock is fundamental for the properties and safety 

of food of animal origin, but this regime is often hidden from the consumers.  

Analytical methods that can be used for authentication of products labelled as having a 

Protected Designation of Origin (PDO), Protected Geographical Indication (PGI) and Certificate 

of Specific Character (CSC) can be divided into several categories. Tools and methodologies 

coming as a result of scientific innovation and technological evolution can help to quickly locate 

particular sophisticated frauds and adulterations. These methodologies include targeted 

approaches in cases when the compound of interest is known and non-target approaches for 

screening issues. The large-scale study by Stamatis et al. (2015), which comprised a total of 348 

food products (meat, poultry and fish, milk, pet food, cheese), made use of a universal 16S rDNA 

marker. The results were alarming, since showing a number of mislabelled food products 

adulterated so as to prolong their shelf life. 
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It is clear that it becomes important for food safety to apply extensive, rapid, inexpensive, 

but reliable food authentication methods. One of the solutions is the use of nano-materials or 

nano-sensors, but the safety of their use is still questioned due to the uncertainties about their 

bioaccumulation potential and human health impact. However, the recent report by Patra, Roy, 

Madhuri, & Sharma (2017) brings new details about the advancements in nano-sensor 

technologyused for trace-level determination of various food contaminants, offering therefore new 

and more beneficial prospects of this technique. However, this review shall be mainly concerned 

with analytical techniques most commonly used with food of animal origin. 

 

2. Application of analytical techniques  

To obtain results that allow for a reliable judgment, food authentication employs analytical 

techniques such as liquid chromatography (LC) and gas chromatography (GC) tandem mass 

spectrometry (MS), vibrational spectroscopic techniques such near-infrared (NIR) and mid-

infrared (MIR) spectroscopy, Raman spectroscopy, hyper-spectral imaging (HSI), nuclear 

magnetic resonance spectroscopy (NMR), in addition to techniques as optical and infrared 

microscopy, electronic spin resonance spectroscopy (ESR), polymerase chain reaction (PCR) and 

enzymatic assays (ELISA). Di Stefano et al. (2010) authored the review article on the application 

of liquid chromatography–mass spectrometry (LC/MS) for food analysis. It contains an exhaustive 

list of works dealing with the characterization of food quality (authentication and adulteration). A 

focus on non-targeted fingerprinting for authentication of food in official control has been 

investigated by Esslinger, Riedl, & Fauhl-Hassek (2014). Some examples of application of 

analytical techniques to the end of food authentication, displayed per type of food of animal origin 

and the analytical purpose, are given in Table 1. 

Articles on the advances in authentication of food of animal origin continue to be 

published. Cajka, Showalter, Riddellova, & Fiehn (2016) proposed mass spectrometry-based 

omics sciences as high-throughput methods permitting the assessment of food adulteration. 

Spizzirri and Cirillo (2016) published the book on innovative analytical tools used for food safety 

assessment, in which current and official analytical methods used for the analyses of sweeteners, 

lipids, allergen markers, antioxidant compounds and genetically modified organisms (GMOs) in 

food are described. 

 Recently, reviews on milk adulteration were published by Nascimento, Santos, Pereira-

Filho, & Rocha (2017) and Attrey (2017). Siddiqui, Musharraf, Choudhary, & Rahman (2017) 

published the review on the use of NMR spectroscopy for authentication of honey, its botanical 



  

5 

 

and geographical origin, and adulteration by sugar syrups. Wu et al. (2017) published the review 

that covers known syrup adulterants and analytical methodologies adopted for their detection in 

honey, such as TLC, C-isotope, HPAEC, GC, HPLC, IR, NMR, and the Raman spectroscopy in 

addition to metabolomics-based detection methods such as Q-TOF-MS, which are becoming ever 

more interesting given an increased use of different adulterants whose detection is getting more 

and more difficult. 

This review focuses on analytical approaches exploited within the frame of authentication 

of food of animal origin, with an emphasis put on techniques used for the determination of specific 

ingredients, geographical origin or substitution of original ingredients. Papers cited in this review 

mainly discuss milk, cheese, meat and honey authentication by the use of most common analytical 

methods as spectroscopy (non-target approach) and chromatography, or DNA-based techniques 

(target approaches). As will be observed in this review depending on the kind of authentication of 

food of animal origin, analytical techniques are less or more used. 

 

2.1. Determination of specific ingredients  

Authentication of food of animal origin by the determination of specific ingredients is 

widely studied. Chromatographic techniques make it possible to identify food composition and 

then its characterization, spectroscopic techniques permit to differentiate rapidly food based on its 

composition while DNA-based analyses allow the detection of origin of food ingredients.   

  

2.1.1 Chromatographic techniques 

Determination of specific ingredients in different food products often makes use of 

chromatographic methods such as liquid (LC) and gas (GC) chromatography. These techniques 

are capable of separating a large number of compounds, allowing therefore for their identification 

using different types of detectors. Data resulting from these techniques are then compared to the 

information stored in databases, or to the results of analysis of authentic standards undertaken in 

order to identify the contents of food and screen for a given adulterant. The main difference 

between LC and GC is that GC is more suitable for detecting volatile and semi-volatile 

compounds.  

The application of LC was found useful, for example, in the detection of origin of different 

cheeses by virtue of measuring ß-lactoglobulin (Ferreira & Caçote, 2003). To prevent possible 

cheese frauds, it is necessary to control whether the milk employed in the production matches the 

one appearing on the label. To that effect, high-performance liquid chromatography with diode-
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array detection (HPLC-DAD) can be very useful in defining the protein profile of a dairy product, 

and consequently also the type of milk used (Rodríguez, Ortiz, Sarabia, & Gredilla, 2010). Cow 

milk is also a subject to adulteration. Even though a soymilk contains a cheaper protein quite 

similar to that of cow milk, it has not gained high popularity, mainly due to its beany flavour and 

astringency. In India, vendors do not declare its addition into cow milk, which should be viewed 

upon as an unethical practice consumers have to be protected from. A rapid detection technique is 

required to detect and quantify soymilk in cow/buffalo milk. It is important that the milk present in 

dairy products corresponds to that advertised on the label. Rodríguez, Ortiza, Sarabiab & 

Gredillacet (2010) proposed the use of protein chromatographic profiles of cheese and milk 

extracts combined with chemometric treatments to detect adulterations.  

The study by Jiye et al. (2010) showed that GC can be utilized for the detection of 

mechanically separated meat (MSM). MSM can be detected in raw meat mixtures down to 10 % 

by detecting specific metabolites using GC-MS. The study conducted so as to discriminate 

between intensive and extensive pig breeding was performed by Gallardo, Narváez-Rivas, Pablos, 

Jurado, & León-Camacho (2012). To determine triacylglicerols extracted from subcutaneous fat, 

analyses making use of GC coupled with FID detector were performed. Proton transfer reaction 

mass spectrometry coupled with time-of-flight mass analyser (PTR-TOF-MS) is successfully 

applied for the fast discrimination of PDOs (pectin-derived oligosaccharides) (Sanchez del Pulgar 

et al., 2011). However, studies have also shown that GC and LC have some disadvantages due to 

the fact that the target compound has to be extracted, meaning that the duration of analysis is 

prolonged and the laboratory throughput limited. Besides, the application of GC or GC coupled 

with mass spectrometry (MS) can serve the purpose of determination of fatty acids as target 

analytes for the species identification, while the percentage of saturated, monounsaturated and 

polyunsaturated fatty acids can be used as an indicator of animal species. However, an everyday 

practice has shown that the scale of variations is too large and can lead to less reliable results 

when it comes to species identification (Schwägele, 2005). 

