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Abstract

The soil science community is facing a growing demand of regional, continental, and
worldwide databases in order to monitor the status of the soil. However, the availability
of such data is very scarce. Cost-effective tools to measure soil properties for large areas
(e.g., Europe) are required. Soil spectroscopy has shown to be a fast, cost-effective, envi-
ronmental-friendly, nondestructive, reproducible, and repeatable analytical technique.
The main aim of this paper is to describe the state of the art of soil spectroscopy as well
as its potential to facilitating soil monitoring. The factors constraining the application of
soil spectroscopy as an alternative to traditional laboratory analyses, together with the
limits of the technique, are addressed. The paper also highlights that the widespread
use of spectroscopy to monitor the status of the soil should be encouraged by (1)
the creation of a standard for the collection of laboratory soil spectra, to promote
the sharing of spectral libraries, and (2) the scanning of existing soil archives, reducing
the need for costly sampling campaigns. Finally, routine soil analysis using soil spectros-
copy would be beneficial for the end users by a reduction in analytical costs, and an
increased comparability of results between laboratories. This ambitious project will
materialize only through (1) the establishment of local and regional partnerships
among existent institutions able to generate the necessary technical competence,
and (2) the support of international organizations. The Food and Agriculture Organiza-
tion (FAQ) of United Nations and the Joint Research Centre of the European Commis-
sion are well placed to promote the use of laboratory and field spectrometers for
monitoring the state of soils.

1. INTRODUCTION

The Millennium Ecosystem Assessment (2005) stated that soil pro-
vides a multitude of land-based ecosystems goods and services supporting
and regulating life on the planet. Thus the preservation and sustainable
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management of soils is crucial to tackle the main challenges humanity is
facing such as food security, climate change, environmental degradation,
water scarcity, and biodiversity (Sanchez et al., 2009). Assessing the state
of the soil requires complex analytical approaches with high number of pa-
rameters at a large number of sites. Unfortunately, consistency of the ap-
proaches and the analytical methods among soil surveyors is often lacking
(Sanchez et al., 2009; Louis et al., 2014), hindering the exchange of quan-
titative data with other disciplines, and the implementation of policies for
mitigating the main soil threats (e.g., European Commission, 2006). Hence,
the growing demand for high-resolution soil data to cover large areas is
difficult to be met, due to the lack of such data (Grunwald et al., 2011;
Ben-Dor and Banin, 1995). The consistent monitoring of soil health at
continental scale depends on the development and implementation of in
situ, low-cost, and fast analytical methods, provided that the results ob-
tained by different operators are comparable and that they can be stored
in accessible databases, including the standards and raw data for eventual
reinterpretation. Over the past 30 years, soil visible, near-, and mid-infrared
(Vis-NIR-MIR) reflectance spectroscopy has proved to be a fast, cost-
effective, environmental-friendly, nondestructive, reproducible, and
repeatable analytical technique (Viscarra Rossel et al., 2006; Soriano-Disla
et al., 2014). The technique is mainly used in the laboratory, but its appli-
cation in situ (Viscarra Rossel et al., 2009), as well as from air- and space-
borne sensors, is growing (Ben Dor et al., 2009). As there is large body
of evidence showing that spectroscopy can be used to estimate important
soil properties, it is time to ask whether this technique is mature enough
for routine soil analysis.

e Can the errors associated with spectroscopic predictions be reduced by
joining spectral databases, increasing calibration diversity and density,
developing focused calibrations for each type of soil or region, or using
local samples to augment calibrations for individual fields?

e Are the larger errors associated with soil spectroscopy mitigated by the
larger number of samples possible to analyze with this technique?

*  What is required to turn soil spectroscopy into an operational technique
for soil assessment at field, country, and continental scales?

The main aims of this paper are to (1) describe the actual status of soil
spectroscopy, and (2) propose actions to encourage the application of this
technique as an alternative to traditional laboratory analyses.
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S 2. VISIBLE AND INFRARED SPECTROSCOPY
2.1 The Visible

Visible (Vis) light covers only a small portion of the electromagnetic
radiation in the wavelength range between 0.4 and 0.78 um. Interaction
of visible radiation with soil produces energy transition in atoms, mainly
due to processes known as crystal field effect and charge transfer. Generally,
electronic transitions yield broad absorption bands that control the soil color
that 1s captured by the human eye. Although the spectral response in the Vis
region is weak, it is possible to derive quantitative information from the
spectra (Viscarra Rossel et al.,, 2006). Owen (2000) wrote an extended
review about origin, principle, and applications of UV—Vis spectroscopy.