It has been found that, in order to check the trueness of food label claims, different food 

additives can be traced using liquid chromatography tandem mass spectrometry (LC-MS/MS). 

LC-MS/MS was developed to determine the species origin of bovine and porcine blood plasma in 

meat products (Grundy et al., 2007; Grundy et al., 2008). Fibrinopeptides released during the 

blood clotting process differ in mass depending on species, and thus those derived from bovine 

blood can be differentiated from those derived from porcine blood by determining their mass. 

Certain meat-binding products or ‘glues’ used to bind minced meat or off-cuts and trimmings of 
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high-value meats in ‘steak-like’ products are often derived from blood. The blood plasma protein 

fibrin can be mixed with meat and, during the addition of the blood-clotting enzyme thrombin, clot 

to bind the meat together. This particular food-binding process therefore raises the issue of an 

ingredient of animal origin being added as an undeclared ingredient during manufacturing of other 

meat and fish products. Furthermore, since binding agents are permitted for use as food 

ingredients, there exists the concern that some producers might seize the opportunity to use these 

agents so as to fraudulently increase the declared meat content of the final product.  

The use of vegetable proteins in various types of meat products is a common practice. To 

control food composition and specification and to avoid an allergic response, a sensitive screening 

method HPLC-MS/MS was established by Hoffmann, Münch, Schwägele, Neusüß, & Jira (2017) 

in order to detect lupine (Lupinus angustifolius), pea (Pisum sativum), and soy (Glycine maxima) 

in meat products. The limits of detection of the method were about 5 mg/kg, 4 mg/kg and 2 mg/kg 

of meat product for pea protein, soy protein and lupine protein, respectively, with no false-positive 

or false-negative results at all. The presence of soy protein was also checked for in 10 commercial 

brands of beef hamburgers using the isotope method (δ13C and δ15N). Only 3 % of the controlled 

products complied with the Brazilian legislation. The rest contained > 4 % of the soy protein, 

which was indicative of an extensive adulteration. 

 

2.1.2 Spectroscopic techniques 

Vibrational spectroscopic techniques used in conjunction with chemometrics have shown 

high-class analytical performance when it comes to food authentication. Advantages of these 

techniques are low costs and a little or no need for sample preparation before analysis. NIR (near 

infrared) signals are associated with molecular vibrations, specifically with overtones and 

combinations of fundamental vibrations. In general, chemical bonds between light atoms, such as 

C-H, O-H and N-H, have high vibrational frequencies detectible in the NIR region of 780-2,500 

nm. Due to its robustness and simplicity of instrumentation and the advantage of deep sample 

penetration, NIR spectroscopy has been used in food research for decades. Low sensitivity related 

to the high signal-to-noise ratio is the most prominent disadvantage of NIR spectroscopy. Some of 

the applications of NIR in the field of food fraud come down to the assessment of meat 

adulteration using processed animal proteins (PAPs). A very useful technique used for proving 

food authenticity is FT-IR (Fourier transform infrared) spectroscopy. FT-IR spectroscopy focuses 

on the MIR (mid-infrared) region (4,000-400 cm
-1

) of the electromagnetic spectrum. The 

technique provides a greater amount of chemical information regarding the scanned sample than 
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NIR does, because FT-IR spectroscopy measures relevant fundamental vibrations instead of 

overtones and combination bands that get to be measured in the NIR region. 

Alike MIR spectroscopy, the Raman spectroscopic method provides structural information 

about proteins, water and lipids in a muscle. The Raman spectroscopy was implemented so as to 

predict sensory qualities like texture, tenderness and juiciness of beef samples and the fatty acid 

composition of different types of meat (Beattie, Bell, Claus, Fearon, & Moss, 2006), as well as to 

determine the fat content of a fish muscle (Marquardt and Wold, 2004), and to reveal changes 

occurring during frozen storage (Herrero, Carmona, & Careche, 2004). The Raman spectroscopy 

is a versatile, non-destructive analytical technique, which provides unique spectral fingerprints of 

many analytes. The main advantages over the NIR spectroscopy are that a sample can be profiled 

through a variety of transparent materials and that analytes can be detected in solutions with 

minimal water interferences. Although the Raman spectroscopy is mainly used for detecting 

adulteration of oils and juices, it has a potential of determining meat and meat products’ 

freezingbased on changes inmyofibrillar and connective tissue proteins. 

The Raman spectroscopy was investigated by Ellis, Broadhurst, & Clarke (2005) in order 

to discriminate between very close poultry species (chicken and poultry), but also between muscle 

groups (breast and leg). The combination of this technique with the cluster analysis has shown that 

the latter differentiation is more reliable than the discrimination between species. Gelatine, a 

water-soluble protein, is widely used in the food industry. For different reasons, its authentication 

has become an important issue across Muslim, Jewish, Hindu, vegan and vegetarian communities. 

For this purpose, ATR-FTIR (attenuated total reflection - Fourier transform infrared) method has 

been proposed as an economic andrapid method ofdetermination of both gelatine presence and its 

origin (Cebi, Durak, Toker, Sagdic, & Arici, 2016). It was successfully applied to discriminate 

between gelatine sources (bovine, porcine or fish) by the use of the hierarchical cluster and 

principal component analysis (PCA). Spectral ranges associated with amide-I (1,700–1,600 cm
-1

) 

and amide-II (1,565–1,520 cm
-1

) have been revealed to bevery significant for the above 

discrimination. 

In their study, Hammami et al. (2010) showed the potential of fluorescence spectroscopy in 

combination with the factorial discriminant analysis in identifying sheep milk coming from sheep 

fed on different feeding regimes. The discrimination was made possible based on the content in 

specific intrinsic probes (aromatic amino acids and nucleic acids, tryptophan, vitamin A and 

riboflavin). Characterization can also be based on metabolites due to their association with dairy 

animal breeds or species. Metabolites can help in evaluation of milk traits and the detection of 

http://pubs.acs.org/author/Herrero%2C+Ana+M
http://pubs.acs.org/author/Carmona%2C+Pedro
http://pubs.acs.org/author/Careche%2C+Mercedes
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milk adulteration. Yang et al. (2016) used them as biomarkers when identifying differences in 

milk produced by the Holstein cows and other, minor dairy animals. Combination of nuclear 

magnetic resonance (NMR) spectroscopy and liquid chromatography–tandem mass spectrometry 

(LC-MS) with multivariate analysis has permitted the identification of some metabolites and has 

contributed to better understanding of differences in synthesis of milk coming from the Holstein 

cows and other dairy animals.  

Jaiswal et al. (2015) proposed the use of ATR–FTIR, which revealed the differences 

between cow milk, soymilk and adulterated cow milk samples in the spectral region of 1,680–

1,058 cm
-1

. This discrimination range includes the bands of amide-I, amide-II, amide-III, beta-

sheet protein, a-tocopherol and Soybean Kunitz Trypsin Inhibitor. The detection limit was as low 

as 2 %. Another kind of milk adulteration is the addition of whey prohibited by the Brazilian law. 