2.2 The Infrared

Infrared (IR) radiation covers the range of the electromagnetic spectrum
between 0.78 pm and 1 mm. Vibrational energy transitions in molecules
typically require energy of a frequency that corresponds to the IR region
of the electromagnetic spectrum. Hence IR radiation will activate molecular
interatomic vibrations, and this provides the basis of the IR spectroscopy
technique. An IR spectrum essentially gives a chemical profile of the sample.
Electromagnetic radiation consists of electric and magnetic components, but
it is the electric vector of IR radiation that interacts with the molecular inter-
atomic bonds to activate different vibrations, resulting in absorption of the
IR radiation. There are many types of molecular vibrations that occur on
absorption of IR radiation including stretching, bending, and wagging of
the constituent atoms in the molecule. For a compound to be IR active,
it is required to have covalent bonding. In addition, there must be an oscil-
lating electric field produced during the chemical bond vibrations of the
atoms in the molecule (net change in dipole moment). Absorptions of IR
radiations are due to vibrations of molecular bonds such as O—H, C—H,
N—H, C=0, C—N, N—O, or C=C. Stretching of some symmetric bonds
in which the electrons are equally shared will not give rise to IR-active
vibrations, e.g., stretching in N, molecules (no net change in dipole
moment during its chemical bond vibrations).

There are numerous textbooks on the principles and interpretation of IR
spectroscopy, including those by Herzberg (1945) and Alpert et al. (1970).
IR radiation is divided in three main regions: the near-infrared (NIR:
0.78—2.5 wm), mid-infrared (MIR: 2.5—25 pm) and the far-infrared
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(FIR: 25—1000 (m'). The NIR region shows overtones and combination
modes of the fundamental atoms vibrations in molecules that are active in
the MIR and FIR regions. The full description of basics, history, and func-
tions of IR spectroscopy can be found in Stuart (2004) and Aenugu et al.
(2011). NIR spectroscopy finds applications in several fields such as food sci-
ence, semiconductor electronics, pharmaceutics, substances identification,
and analysis of soil properties (Davis, 1998). Absorptions in MIR spectra
can be interpreted in terms of the fundamental vibrations of functional
groups present in a sample as the MIR is dominated by fundamental atoms
vibrations mostly in bending, stretching, and rotation vibrational modes. It
should be noted that the term FTIR (Fourier transform infrared) spectros-
copy is often used to describe IR spectroscopy in the MIR range, and the
name derives from the way in which modern instrumentation works.

3. SOIL VIS AND IR SPECTROSCOPY
3.1 Background

Soil spectroscopy is about the identification and analysis of the inter-
action of Vis-IR wavelengths with soil properties. The main chemical
components in soils that interact with electromagnetic radiation across the
Vis-NIR, termed also “chromophores,” are OH in free water and clay
mineral lattice, organic matter, and nonclay minerals, such as iron oxides,
carbonates, and salts (Ben Dor et al., 1999). In the MIR, more information
on soils is available, such as Si-bearing minerals (mainly quartz) and other
fundamental vibrations groups without overtones in the NIR (Janik and
Skjemstad, 1995). In general, the MIR region provides better resolved
and more intense peaks than the NIR because fundamental vibrations are
taking place in this region (Soriano-Disla et al., 2014).

Soil reflectance across the NIR is characterized by well-defined absorp-
tion features associated to overtones of O—H and H—O—H stretch vibra-
tions of free water (1.455 and 1.915 um) and overtones and combinations
of O—H stretch and metal-OH bends in the clay lattice (1.415 and
2.207 pum). A large absorption centered on 0.665 pwm can be attributed to
organic matter (Ben Dor et al., 1997). Generally speaking, soil reflectance

' In the remote sensing community, the shorter infrared wavelengths (0.78—1 pm) are termed near-
infrared, while the portion of the electromagnetic spectrum between 1 and 2.5 pm is named
shortwave infrared. At lower frequencies, the spectrum is divided into mid-wave infrared (3—5 pm),
low-wave infrared (8—14 um), and far-wave infrared (14—1000 pm).
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decreases with organic matter (Ben Dor et al., 1997) and water content
(Whiting et al., 2004). Absorptions around 0.4, 0.45, 0.51, 0.55, 0.7,
0.87, and 1 pum are characteristics of the presence of ferrous and ferric
iron oxides, and are due to the electronic transitions of the iron cations
(Ben Dor et al., 1999). Tables of absorption positions and their related soil
components are published in Ben Dor et al. (2002), Viscarra Rossel and
Behrens (2010), and Soriano-Disla et al. (2014). In addition to chemical
soil components, physical soil properties, such as particle size distribution
and aggregate size and density, may lead to changes in baseline height,
and absorption intensities of the spectral curves through the phenomenon
of light scattering or reflection. Ben Dor et al. (1999) extensively reviewed
the fundamentals of soil spectroscopy in the Vis-NIR.

In the MIR, due to strong vibration fundamentals, soil spectra are char-
acterized by clearly identifiable peaks linked to organic or mineral com-
pounds. The first two peaks around (3800—3600 cm ™ ') are associated to
O—H stretching in clay minerals (Calderon et al., 2011). They are followed
by two less pronounced peaks (3000—2800 ¢m ') linked to the aliphatic
C—H stretching (Zimmermann et al., 2007). Between 2000 and
1790 cm ™, three successive peaks indicate the presence of quartz (Calderon
etal., 2011). The peaks around 1600—1500 cm” ! and 1450—1400 cm ™~ ! are
mainly associated to aromatic and aliphatic compounds, respectively (Borne-
mann et al., 2010; Demyan et al., 2012; Tivet et al., 2013). Below
1000 cm™ ', the interpretation of the different peaks is more difficult because
the spectrum results from a mixture of minerals and organic compounds
(Calderon et al., 2011; McCarty et al., 2002).

3.2 Spectroscopy for Soil Property Prediction

The use of spectroscopy for soil analyses is fast, cost-efficient, and nonde-
structive. Furthermore, there is no need for chemical reagents, and it re-
quires minimal sample preparation (Malley et al., 2004; Viscarra Rossel
et al., 2006). A single spectrum may contain comprehensive information
on various soil components, and can be used to predict these simultaneously
(Islam et al., 2003). The rapid development of portable and handheld spec-
trometers allows using the technique on-site. Bowers and Hanks (1965)
were among the first to investigate the spectral characteristics of soil samples
by showing correlation between soil spectra and soil moisture. Later, Stoner
and Baumgardner (1981) collected a spectral library containing representa-
tive soil samples of the United States, and identified five typical spectral
curves corresponding to five soil classes. Early studies, such as those of Dalal



Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring 7

and Henry (1986) and Ben Dor and Banin (1995), started to produce soil
property predictions based on spectral data and multivariate statistics. Since
then, most of the studies adopted the same quantitative approach and spec-
troscopy has been exploited to predict soil properties such as organic carbon
(Gobrecht et al., 2014), texture (Sorensen and Dalsgaard, 2005), cationic
exchange capacity (CEC) (Canasveras Sinchez et al., 2012), total phos-
phorus (P) (Abdi et al., 2012), exchangeable potassium (K) (He et al,
2005), and electrical conductivity (Ben Dor et al., 2002; Viscarra Rossel
et al., 2006; Todorova et al., 2011). Soriano-Disla et al. (2014) extensively
reviewed soil spectroscopic models published in the literature, and listed
soil properties that could be determined by means of diffuse reflectance
spectroscopy: soil water content, clay, sand, soil organic carbon (SOC),
CEC, exchangeable Ca and Mg, total N, pH, and total concentration of
potential pollutant metals/metalloids (As, Cd, Hg, and Pb). Moreover,
the indirect interaction between the chromophores and other soil proper-
ties can provide additional quantitative information about some soil prop-
erties with no active chromophores (Ben Dor et al.; 1999). Obviously, soil
properties that are directly related to the chromophores (organic carbon,
carbonates, etc.) are generally better predicted than the other properties
for which the prediction mechanism relies on their correlation with the
chromophores within a given spectral library (Reeves et al., 2006). The
prediction of soil properties based on spectroscopy registered a tremendous
increase in the last decades (Bellon-Maurel and McBratney, 2011). Due to
the minor sample preparation, and more applicability under field condition,
Vis-NIR instruments are more widespread than MIR, although the latter,
being less affected by water content, particle size, and light penetration than
the former, generates more accurate predictions and measurement repro-
ducibility (Reeves et al., 2010).