De Carvalho et al. (2015) developed a MIR spectroscopic method to detect and quantify whey 

adulteration of milk powder through the measurement of glycomacropeptide protein. The results 

indicated the successfulness of the above detection with the Pearson’s coefficient of 0.9885 and  a 

root mean square error of cross-validation RMSECV of 0.24.  

Recently, NIR hyper-spectral imaging (HIS), a powerful analytical technique that uses 

vibrational spectroscopy for food quality and authenticity identification, has emerged. HIS attains 

spectral and spatial characterization of complex heterogeneous samples, whereas spectral features 

allow for a vast range of multi-constituent surface and subsurface features to be identified. This 

technique is a point-based scanning technique able to examine a very small area of a specimen. 

HSI has instrumental flexibility and can be used to collect hyper-spectral data on specimens of 

different sizes and shapes. Furthermore, the spectral region collected, the spatial resolution and the 

field-of-view can be adjusted depending on application. This technique has been used for the 

determination of water-holding capacity of fresh beef (ElMasry, Sun, Allen & 2011) and 

melamine adulteration of milk powder (Fu et al., 2014). 

Various methods can be combined so as to determine the authenticity of different types of 

honey, including a direct measurement of specific marker compounds, such as methylglyoxal 

(MGO) and dihydroxyacetone (DHA). A NMR technique as a spectroscopic method is suitable for 

the analysis of complex mixtures (McKenzie, Donarski, Wilson, & Charlton, 2011). NMR is 

based upon the measurement of absorption of radiofrequency radiation by atomic nuclei with non-

zero spins occurring in a strong magnetic field. The absorption of atomic nuclei is affected by the 

surrounding atoms, which cause small local modifications of the external magnetic field. In this 

way, detailed information about the molecular structure of a food sample can be obtained. Among 
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nuclei with a non-zero spin, the isotopes of hydrogen-1 (spin = 1/2) and carbon-13 (spin = 1/2) are 

the most used in NMR, although other isotopes, such as nitrogen-15 (spin = 1/2), oxygen-17 (spin 

= 5/2), fluorine-19 (spin = 1/2), or phosphorous-31 (spin = 1/2) are also frequently employed 

(Luykx & van Ruth, 2008). A NMR technique has been developed to directly quantify anti-

microbial MGO in honey (Donarski, Jones, Harrison, Driffield, & Charlton, 2010a), which can 

also be measured using liquid chromatography–infrared spectrometry (LC-IR) after derivatization. 

Irudayaraj, Xu, & Tewari (2003) and again Tewari and Irudayaraj (2004) applied micro-attenuated 

total reflectance to quantify saccharides in a number of floral honeys. In the same way, i.e. based 

on the phenolic fraction, it was possible for Sergiel, Pohl, Biesaga, & Mironczyk (2014) to 

discriminate between honey samples of different floral origin using a three-dimensional 

synchronous fluorescence spectroscopy.  

 

2.1.3 DNA-based techniques 

DNA is a macromolecule that contains all genetic information of an organism which 

makes it is an excellent target for food analysis. However, a single DNA molecule contains coding 

information for a high number of genes which makes it practically impossible to analyze the entire 

molecule. For that reason, only sample specific genes are examined using what called polymerase 

chain reaction (PCR) (Lee et al., 2017).Rahmati, Nurhidayatullaili, Yehye, & Basirun (2016) 

published the review on the identification of meat origin in food products. They highlighted the 

methods most extensively used for meat-producing species’ identification based on the DNA 

hybridization techniques. They reported LODs spanning from 0.1 % to less than 0.01 %, 

depending on the type of meat. The polymerase chain reaction amplifying a fragment of the 

mitochondrial DNA D-loop region was developed by De et al. (2011) for the species-specific 

detection of cattle and buffalo milk. The sensitivity was excellent, allowing for the detection of 0.1 

% - adulteration of cow and buffalo milk or cheese. Liao, Liu, Ku, Liu, & Huang (2017) optimized 

a novel DNA extraction method in order to identify milk powder based on the PCR analysis. The 

results showed that a sufficient amount and quality of DNA can be isolated from milk powder and 

analysed by both PCR and real-time PCR, allowing for the detection of cow milk components in 

goat milk powder. Another, also DNA-based technique wasfirst described by Cunha et al. (2016). 

It is called the Randomly Amplified Polymorphic DNA (RAPD) - Sequence Characterized 

Amplified Region (SCAR) technique and seems to be useful in the detection of origin of milk 

present in dairy products, which is important for the efficient detection of adulterant breeds in 

http://www.sciencedirect.com/science/article/pii/S0308814607009533
http://www.sciencedirect.com/science/article/pii/S0308814607009533
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milk mixtures used for the fraudulent production of the Serra da Estrela cheese registered as a 

product of the Protected Designation of Origin (PDO).  

Recently, Seçkin, Yilmaz, & Tosun (2017) used real-time PCR to determine the amount 

and origin of milk used in cheese production. The objective was to identify animal species (such 

as cow, sheep and goat) in a total of 90 different cheeses of 30 brands coming from various 

sources. The results showed that only 36.67 % of samples were produced from 100 % cow milk, 

while 16.67 % of goat cheese samples turned out to be produced from 100 % sheep milk. The 

authors also observed the absence of linear relationship between chemical composition, fatty acid 

ratios and the amount and origin of cheeses analysed (P < 0.05). 

 

2.2. Determination of geographical origin 

Geographic authentication of food of animal origin is less obvious because it needs to 

consider the composition of food but also the environmental conditions that have influenced this 

composition. Spectroscopic techniques are good candidates for that issue as they provide global 

information about the food sample. Besides, isotopes analyses have also been revealed very useful 

as the distribution of certain stable isotopes chemical elements are affected by biological-

environmental interactions in addition to hydrological- and climate-based variations 

(http://stableisotopes.com).       

 

2.2.1 Spectroscopic techniques 

NIR spectroscopy has been successfully applied for a rapid determination of floral origin 

of honeys (Chen et al., 2012; Escuredo, González-Martín, Rodríguez-Flores, & Seijo, 2015). It has 

been shown that NIR spectroscopy can be applied in honey analysis, especiallyin order to predict 

its geographical origin (Woodcock, Downey, Kelly, & O’Donnell, 2007). Within the frame of the 

EU-funded TRACE project, oneof the project tasks was to confirm that the honey solabelled 

actually originates from Corsica. Several analytical techniques were employed to investigate the 

authenticity of the Corsican honey and to differentiate it from non-Corsican ones. To the latter 

end, NIR and the Raman spectroscopy were employed. Through a PLS model anda variable 

selection procedure, Woodcock, Downey, & O’Donnell (2009) managed to correctly classify 

90.4% of Corsican and 86.3% of non-Corsican honey samples.These samples were also analysed 

by Fernández Pierna, Abbas, Dardenne, & Baeten (2011) using the FT-Raman spectroscopy. The 

authors succeed in discrimination of honey origin, with the correct classification rateo f 85% to 
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90%, obtained with the Partial Least Squares-Discriminant Analysis (PLS-DA) or the Support 

Vector Machines (SVM). 

Infrared techniques have been revealed as useful for the classification of geographical and 

floral honey origin (Ruoff et al., 2006; Tewari & Irudayaraj, 2005; Bertelli, Plessi, Sabatini, Lolli, 

& Grillenzoni, 2007). Gok, Severcan, Goormaghtigh, Kandemir, & Severcan (2015) pointed 

towards significant variations in spectral profile of honey samples of different botanical origin, 

mainly based on the differences inthe water, carbohydrate and protein contents. All samples were 

tested via unsupervised pattern recognition procedures like hierarchical clustering and the 

Principal Component Analysis (PCA). The results showed a successful discrimination of honey 

samples over the spectral range of 1,800–750 cm
-1

. The traceability of honey has been widely 

investigated during years through various analytical techniques. Corvucci, Nobili, Melucci, & 

Grillenzoni (2015) proposed an innovative approach capable of improving the successfulness of 

honey discrimination based on its botanical/geographical origin, which couples melissopalynology 

and micro-FT-Raman spectroscopy techniques with multivariate analysis. 

MIR spectroscopy has also been widely used for the authentication of geographical origin 

(Gallardo-Velázquez, Osorio-Revilla, Zuñiga-de Loa, & Rivera-Espinoza, 2009; Kelly, Downey, 

& Fouratier, 2004; Kelly, Petisco, & Downey, 2006a; Irudayaraj, Xu, & Tewari, 2003). Bertelli, 

Plessi, Sabatini, Lolli, & Grillenzoni (2007) analysed a total of 82 (robinia, chestnut, citrus, and 

poly-floral) honey samples. Spectral data processing by virtue of general discriminant and 

classification tree analysis yielded the classification accuracy of nearly 100%. Ottavian et al. 

(2012) showed that NIRS can be a reliable tool for the real-time authentication of the 

Asiagod’Allevo cheese. They developed the PLS models subsequently used to classify the studied 

samples according to the location(lowland or alpine) and management of the cheese-making 

factory the ripening age, the altitude of milk production, and the period of the cheese production 

year. They also used the variable importance in projection index (Andersen & Bro, 2010) to 

identify the most significant discriminating variables. NIR spectral data offer the same 

discrimination capacity as the traditional chemical analysis. Some years ago, Karoui, Mazerolles, 

Bosset, de Baerdemaeker, & Dufour (2007) used MIR spectroscopy to determine the geographical 

origin of the Gruye`re and Etivaz Swiss cheeses. The application of FDA (factorial discriminant 

analysis) to the first 10 principal components (PCs) of the PCA applied in different spectral 

regions shows the best classification rates over the regions of 3,000–2,800 cm
-1

 and 1,500–900 

cm
-1

 (90.5% and 90.9%, respectively). These spectral regions can be considered as a valuable 

discrimination tool. In order to develop a fast and non-invasive method for the quality control of 
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grated cheese, ATR-FTIR spectroscopy in combination with chemometrics (PCA and LDA 

(Linear discriminant analysis) (Gori, Maggio, Cerretani, Nocetti, & Caboni, 2012) was applied to 

classify the grated Parmigiano-Reggiano cheese from other grana-type cheeses coming from Italy, 

central and northern Europe. During the cross-validation procedure, the LDA-FTIR analysis 

showed a predictive classification ability of around 100%, making this technique suitable for the 

classification of PDO (Protected Designation of Origin) grated cheeses. 

Lamb meat has become very popular among consumers because of its high quality 

resulting from a higher protein and lower fat content, evoking also a great interest in rapid and 

effective methods capable of authenticating its origin. To that effect, the use of NIR spectroscopy 

was proposed by Sun, Guo, Wei, & Fan (2012) as an effective method to predict δ
13

C and δ
15

N 

values considered to be good indicators of the relationship between biological products and their 

growth environment. The Partial Least Square regression PLS-R models were established, having 

the determination coefficient (R
2
) of 0.76 and 0.87, respectively. 

NMR stable isotope (2H, 1
3
C, 

15
N, 

18
O, 

34
S and 

87
Sr) analyses are generally considered as 

excellent tools for assessing the food origin. These analyses can be used to determine the 

geographical origin of meat, as well as the feeding regime of animals the food was produced from 

(Sentandreu & Sentandreu, 2014). The basis for discrimination lies in the fact that the ratios of 

elements such as 
2
H/

1
H, 

13
C/

12
C can vary depending on the geographical origin of soil, water and 

feed used on a farm. The study by Perini, Camin, Sanchez Del Pulgar Rico, & Piasentier (2013) 

used stable isotope ratios to authenticate Italian PDO hams. Two main techniques used for the 

determination of isotope ratios are isotope ratio mass spectrometry (IRMS) and site-specific 

natural isotope fractionation from nuclear magnetic resonance (SNIF-NMR).  

SNIF-NMR was used for the determination of geographical origin of food based on the 

isotopic ratio of a given nucleus found in a constituent of the analysed food (Ibañez & Cifuentes, 

2001). This can be explained by the fact that the specific proportions of hydrogen and oxygen 

isotopes present in molecules are mainly dependent on climatic conditions and geographical 

surroundings (Reid, O'Donnell, & Downey, 2006). 

 

2.2.2 Isotope and elemental techniques 

By virtue of more sophisticated applications of multi-element stable isotope analysis, the 

geographic origin (rearing location) of animals used in meat production can be determined 

(Heaton, Kelly, Hoogewerff, & Woolfe, 2008). This approach can be applied to any agricultural 

product whose provenance adds value. The use of stable isotope analysis to the effect of verifying 
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the provenance of premium food products is underpinned by systematic global variations in the 

distribution of hydrogen and oxygen isotopes in precipitation and ground water. The measurement 

of stable isotope ratios was also used in the study by Heaton, Kelly, Hoogewerff, & Woolfe 

(2008), carried out in order to distinguish Brazilian from UK and Irish beef. 

IR-MS technique was used in the study by Zhao et al. (2013), who undertook to classify 

beef coming from different Chinese regions. By measuring C and N stable isotope composition in 

addition to 23 trace elements in defatted beef, the authors were able to correctly determine the 

origin of 60-80 % of samples. The authors stated that, to obtain high accuracy, it is important to 

collect samples in the same period of year so as to avoid seasonal variations. Another study aiming 

to detect the origin of beef was conducted by Liu, Guo, Wei, Shi, & Sun (2013), where authors 

used cattle tail hair to measure stable isotope ratios.  

Determination of geographical origin of milk is also an important requirement that can be 

met by studying the elemental composition of milk. Zain, Behkami, Bakirdere, & Koki (2016) 

analysed 24 essential and trace elements in raw and factory cow milk samples. The following 

elements - Ca, Na, Fe, Zn, Mn, K, Ba and Mg - seem to be the most discriminative when it comes 

to the application of chemometrics tools, helping therefore in geographical origin clustering. 

 

2.3. Substitution of ingredients 

As for the food of animal origin authentication via the determination of specific ingredients, 

its accomplishment via the identification of ingredient substitution needs techniques as 

chromatographic, spectroscopic and DNA-based techniques. The latter are extensively studied in 

the literature.  

 

2.3.1 Chromatographic techniques 

Some organic or synthetic compounds may also be added into meat products so as to act as 

colorants, aromas, preservatives, stabilizers, etc. (Nakyinsige, Bin Che Man, & Sazili, 2012). 