Building upon the approaches successtully developed for field and lab-
oratory spectroscopy in the reflective (Vis-NIR) and thermal (MIR-TIR)
domain, imaging spectroscopy using airborne sensors has shown the poten-
tial to map and to quantify topsoil properties (e.g., Stevens et al., 2010;
Eisele et al., 2012; Gerighausen et al., 2012). Upcoming spaceborne sensors
will cover not only the Vis-NIR region (EnMAP from Germany, HSUI
from Japan, PRISMA from Italy, and SHALOM from Italy and Israel) but
also the thermal infrared (TIR) region (HyspIRI). These instruments,
contributing to, e.g., the COPERNICUS/GMES programme, could there-
fore provide global spectroscopic data for mapping soil properties at low
costs.
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3.3 Cost/Benefit Analysis of Soil Spectroscopy

Besides the previously mentioned advantages, soil spectroscopy is also char-
acterized by the fast delivery of results, and the need for only basic analytical
infrastructure. For many soil assessment and monitoring applications, overall
accuracy might be improved by obtaining soil data in more locations, depths,
and times despite reduced accuracy for each measurement. O’Rourke and
Holden (2011) calculated the costs per sample, analytical accuracy, and
time involved in SOC analysis, in order to identify the best method among
Walkley-Black, total organic C (TOC) analyzer, Vis-NIR diftuse reflec-
tance spectroscopy, and laboratory hyperspectral imaging. They found
that Vis-NIR spectroscopy and laboratory hyperspectral imaging (800—
1720 nm), although less accurate than TOC analyzer, outperformed the
latter, mainly as a result of the lower price (10 times cheaper). Schwartz
et al. (2012) showed that the use of spectral analysis to monitor petroleum
contamination in soils provided much better results at lower cost compared
to certified laboratories using traditional analytical chemistry methods. This
difference of cost is even more important for large-scale soil assessment,
where the number of measurements is very high. The World Agroforestry
Centre (ICRAF) reports that the price of SOC analysis by spectroscopy for
the African soil information system (AfSIS) project, is one-third of that by a
C/N analyzer. The Joint Research Centre of European Commission con-
tracted a laboratory to analyze about 20,000 samples for the land use/cover
area frame survey (LUCAS) soil monitoring network (T'éth etal., 2013). For
SOC analyses, the cost per sample using spectroscopy was less than one-third
compared to reference analyses (Soil Service of Belgium, pers. Comm.).

3.4 Spectral Libraries: State of the Art and Potential Use

Predictions are obtained by calibrating spectral data against reference soil
analytical data. Spectroscopic calibrations are empirical and hence cannot
produce accurate predictions for samples not represented in the spectral
libraries. The usefulness of spectral libraries covering and producing predic-
tion models for small areas has already been proven, and is not discussed in
this paper. Hence, we focus on large spectral libraries, which are needed to
provide general and robust models over large areas that are characterized by a
large soil diversity. Below, we describe the characteristics of existing spectral
libraries covering large areas.

The ICRAF-ISRIC world soil spectral library is composed of 4438
samples from 785 soil profiles distributed in 58 countries from Africa,
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Asia, Europe, North America, and South America selected from the Soil In-
formation System (ISIS) of the International Soil R eference and Information
Centre (ISRIC) archives. Samples were scanned in the Vis-NIR spectral
range (350—2500 nm), with a FieldSpec FR spectroradiometer (Analytical
Spectral Devices, Boulder, CO). The soil reference measurements were
acquired by ISRIC in different laboratories according to ISRIC Procedures
for soil analysis (Van Reeuwjik, 2002).

Viscarra Rossel and Webster (2012) described a large library of 21,500
Vis-NIR spectra from around 4000 soil profiles covering the Australian
continent. The soil samples were scanned using an ASD LabSpec Pro spec-
trometer with a spectral range of 350—2500 nm and spectral resolution of
3 nm at 700 nm and 10 nm at 1400 and 2100 nm. The collection of soil
spectra was realized with a high-intensity contact probe with halogen bulb
illumination. The samples were collected from different soil surveys conduct-
ed at different scales (continental, regional, and farm). The soil analyses were
realized in multiple laboratories, following different analysis protocols.

A spectral library covering the United States has been collected under the
Rapid Carbon Assessment project (USDA, 2013). The library is composed
of 144,833 Vis-NIR spectral scans, derived from samples collected from the
upper 1 m of 32,084 soil profiles at 6017 randomly selected locations. The
instrument used to scan the samples was an ASD LabSpec Pro spectroradi-
ometer with a spectral range of 350—2500 nm, 2 nm sampling resolution
and spectral resolution of 3 nm at 700 nm and 10 nm at 1400 and
2100 nm. Soil spectra were acquired using a high-intensity contact probe.
SOC was determined by combustion method.

The European spectral library LUCAS consists of about 20,000 topsoil
(0—20 cm) samples, collected from all over Europe, measured for 13 soil
properties in a single laboratory (Stevens et al., 2013). The Vis-NIR soil
spectra were measured with a FOSS XDS Rapid Content Analyzer
(FOSS NIR Systems Inc., Denmark), operating in the 400—2500 nm wave-
length range, with 2 nm spectral resolution and 0.5 nm spectral data interval.

In addition to continental-scale libraries, a number of national and
regional soil spectral libraries have been constructed, such as the ones for
France (Goggé et al., 2012 for NIR and Grinand et al., 2012 for MIR), Czech
Republic (Brodsky et al., 2011), Denmark (Knadel et al., 2012), Florida
(Vasques et al., 2010), and Brazil (Bellinaso et al., 2010).

Soil spectral libraries might be a strong base for the forthcoming hyper-
spectral remote sensing of soils from space. The laboratory soil spectra may
enable appropriate validation of the reflectance information extracted from
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radiance data acquired from remote platforms. Moreover soil spectral
libraries can play a major role in tracking temporal spectral changes over
the sampling locations (Deng et al., 2013).

3.5 Soil Spectroscopy for Large-Scale Soil Property
Prediction

Predicting soil properties for large and diverse areas is especially challenging,
and results in higher prediction error than for local scale spectroscopic
models (Stevens et al., 2013). For instance, Brown et al. (2006) obtained a
root mean square error (RMSE) of 7.9—9.9 ¢ C kg™ ! for an SOC content
calibration model obtained from samples distributed all over the world. In
Europe, spectral models of SOC content achieved an RMSE of 3.6—
8.9 ¢ C kg™ ' for mineral soils and 50.6 ¢ C kg~ ' for organic soils (Nocita
et al., 2014; Stevens et al., 2013). Vasques et al. (2010) developed spectro-
scopic models of SOC in Florida achieving an RMSE of 6.5—7 ¢ C kg™~ '.
These prediction errors are large compared to the standard error of labora-
tory (SEL) of established methods of soil carbon analysis, such as dry com-
bustion (SEL = 1—2 ¢ C kg '; Gerighausen et al., 2012). Large-scale
libraries tend to span over a wider range and a higher variability of the
soil property under study, which actually appear to be the dominating factor
influencing prediction errors (Stenberg et al., 2010). The lack of accuracy
shown by spectroscopic models built with large-scale spectral libraries is
also due to the complexity of the relationship between soil properties and
spectra for heterogeneous soil samples. It has been long recognized that
the spectral signature of soils in the Vis-NIR region is not unique (Price,
1994). Many absorption features overlap so that absorptions related to one
soil component can be masked, distorted, or shifted where other soil com-
ponents vary. For instance, spectral variations related to changes in iron
oxide content may cancel variations in absorptions due to organic matter
(Adar et al., 2014). Not only chemical chromophores interact with each
other. For instance, for the same amount of SOC content, an increase in
sand content induces an increase in SOC absorption depths, which can be
easily confounded with an increase in SOC (Stenberg, 2010; Stevens
et al., 2013). To overcome this, it has been proposed to include additional
variables such as particle size distribution in the modeling of soil spectra
(Brown et al., 2005; Nocita et al., 2014).

The use of large spectral libraries has been proposed also for field and
farm scale soil mapping. In order to overcome the large biases often experi-
enced when using them at the local scale, the spiking technique, consisting
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in the combination of large-scale libraries with local calibrations, was devel-
oped (Guerrero et al., 2010). Basically only a handful of local samples are
included in a large-scale library to shift its weight towards the target site.
In this approach, a few representative samples from the target site (spiking
subset) are added to recalibrate the model, ensuring that the models contain
samples similar to those to predict. This approach implies some analytical ef-
forts, since the spiking subset must be analyzed with the reference method.
Consequently, this subset should be as small as possible, in order to maintain
most of the advantages of spectroscopy.