Colorants can be used to improve fresh meat appearance. Smoke aroma, for example, can be 

fraudulently used instead of natural meat smoking. The choice of analytical technique is 

determined by the nature of the target chemical compound; for the detection of organic 

compounds added to meat products, both HPLC and GC may be appropriate (Ballin, 2010). In 

case of the determination of soy in highly processed meat mixtures (Castro, García, Rodríguez, 

Rodríguez, & Marina, 2007), HPLC has shown potential. Liquid chromatography–electrospray–

tandem mass spectrometry with a proteomic-like sample preparation was used for the detection of 
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milk adulteration with cheese whey (Campos Motta et al., 2014). Caseinomacropeptide (CMP) is a 

peptide released by chymosinduring cheese production; it remains in whey and can be used as a 

biomarker of fluid milk adulteration.The method shows a satisfactory precision (< 11%), with the 

detection limit of 1.0 µg mL
−1

.  Earlier, a liquid chromatography–mass spectrometry has been 

proposed for the detection of fraudulent addition of cow milk to water buffalo milk and 

mozzarella. Czerwenka, Műller, & Lindner (2010) used the whey protein β-lactoglobulin as a 

marker of adulteration. 

 

2.3.2 Spectroscopic techniques 

One of the most common practices of meat adulteration is the addition of water to increase 

size, weight and, consequently, the final price of a product (Sentandreu & Sentandreu, 2014). The 

standard method of extraneous water determination in meat involves the determination of the 

water/protein ratio using differences in mass established before and after meat drying. A too high 

water/protein ratio serves as an indicator of water addition. However, protein and phosphate can 

be added to meat products thus leaving the water/protein ratio close to the natural one. In this case, 

the detection of a foreign protein or phosphate might provide proof of a fraudulent practice 

(Ballin, 2010). A more powerful technique capable of determining a fraudulent addition of water 

to meat is NMR, as shown by Bertram & Andersen (2007), and Sentandreu & Sentandreu (2014). 

Another case is honey. Even though the adulteration of honey does not pose a health risk, it 

has an unfavourable impact on market growth and consumer confidence. A large-scale honey 

adulteration was witnessed on the world market in the 1970s, mirroring in the presence of 

fructose-rich corn syrup (HFCS) introduced by the industry (Mehryar, 2011). Therefore, the need 

for an easy-to-use, rapid, non-destructive and low-cost analytical methods such as NIR 

spectroscopy capable of detecting and quantifying adulteration on a commercial scale has 

emerged. 

NIR transflectance spectroscopy was already used by Downey, Fouratier, and Kelly (2003) 

to detect adulteration of the Irish artisanal honey with fructose and glucose. Kelly, Petisco, & 

Downey (2006) developed qualitative and quantitative models to detect honey adulteration with 

sugar-beet invert syrup and HFCS. Later on, Zhu et al. (2010) worked on the detection of 

adulterants such as sweeteners (fructose/glucose mixtures) in honey using near-infrared 

spectroscopy and chemometrics. They applied different classification models, the best being the 

least square support vector machine (LS-SVM) leading to the total accuracy of 95.1%. On the 

other hand, wavelet transformation (WT) for data compression proved itself as a highly effective 
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variable selection tool. The authors concluded that the WT-LS-SVM can be used as a rapid 

screening technique for the detection of this type of honey adulteration, with a good accuracy and 

a better generalization.  

In 2011, Chen et al. were able to classify unadulterated and adulterated Chinese honeys 

collected from apiaries and purchased in local groceries using a FT-NIR spectrometer equipped 

with a fibre optic probe. The main discriminative bands were over the range of 6,000–10,000 cm
-1

. 

A correct classification was attained in 100 % of unadulterated and 95 % of adulterated honey 

samples. Li, Shan, Zhu, Zhang, & Ling (2012) reported the use of the Raman spectroscopy as a 

rapid and efficient tool in the detection of HFCS-induced honey adulteration. Bázár et al. (2016) 

developed a NIR model for screening the unifloral Robinia honey using a fibre optic probe. The 

most accurate detection of adulteration was obtained over the spectral range of 1,300–1,800 nm, 

rich in absorption bands of both water and carbohydrates. The combination of NIR and 

aquaphotomics permitted a good description of differences in the water molecular structure of 

theRobinia honey and HFCS. Just recently, near-infrared spectroscopy (NIR) was successfully 

used for the qualitative and quantitative detection of honey adulterated with high-fructose corn 

syrup or maltose syrup (Li et al., 2017). Different chemometric tools such as the Competitive 

adaptive reweighted sampling (CARS) and the Partial least squares linear discriminant analysis 

(PLS-LDA) aid, both separately and combined, in adulteration detection and quantification. The 

R
2
coefficients of prediction were higher than 0.9 regardless of the floral origin of a honey sample.  

Other less frequently used techniques have been tested to detect adulteration of honey, for instance 

the VIS-NIR hyper-spectral imaging system and data mining-based classifiers, which were 

investigated by Shafiee et al. (2016), or the determination of isotopic composition of honey in 

terms of δ13C and its proteins, used to assess honey adulteration with a fructose-rich corn syrup 

(HFCS) or other C4-adulterants. The latter technique was applied by Berriel & Perdomo (2016) to 

honey coming from different Uruguayan regions. 

As for NIR, MIR spectroscopy combined with chemometrics has been selected by several 

researchers as a technique to determine honey adulteration (Sivakesava & Irudayaraj, 2001; Kelly, 

Petisco, & Downey 2006a; Rios-Corripio, Rojas-López, & Delgado-Macuil, 2012; Subari, Saleh, 

Shakaff, & Zakaria, 2012). A three-dimensional fluorescence spectroscopy has also been 

investigated for its adulteration-detecting potential, for example by Chen et al. (2014), who 

employed it in order to detect the concentration of rice syrup added as adulterant into a pure 

honey. Data processing by virtue of partial least squares (PLS) and back-propagation neural 
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network (BP-ANN) algorithms has permitted the prediction of adulterants’ concentrationsin honey 

(the optimum models thereby giving the RMSEP values of 0.0235 and the R values of 0.9787).  

Milk is also a subject to unscrupulous producing practices in terms of adding adulterating 

substances in order to increase profits. The addition of sodium citrate, sodium hydroxide, sodium 

chloride, sucrose, phosphates, carbonates, bicarbonates and hydrogen peroxide so as to correct 

milk defects was reported by Hoorfar (2012). In 2013, another scandal broke out revealing the 

utilization of fertilizers containing urea and formaldehyde in order to mask the addition of water 

into milk (Talkhan, 2015). It is therefore important to establish screening and detection methods to 

ensure marketed milk safety. Botelho, Reis, Oliveira, & Sena (2015) proposed the use of 

attenuated total reflectance mid-infrared spectroscopy combined with multivariate supervised 

classification method to the end of detecting the presence of adulterants such as water, starch, 

sodium citrate, formaldehyde and sucrose in milk samples containing one to five of the above in 

the range of 0.5–10 % w/v. Nieuwoudt, Holroyd, McGoverin, Simpson, & Williams (2016) 

developed a rapid and sensitive method of liquid milk adulterants’ analysis that makes use of a 

portable Raman spectrometer and a simple, optimized sample holder. The technique was 

successfully tested on adulterated milk and allowed for the limit of detection between 140 and 520 

mg/L for 4 N-rich compounds and between 7,000 and 36,000 mg/L for sucrose. In the meantime, 

fatty acid ratios established by the Argentinean legislation were examined by Rebechi, Vélez, 

Vaira, & Perotti (2016) so as to detect adulterations of milk fat with animal fats. Regression 

models based on gas chromatography data have been proven suitable for the evaluation of these 

adulterations if present at levels higher than 10 % for tallow and 5 % for lard. 