The poor calibration results at large scales are not only due to the
geographical extent and the resulting complexity as such, but also to the sam-
pling density of the current spectral libraries. Based on the LUCAS spectral
library (~20,000 points across Europe), Nocita et al. (2014) showed, for
instance, that, using a local regression approach (i.e., for each spectrum to
predict, a calibration equation is developed based on the samples with the
most similar spectra or the closest samples in the geographical space), soils
with high SOC content (80 g C kg~ ') were poorly predicted because of
the lack of suitable nearest neighbors (i.e., samples with similar soil and spec-
tral properties to the ones to predict). Generally, the analyses of such large
databases need dedicated chemometrics tools, such as local regressions that
are able, to some extent, to handle their complexity (Ramirez-Lopez
etal., 2013). Development costs of large databases are high, so that such spec-
tral libraries are often developed from archived soil samples and legacy soil
databases with analytical measures (Viscarra Rossel and Webster, 2012).
Although these libraries contain an enormous wealth of information on soils,
they cannot be easily merged into a uniform database because they have been
collected with different protocols, instruments, and analytical methods
which can severely affect the prediction performance of spectroscopic
models (Soriano-Disla et al., 2014). For instance, Brown et al. (2005)
computed an RMSE of 6 g C kg™ ' for 1175 samples analyzed for SOC
both by dry combustion and the Walkley-Black method. Such error would
be included in the total error budget of SOC spectroscopic models based on
samples analyzed with the two different methods. Obviously this represents a
waste of resources since most spectral libraries cannot be exploited together
to create robust models over large areas and with diverse soil types.

3.6 Parameters Causing Spectral Variation in the Laboratory

Not only the soil components but also the laboratory protocols have an in-
fluence on the spectra. Depending on the instruments, samples are prepared
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following a procedure specific to each laboratory, which may result in dif-
ference in spectral shapes for the same sample between different laboratories.
Often, soil samples are dried, sieved, and grinded. Differences in water con-
tent of air-dried samples, due to fluctuations in relative humidity of the
ambient air in the laboratory, affect the spectral shape and peaks, especially
around 1.415 and 1.915 pm (Whiting et al., 2004; Nocita et al., 2012).
Spectral reflectance is also affected by the grinding of soil. This can generate
important differences of accuracy in the prediction models due to the vari-
ation of particle sizes (Soriano-Disla et al., 2014). Unfortunately, there is no
protocol specifying at which caliber samples should be grinded. The same is
true for sieving. This makes the construction of comparable spectral libraries
difficult, and precludes the sharing of spectra among laboratories with
different measurement conditions and protocols. Pimstein et al. (2011)
showed that the use of a common protocol and an internal standard reduced
significantly the differences between spectral measurements of the same sam-
ples by different operators in three laboratories.

The comparison of analytical results among laboratories is traditionally
addressed by performing ring tests with a standard sample being sent and
analyzed by all participating laboratories. For spectral analysis, it is recom-
mended to send both a reference material, such as bleached inert sand,
and a standard soil sample to the laboratories. The spectra of these materials
can then be used to determine transfer function for the spectra determined in
one laboratory to be used in a spectral library of another laboratory.

3.7 Metadata and Soil Spectroscopy

Metadata are structured information that make an information resource
easier to access, use, and understand. Just as for any other kind of informa-
tion derived in the field or the laboratory, the utility of soil spectroscopy
data is only as good as how well it can be explained and understood.
Capturing the metadata at the observation stage is a lot more cost-effective
than trying to work out all of the necessary information later on, and can aid
in the integration of the data within global frameworks, and its later extrac-
tion and use.

Many different definitions and frameworks for metadata have been
developed, reflecting the wide variety of data and information types that
can be generated. Existing examples of metadata standards of relevance to
soil spectroscopy include ISO 19115 (ISO, 2003), the Dublin Core Meta-
data Initiative (DMCI, 2013), and the Directory Interchange Format
(NASA, 2013).
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The seven questions that the notion of metadata addresses are all relevant
to soil spectroscopy, and are listed below:

e What was measured? This can include the spectroscopic information,
additional environmental parameters, and soil analysis results obtained
later in the lab.

*  Who carried out the measurements? Some field observations and labora-
tory analyses are operator-dependent, and it can be useful to know who
carried out the work in order to calibrate for this (and also to be able to
ask them questions about the data if the need arises).

o Where were the measurements made? Geographical location of field ob-
servations can allow later site characterization information to be derived.

o When were the measurements made? This information is particularly
important when long-term monitoring or changes over time are of
interest.

*  How were the measurements made? Type of equipment, field sampling
protocols any other seemingly innocuous information about how the
data were derived can be useful later.

o Why was the work carried out? Was it in relation to some other project,
and were the observations intended to satisfy some specific requirement?

o Whose is the data? Intellectual property is a topic that tends to be ignored
until it becomes an unavoidable issue—having information about
ownership, rights of use, and referencing of the material available to
the user early on can facilitate license negotiations and prevent problems
occurring once work has been carried out.

Suggestions for implementation of metadata standards within soil spec-
troscopy are likely to cover a wide range of topics, from the adoption of
preferred standards to the inclusion of specific types of information (and
the formatting of the metadata framework). There is a great deal of flexibility
available in how such a system could be adopted, and we are not attempting
here to prescribe how this should be achieved. However, any successful
metadata framework should aim at the very least to be compliant with the
INSPIRE directive (http://inspire.ec.europa.cu/), and it is proposed that
the information and guidance available in relation to this directive would
be a suitable starting point for discussions.

4. THE WAY FORWARD

The growing demand for high-resolution soil data to cover large areas
on the one hand, and the lack of availability of such data on the other hand,
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is one of the biggest challenges in contemporary soil science (Grunwald
et al,, 2011), encouraging thereby the development of cost-effective
methods of soil analysis, such as Vis-IR spectroscopy. While research on
soil spectroscopy has rapidly grown and showed a great potential (Guerrero
etal., 2010), it is now time for soil spectroscopy to enter an operational phase
where, just as for other established soil analytical techniques, measurements
are standardized, soil analyses are reliable across diverse environments and
data are delivered in an automated mechanism. To achieve this goal, one
prerequisite is the development of databases that can provide robust spectral
models over large geographical extents. It is unlikely that the high sampling
density, required to appropriately describe soil variation at these scales, could
be reached by a single research group. However, the combination of existent
and future local, regional, and continental spectral libraries is an achievable
target, provided that they are built using a common protocol for the collec-
tion of laboratory soil spectra, or that they contain spectral reference mea-
surements so that spectral transfer functions could be calculated. Similarly
to spectral measurements, the use of reference analytical methods that spec-
troscopic predictions rely on should be standardized. Obviously, a joint
effort of the soil spectroscopy community is required to allow better inter-
operability between soil spectral libraries and facilitate data exchange. Such
initiative is not only a way to unlock current limitations of soil spectroscopy,
but also a lever that would directly promote the use of spectroscopy in ac-
ademic and commercial soil laboratories, favoring the development of
monitoring networks able to assess quickly and efficiently the state of the
soil resources at minimal costs. In the next sections, we present some ideas
that, once implemented, could contribute to the expansion of soil spectros-
copy as an established soil analytical method.

4.1 Establishment of a Common Protocol for Laboratory
Spectroscopy

Since calibration and management represent a large part of costs and efforts
in the use of IR techniques, standardization and centralization of reference
methods are strongly needed. This represents the first step for the sharing of
small- and large-scale spectral libraries, which could help in achieving cali-
bration models that are valid for larger areas. So far, all the national and con-
tinental spectral libraries have been built using slightly different protocols for
each library including sampling technique, sample preparation, instrument
specifications, and spectral acquisition, which hinder interoperability of
spectral libraries. The use of different reference methods and the problems
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related with quality control of reference measurements within and across
laboratories provide major challenges for the development of reliable cali-
brations. Iterative development of centralized spectral libraries is efficiently
achieved by screening spectral libraries and then conducting reference mea-
surements on outlying samples. An international standard for the collection
of laboratory spectra and the inclusion of spectra of reference materials will
dramatically drop the costs linked with the collection of new samples. More-
over, the development of a common standard, together with a common
network for scientists and technicians from all over the world, will give
rise to new applications, such as the transfer of calibration models from lab-
oratory to spectra of the soil surface collected by remote sensing.