In the last decades, the meat industry in Europe has witnessed several scandals, one of 

them beingthe use of horsemeat as a new adulterant (FSA, 2013). Horsemeat is used instead of 

beef due to the lower breeding costs. Since an early identification of this adulterant became 

necessary, rapid analytical methods such as the Raman spectroscopy had to be employed. The 

technique was selected by Boyacı et al. in 2014 for its advantagesin fat analysis. The authors 

extracted pure fat from beef, horsemeat and beef adulterated with horsemeat in different 

concentrations (25%, 50 %, 75 % w/w). The Raman spectral data were processed using the 

principal component analysis. The developed model was good enough to differentiate between 

unadulterated beef samples and samples adulterated with horsemeat. 

In recent years, many investigators applied various vibrational techniques for the detection 

of adulterants in bovine meat (Al-Jowder, Defernez, Kemsley, & Wilson, 1999; Ding & Xu, 2000; 

Meza-Márquez, Gallardo-Velázquez, & Osorio-Revilla, 2010). Alamprese, Casale, Sinelli, 
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Lanteri, & Casiraghi (2013) explored the capabilities and performances of separated or combined 

UV-Vis, NIR and MIR spectroscopy coupled with chemometric techniques in detecting bovine 

meat adulteration with turkey meat (5-50 % (w/w)). They concluded that the best choice for the 

purpose would be the use of a fused UV-Vis-NIR-MIR data matrix. Another case of adulteration 

is adulteration of meatballs through the substitution of beefmeat with pork or rat meat, again 

undertaken to raise profits. Kurniawati, Rohman, & Triyana (2014) and Rahmania, Sudjadi, & 

Rohman (2015) applied FTIR spectroscopy in combination with chemometrics to quantitatively 

determine lard and rat meat in meatballs. The spectral regions of 1,200-1,000 cm
-1

 and 1,000-750 

cm
-1 

have been revealed as very useful for the classification of lard/beef fat and rat/beef fat, 

respectively. Regression models used in both studies showed high-quality performances. The 

coefficients of determination (R
2
) and the root mean square errors of calibration (RMSEC) were 

over 0.9 and less than 2% (v/v), respectively. Adulteration of meat with cheaper meat such as pork 

raises socio-religious, safety and consumer confidence issues.  

In the last ten years, the suitability of FTIR in conjunction with multivariate analysis for 

the assessment of meat quality has been demonstrated. Mid-infrared spectroscopy combined with 

the SIMCA (Soft Independent Modelling Class Analogy) method was used to detect and quantify 

the adulteration of mincemeat with horse meat, fat beef trimmings, and textured soy protein. It 

permitted a 100 %-accuratediscrimination between adulterated and unadulterated samples on the 

basis of their protein, fat, water, and ash content (Meza-Márquez, Gallardo-Velázquez, & Osorio-

Revilla, 2010). Recently, Nunes, Andrade, Santos Filho, Lasmar, & Sena (2016) analysed samples 

originating from criminal networks dismantled by the Brazilian Police. The scandal that brokeout 

in 2012 (DPF, 2012) involved the injection of solutions of non-meat ingredients (NaCl, 

phosphates, carrageenan, maltodextrin) into bovine meat in order to increase its water-holding 

capacity. The authors developed the PLS models based on ATR-FTIR spectra and 

physicochemical properties, the best of them allowing for a correct detection of 91% of the 

adulterated samples. 

Rapid analytical methods continue to be developed in order to confront these issues and 

respond to them at different levels, going from laboratories to industries. FT-IR spectroscopy is a 

method that can meet the above requirements (Schmutzler, Beganovic, Böhler, & Huck, 2015). 

Meat and fat adulteration could be revealed down to the level of contamination of 10 % using 

laboratory, industrial fibre optics or on-site systems. Furthermore, it was even possible to measure 

directly through the polymer sample packaging, but the limits of detection varied in function of 

the measurement set-up. In the same way, identification and quantification of raw, frozen-thawed 
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and cooked minced beef meat adulteration with turkey meat was investigated using FT-NIR 

spectroscopy (Alamprese, Amigo, Casiraghi, & Engelsen, 2016). The PLS regression models have 

been developed with R
2
 higher than 0.88, while PLS-DA models have been applied to 

discriminate between the two sample classes (adulteration threshold = 20%) with sensitivity and 

specificity higher than 0.84 and 0.76, respectively. Another kind of fraud, the injection of 

solutions of non-meat ingredients (NaCl, phosphates, carrageenan, maltodextrin) into bovine meat 

in order to increase its water-holding capacity, has been investigated using data fusion (protein, 

ash, chloride, sodium, phosphate content) and ATR-FTIR spectroscopy (Nunes, Andrade, Santos 

Filho, Lasmar, & Sena, 2016). The best PLS-DA model correctly detected 91% of adulterated 

samples. 

Finally, compositional differences between meat species can obviously be used for meat 

identification. Bilge, Velioglu, Sezer, Eseller, & Boyaci (2016) selected laser-induced breakdown 

spectroscopy (LIBS) for this purpose. The limits of detection (LOD) were found to be 4.4% for 

pork-adulterated beef and 2.0% for chicken-adulterated beef, respectively, which makes the LIBS 

a valuable technique for the routine meat quality control. 

 

2.3.3 DNA-based techniques 

Mislabelling of products has received special attention after recent events concerning the 

adulteration of meat products with non-declared species such as horse meat, where a range of 

supposedly beef products was found to contain horse meat (FSAI, 2013) in spite of the clear 

European Union (EU) regulations governing food traceability and labelling. This fraud was 

detected using DNA-based methodologies of species identification (Griffiths et al., 2014). Besides 

DNA-based methods that make use of electrophoresis techniques, protein-based methods 

including immunological techniques are the most used for the detection of this type of fraud in the 

meat industry (Ghovvati, Nassiri, Mirhoseini, Moussavi, & Javadmanesh, 2009). In comparison to 

proteins that become denaturated upon heating, DNA is a more thermo stable molecule so that, 

despite of possible degradation during processing, short fragments are generally recoverable and 

can be used as the rationale of authenticity tests carried out with processed foods. However, DNA 

can also be extensively degraded during processing, due to which its detectable amount can be 

markedly reduced. Many other factors can also influence the accuracy of the results should 

composite foods be analysed, such as the competitive PCR (polymerase chain reaction) and PCR 

inhibition arising on the grounds of matrix effects (Primrose, Woolfe, & Rollinson, 2010). With 

PCR detection, both genomic and mitochondrial genes can been targeted. However, the use of 



  

20 

 

mitochondrial DNA was shown to be better for processed meat, since the chances of its survival 

under different processing conditions are greater (Ghovvati, Nassiri, Mirhoseini, Moussavi, & 

Javadmanesh, 2009). 

DNA-based methods are related to PCR and its numerous modifications, as well as to 

electrophoresis in agarose or polyacrylamide gel (Butorac et al, 2013). The principle of PCR is 

based on the exponential amplification of specific DNA fragments, generating an amount of DNA 

fragments sufficient for further analysis. Amplified DNA fragments are mostly analysed using 

electrophoretic techniques (Reid, O'Donnell, & Downey, 2006). Among other, these methods can 

include the detection of single nucleotide polymorphisms (SNPs) (Sazaki et al., 2004), the 

restriction fragment length polymorphisms (RFLPs) (Russell et al., 2000), random amplified 

polymorphic DNA (RAPD) (Martinez & Yman, 1998), a single-strand conformation pattern 

(SSCP) (Rehbein, Kress, & Schmidt, 1997), real-time PCR, species-specific PCR and multiplex 

PCR (Che Man, Aida, Raha, & Son, 2007; Ghovvati, Nassiri, Mirhoseini, Moussavi, & 

Javadmanesh, 2009; Dalmasso et al, 2004).  