4.2 Scanning of Existent Soil Archives

Sampling campaigns are costly, and soil archives stored by universities,
research centers, agriculture associations, and government agencies could
provide an opportunity to enlarge spectral libraries. Even if many samples
were acquired decades ago, they still contain spectral information that could
be used to improve the representativity of spectroscopic calibration models.
These samples could be scanned to a cost basically corresponding to the
working hours of a technician. In many cases, however, considerations on
the property of reference data and on the confidentiality of some metadata
(especially location) have to be addressed. A common framework could be
proposed for negotiating with data owners (e.g., access to spectra, and
imprecise geographical coordinates). The impact of this mobilization, real-
ized following a common protocol, might be part of the answer to the de-
mand for robust calibration model across regions and soil types. Since 2006,
ISO/TC 190 (soil quality)/SC 3/WG 10 (screening methods) has been
developing standards to screen soil for chemical compounds including heavy
metals, petroleum, the total carbon, and nitrogen as well as harmful anions
such as chromium (VI) and cyanides, under the guidance established in 2011
as ISO 12404 on screening methods to be applied to soil monitoring.

4.3 Storing Spectra and Associated Soil Archives

The spectrum of a soil sample contains abundant information. Once
scanned, a spectrum can be stored easily. It is probable that, in the future,
soil scientists might be measuring some properties which at the present
time are not measured, because neither the knowledge nor appropriate
analytical techniques are available. The characteristics of the soils stored as
spectra will remain unaltered, while soil properties will change after a long
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storage. This is why soil spectral libraries should be accompanied with soil
banks that conserve the soil samples to be scanned or analyzed in the future.

4.4 Spectroscopy to Acquire Standardized Soil Information
and Enhance Monitoring

The implementation of soil spectroscopy could find valuable application in
the soil information system and would represent a great progress in the field
of soil analysis. For instance, soil classification can be realized by several
methods (Soil Survey Staft, 1999; TUSS Working Group WRB, 2006),
but the high costs for its implementation has hindered the collection of
this information. Soil spectroscopy can be applied for the classification of
soil types (Viscarra Rossel and Webster, 2012). Dematté and Terra (2014)
demonstrated the potential of spectroscopy for the evaluation of the changes
in soil type along topo-sequences, as a basic tool for soil mapping. Moreover,
Dematté et al. (2004) showed that soil spectroscopy can be used to map soil
types, as the basis for land-use planning.

At the same time, soil spectroscopy could be integrated and thus regulate
the use of fertilizers based on routine soil testing. For example, one of the
main problems of a reliable fertility status is the lack of knowledge of the
CEC and clay content of our soils. Indeed, those properties are the key to
compare samples to the regional reference system and deliver an appropriate
agronomic diagnosis. The determination of CEC and clay content using
standard procedures is not feasible for each soil sample as it is too costly
and time-consuming. An alternative is to predict them with Vis-NIR spec-
troscopy which represents thereby a real opportunity to improve the fertility
advice (Genot et al., 2011). In Wallonia, these analyses are routinely carried
out since 2008 in the laboratories of the http://www.requasud.be/. Another
example of soil spectroscopy application for routine analysis is the AfSIS.
They have adopted Vis-IR spectroscopy as its main screening tool in char-
acterizing 20,000 soil samples taken from a stratified random sampling frame
across Sub-Saharan Africa. There is a growing network of Vis-IR labora-
tories in Africa, with more than 10 laboratories established, including two
private sector soil testing companies.

Recently soil spectroscopy was reported as an accurate method to
monitor temporal changes in SOC of Danish soils (Deng et al., 2013). Basi-
cally, this study used topsoil (0—25 cm) samples from 1986 to 2009. Spectra
collected from both time series revealed that Vis-NIR spectroscopy could
soundly detect the SOC temporal decrease observed with wet chemistry,
but at much lower cost.
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In conclusion, given the adherence to a common protocol, spectro-
scopic analyses could both increase the reliability and the comparability
of the results and, at the same time, contribute to the construction of
the spectral libraries. The latter requires quality assessment/quality control
steps to be built in the database for the input of new spectra. Diffusing the
use of Vis-NIR and MIR spectrometers at all levels, especially farmers’
consortia and agriculture organizations, responsible for the soil analyses
of thousands of samples collected over large areas, could bring important
advantages. The long-term cost cuts from which these associations would
benefit will no doubt justify the investment in instruments. Many regional
laboratories already operate Vis-NIR spectrometers to infer soil properties.
This implies that the establishment of local and regional partnerships
among existent institutions will already generate enough competence
for the soil monitoring based on soil spectra. The development of this
kind of project requires the support of international organizations, such
as the Food and Agriculture Organization (FAO) of United Nations and
the European Commission’s JRC, and their acknowledgment of soil spec-
troscopy as a valuable tool to integrate the established techniques of soil
chemical analyses for the control of the state of soils (Clark and Roush,
1984).
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