PCR represents a highly sensitive test, which allows for the detection of an animal species 

in a rapid and reliable manner. During the horse meat scandal, PCR techniques were used to 

screen for horse DNA in processed food samples. DNA was extracted from the meat portion of 

products such as lasagne, and tested using a real-time PCR. The products found to contain horse 

meat and deemed adulterated were then tested for the anti-inflammatory drug phenylbutazone, 

banned for the treatment of animals entering the human food chain since it may, although rarely, 

cause blood disorders. Griffiths et al. (2014) showed that for most laboratories testing the seafood 

authenticity, mitochondrial DNA gets into the testing focus. 

DNA methods are the most specific and the most sensitive and should therefore be chosen 

whenever two closely related species or breeds are to be identified and mutually distinguished. 

This is especially important when it comes to the authentication of meat content in traditional and 

regional meat products, since during the production of these products animal breeds typical of the 

producing geographical area are employed (Sentandreu & Sentandreu, 2014). For example, Sazaki 

et al. (2004) used the SNP genotyping to identify the Holstein and the Japanese Black cattle 

breeds, and the RAPD to differentiate between horse breeds (Martinez & Yman, 1998). 

The RFLP analysis is used to identify the change in genetic sequence that occurs at the site 

where the restriction enzyme cuts. RFLPs can be used to trace inheritance patterns, identify 

specific mutations, as well as for other molecular genetic assay purposes. Russell et al. (2000) 

used the RFPL for the identification of 10 different salmon-like species. Rehbein, Kress, & 
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Schmidt (1997) used PCR for the amplification of the conserved region of cyt b. The SSCP 

enables electrophoretic separation of single-strand nucleic acids in which a single nucleotide 

change can considerably affect the strand electrophoretic mobility by altering the intra-strand base 

paring and its resulting conformation. Genetic methods can also be used to identify the presence of 

offal coming from species that reduce the quality of meat products using the methylation pattern 

of inactive genes. Genes not used by certain tissues are inactivated by methylation. Detection of a 

gene in an unmethylated state in a tissue that does not express this gene indicates a different tissue 

origin. To this end, organ-specific genes not expressed in the muscle tissue, for example 

phosphatidylcholine, which is liver-specific, or copper amine oxidase, which is lungs-, kidney-, 

heart- and spleen-specific, are identified (Popping, 2002). 

Preventing adulteration of meat and meat products with less desirable meat species is an 

important issue. For example, a new type of meat fraud witnessed in China is the use of murine 

meat to substitute formutton meat (Fang & Zhang, 2016). The adulteration was identified using 

the TaqMan© real-time PCR. The results show the limit of detection (LOD) of less than 1 pg of 

DNA per reaction, and of 0.1 %-murine contamination in meat mixtures. Yalçınkaya, Yumbul, 

Mozioğlu, & Akgoz (2017) worked in order to select a DNA extraction method easy to perform, 

inexpensive, environmentally friendly and of the highest yield. As the existing methods of meat 

speciation are sometimes still heavy to perform, Masiri et al. (2017) developed a highly specific 

lateral flow immunoassay that can rapidly identify raw and cooked horse meat in xenogeneic meat 

sources down to 0.01 %- and 1.0 %- contamination, respectively.The analysis takes about 35 min 

and evokes no false-positive signals. 

 

2.3.4 Other techniques 

Protein-based methods represent techniques that use proteins as specific markers. They 

include electrophoretic methods, such as isoelectric focussing (IEF), chromatography, 

immunological techniques like Western-Blotting and enzyme-linked immunosorbent assay 

(ELISA), and proteomics (Montowska & Pospiech, 2007; Vallejo-Cordoba, Rodriguez-Ramirez, 

Gonzalez-Cordova, 2010; Chou et al., 2007; Ashoor & Osman, 1988). Immunological tests are 

often used because of their specificity, sensitivity, easy implementation, and low costs as 

compared to other analytical techniques used within this area. All these characteristics make them 

suitable for routine use in food control laboratories (Butorac et al, 2013). The performance of an 

assay relies on the ability of antibodies to specifically detect the target protein characteristic of a 

particular animal species, tissue or meat adulterant. If antibodies are not highly specific for a 
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particular species or tissue, problems associated with cross-reactions can appear and give false-

positive results. This is especially the issue in cases of closely related species (Sentandreu & 

Sentandreu, 2014). To overcome the problem arising with highly-processed meat products’ 

analysis, in which aggressive production conditions can lead to protein denaturation, antibodies 

against thermostable proteins are produced, for example, osteocalcin, i.e. a tissue-specific protein 

of the extracellular bone matrix. 

Among different immunological assays, ELISA is probably the most widely used for food 

authentication purposes (Liu, Chen, Dorsey, & Hsieh, 2006). There exists a variety of commercial 

test kits that detect and identify the species content in raw or thermally processed meat and meat 

products. For fish species identification, no ELISA test kit has been developed yet (Asensio, 

Gonzalez, Garcıa, & Martın, 2008), perhaps due to the great variety of fish species 

commercialized; however, polyclonal antibodies against the muscular protein of sardineshave 

been produced (Taylor & Jones, 1992). Macedo-Silva, Shimokomaki, Vaz, Yamamoto, & Tenuta-

Filho (2001) determined using ELISA soy proteins in hamburgers prepared from beef, chicken 

and swine meat. Indeed, non-meat proteins, most commonly soybean ones, are added into some 

meat products due to their nutritional and functional properties. Soy protein has also been detected 

using the ELISA immunochemical diagnostic kits that enable a rapid detection and quantification 

of these proteins in foods. The ELISA diagnostic kit that allows for the determination of risk 

material (brain and spinal cord) in extracts from meat products or sausages is available. This is 

important since the tissues originating from the central nervous system are sometimes mixed with 

meat products and could transfer BSE to humans (Asensio, Gonzalez, Garcıa, & Martın, 2008).  

To detect specific tissue types, proteomics can also be used. The basis of these 

methodologies is the use of high-resolution mass spectrometry that identifies unique proteins or 

peptides and determines food components. It is often used to identify animal species represented 

in a food product: to that end, it couples protein sequence information with the analytical power of 

mass spectrometry (MS) and can also be used to differentiate species and varieties based on their 

specific protein patterns. The achieved discrimination power is comparable to that of DNA-based 

methods, since the peptide sequences used as biomarkers are specific for a given animal species. 

In the study performed by Sentandreu, Fraser, Halket, Patel, & Bramley (2010), upon the 

hydrolysis of thermostable myofibrillar proteins, species-specific peptide biomarkers were 

identified. The method was able to detect the presence of 0.5% of chicken in a mixture with pork 

meat. The method allows for the quantification that makes use of isotope-labelled marker peptides 

as internal standards (Primrose, Woolfe, & Rollinson, 2010). Proteomics was developed to 
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determine the species origin of gelatine and similar highly-processed hydrolysed proteins coming 

from animal skin and bones and added to foods. Most of the gelatines are prepared from a 

collagen material found in pigs, cows and fish carcasses; for many consumers, religious and 

ethical issues regarding the types of gelatine they consume may arise. Gelatines manufactured 

from the skin and bone material and the pertaining collagen proteins are incorporated into many 

foods, confectioneries, beverages and pharmaceuticals in form of thickeners, gelling agents, 

clarifying agents and ‘mouthfeel’ enhancers. The analytical method employs a proprietary 

database built up over a number of years that contains gelatine peptide mass data from mass 

spectrometry experiments encompassing scores of species and phylogeny data used to match 

unique species-specific peptides to a species or a tissue (skin or bone). The method can determine 

the species provenance of a wide range of gelatines including pig, cow, horse, fish or poultry. The 

method was recently employed so as to investigate the suspected addition of hydrolysed protein to 

chicken fillet samples intended to serve as a water-binding agent. The fillets labelled as ‘chicken 

only’ or as ‘Halal-slaughtered’ were shown to be adulterated with hydrolysed proteins derived 

from a cow material. 

Another kind of analysis should be evoked, the analysis of stable isotopes in food of 

animal origin can reveal economically motivated adulteration, such as the addition of cheap sugar 

syrups in order to extend honey and maple syrup shelf life; it also enables the verification of the 

fact that chicken had been ‘corn-fed’, as well as the differentiation between organic and 

conventional farming practices (Kelly, 2003; Kelly & Bateman, 2009). 

Finally, taking the case of butter, it contains a large amount of milk fat, which is often 

replaced by cheaper animal fats or vegetable oils. Tomaszewska-Gras (2016) examined the 

adulteration with palm oil using the Differential Scanning Calorimetry (DSC) technique. The 

results indicated that the technique is applicable for quantitative, peak area- and peak height-based 

detection of palm oil in butterfat if present in the concentration range of 2 to 35%. 

 

3. Challenges and Perspectives 

Food safety is an issue continuously investigated by researchers for authentication and in 

order to counteract new types of adulteration. In fact, literature reported in this review and our 

own research experience indicate that several methods using chromatography, spectroscopy and 

DNA-based techniques but also others have been developed for the authentication of food 

products of animal origin. Theses methods seem quite successful. However, they have mostly 

focused on research work and rare is the information about their implementation in official food 
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control laboratories or food industry for routine analysis. The method to be implemented has first 

to be validated in order guarantee reliability. The next step is to consider several requirements as 

the availability of technology, instrumentation, and cost in addition to training to carry out the 

method.   

 Targeted approaches as chromatography and DNA-based techniques, that seem to be more 

used for the determination of specific ingredients or substitution of ingredients, are long and 

expensive. But, benefits like high accuracy, sensitivity and selectivity make them the methods of 

choice in official food control laboratories. They are very useful for identification and complete 

characterization of food samples. Inversely, non-target approaches as spectroscopic techniques 

that seem to be largely used to geographic authentication, may be less sensitive comparing to 

chromatography or DNA-based technique but their cost is much lower. They are rapid, non-

destructive and can be miniaturized or handled which fit to the industry constraints. Research 

needs to be encouraged to develop handled and portable instruments. Besides, spectroscopic 

techniques are potential solution for food screening at large scale which permits more and 

systematic control ensuring food safety chain. 

   Another reflection which starts to emerge is data fusion to answer the question if there is 

any advantage of coupling different techniques to resolve one problem. This kind of strategy 

involves use of advanced chemometric modelling to extract the significant information.  

 

4. Conclusion 

In recent years, food products of animal origin with an added value are more and more 

often a subject to fraud. In order to prevent food fraud, product’s specificities have to be defined in 

an evidence-based manner; otherwise, food fraud scandals could destroy consumers’ trust in a 

specific label and subsequently cause economic losses in an already sensitive sector of small 

traditional food producers. A wide variety of scientific techniques have been developed to protect 

consumers and screen for adulteration in the food chain. Target and non-target approaches have 

been followed regrouping a series of analytical techniques mainly chromatography, spectroscopy 

and DNA-based techniques even if other techniques as isotopes measurements or ELISA are 

emerging. These sophisticated tools should continue to be applied and continuing research efforts 

should be made so as to address the newly-emerging food quality issues and to ensure brand and 

consumer protection. Methods have to be validated and scaled up to meet routine analyses 

requirements. One has to conclude that it is also urgent for the authorities to address the adequacy 
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of labelling and improve and extend the scope of official monitoring methods, equally as for the 

food industry to establish an accurate control over its products. 
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Table 1. Application of analytical techniques in authentication of food of animal origin (adopted 

from (Cubero-Leon, Peñalver, & Maquet, 2014) 

 

Food of animal 

origin 

Purpose of analysis Analytical 

technique 

References 

Meat, fish and 

seafood 

 

Sea bass rearing system NIR Trocino et al. (2012) 

Wild and cultured sea bass NMR Mannina et al. (2008) 

Sea bass farming system NMR Savorani et al. (2010) 

Pork adulteration in beef 

meatball 

FTIR Rohman, Sismindari, Erwanto, & 

Che Man (2011) 

Beef production systems NMR Osorio, Moloney, Brennan, & 

Monahan (2012) 

Geographical origin of beef NMR Jung et al. (2010) 

Detection of mechanically 

recovered meat 

Identification of animal 

species 

GC–MS 

 

ELISA 

 

PCR 

Surowiec, Fraser, Patel, Halket, & 

Bramley (2011) 

Céspedes et al. (1999); Rencova, 

Svoboda, & Necidova (2000) 

Calvo, Orca, & Zaragoza (2002); 

Dooly, Sage, Clark, Brown, & 

Garrett (2005) 

Milk and dairy 

products  

 

Milk adulteration  

 

FTIR Nicolaou, Xu, & Goodacre (2010) 

NIR Hsieh, Hung, & Kuo (2011);  

Milk and cheese geographic 

origin 

Milk species 

NMR 

 

ELISA 

Consonni & Cagliani (2008a); 

Sacco et al. (2009) 

Hurley, Coleman, Ireland, & 

Williams (2004) 

Honey  

 

Geographical origin NMR Donarski, Jones, & Charlton 

(2008); Consonni, & Cagliani 

(2008b); Donarski, Roberts, & 

Charlton (2010b) 

GC–GC–

TOF-MS 

Cajka, Hajslova, Pudil, & 

Riddellova (2009); Stanimirova et 

al. (2010) 
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NIR Woodcock, Downey, & 

O’Donnell (2009) 

Raman Pierna, Abbas, Dardenne, & 

Baeten, 2011 

Botanical origin NIR Liang, Li, & Wu (2013) 

FTIR Etzold, & Lichtenberg-Kraag 

(2008) 

GC–MS Aliferis, Tarantilis, Harizanis, & 

Alissandrakis (2010); Castro-

Vázquez, Díaz-Maroto, González-

Viñas, & Pérez-Coello (2009) 

NMR Beretta, Caneva, Regazzoni, 

Bakhtyari, & Maffei Facino 

(2008); Lolli, Bertelli, Plessi, 

Sabatini, & Restani (2008); 

Schievano, Peggion, & Mammi, 

2010; Schievano, Stocchero, 

Morelato, Facchin, & Mammi 

(2012) 

Adulteration FTIR Hennessy, Downey, & O'Donnell 

(2008); Gallardo-Velázquez, 

Osorio-Revilla, Zuñiga-de Loa, 

Rivera-Espinoza (2009) 

NIR Zhu et al., 2010; Chen et al., 2011 

Raman Li, Shan, Zhu, Zhang, & Ling 

(2012) 
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