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Abstract
Near infrared hyperspectral imaging with multivariate image analysis was evaluated for its potential to grade whole white maize
kernels. The study was based on grading regulations stipulated in South African legislation and aimed to provide an alternative to the
tedious and subjective manual methods currently used. The types of undesirable materials regarded were divided into 13 classes and
imaged using a hyperspectral imaging system (1118–2425 nm). Two approaches to data analysis, pixel-wise and object-wise, were
investigated using principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) modelling. Two-
way classification models distinguished sound white maize from each type of undesirable material and were validated with inde-
pendent image datasets. The pixel-wise PLS-DA demonstrated a high occurrence of errors (63–99% classification accuracy). The
object-wise PLS-DA models yielded superior results, achieving 100% classification accuracy in 8 of the 13 models, with the
remaining 5 incurring only one error each (98% classification accuracy). The overall classification accuracy achieved over the total
804 kernels/objects was 99.4%. Important spectral features were highlighted around 1219 and 1476 nm (associated with starch),
1941 nm (associated with moisture) and 2117 nm (associated with protein). An object-wise approach demonstrated good perfor-
mance for distinguishing between the sound maize class and common grading defects and provided a classification for single, whole
maize kernels, as would be conducted during the current manual grading methods. For industry implementation, this system may be
simplified to a multispectral system for reduced cost and higher throughput.
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Introduction

Maize, an important cereal crop, is a staple food throughout
Africa, and in many other parts of the world, such as Latin
America and Asia (Johnson 2000). Maize grading is a crucial
and critical process, as the grade has an influence on the pro-
duction and quality of the final product, and determines the
market value (Serna-Saldivar 2010). The main aim of grading
is thus to facilitate fair commercialisation of maize and to
provide information related to quality for further storage and
processing. This method is extremely labour intensive and can

be considered subjective as it is assumed that the appearance
of grain is related to chemical composition, functionality and
optimum end use (Serna-Saldivar 2010). The current grading
standards largely relate to storage issues rather than end-use
factors (Johnson 2000). In South Africa, a very simple manual
grading method is followed where a sample (150 g minimum)
is taken and both sides of each maize kernel are visually
inspected to detect any content other than sound (healthy)
white maize, such as defective grain or foreign material
(Department of Agriculture 2009). Undesirable materials,
within each defective category, are weighed and referenced
to maximum levels stipulated.

Considering the importance of accurately determining
maize grade, an objective method must be developed that will
recognise a wide range of defective and foreign materials im-
portant to farmers, traders and millers. Spectral imaging has
been identified as a potential alternative to the current visual
inspection methods (Gowen et al. 2007; Amigo et al. 2013).
Hyperspectral imaging has been used in many food and agri-
cultural applications, including studies on a wide range of
cereal commodities and properties (Caporaso et al. 2018a;

* Paul J. Williams
pauljw@sun.ac.za

1 Department of Food Science, Stellenbosch University Private Bag
X1, Stellenbosch 7602, South Africa

2 Food and Feed Quality Unit, Valorisation of Agricultural Products
Department, Walloon Agricultural Research Centre (CRA-W),
Gembloux, Belgium

Food Analytical Methods
https://doi.org/10.1007/s12161-019-01464-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s12161-019-01464-0&domain=pdf
http://orcid.org/0000-0002-6014-2049
mailto:pauljw@sun.ac.za


Sendin et al. 2018b). These include numerous studies of
maize, including hardness prediction (McGoverin and
Manley 2012; Manley et al. 2011; Williams et al. 2009),
chemical content prediction (Cogdill et al. 2004; Weinstock
et al. 2006; Vermeulen et al. 2017b), variety identification
(Wang et al. 2015) and fungal detection (Del Fiore et al.
2010; Williams et al. 2012; Vermeulen et al. 2017a). It has
also been applied in the quality and safety evaluation of wheat
(Mahesh et al. 2015; Manley et al. 2011; Singh et al. 2010),
rice (Del Fiore et al. 2010; Wang et al. 2014), fonio (Baeten
et al. 2010) and sorghum and barley (McGoverin et al. 2011).

Spectral imaging integrates conventional imaging and spec-
troscopy to attain both spatial and spectral information from the
sample (Gowen et al. 2007; Dale et al. 2013). A spectral image
comprises numerous adjacent wavelengths for each spatial point
of the object, where each pixel in the image contains the spectrum
at that exact point, in turn giving an indication of the chemical
composition for each pixel in the image (Burger and Geladi
2006).It is thushighlysuitedforthestudyofcerealproducts,which
showhigh variability in physical properties and chemical compo-
sitionwithinandbetweenkernels.Multispectral imagingconduct-
ed using a commercial instrument operating predominantly in the
visible range (19 spectral points ranging 375–970 nm) has been
used to classify the samemaizegradingcategorieswithpromising
results (Sendin et al. 2018a). Of the 13 classes of undesirable ma-
terial, 8 were classified perfectly (100%) using an object-wise
approach, with classification accuracies of the remaining classes
ranging83 to97%.However, thenear infrared region shouldhave
superior capability to the visible region for detecting chemical
differences in biomaterials, such as maize, due to the interaction
with major X–H bonds (e.g. O–H, C–H and N–H). Furthermore,
the spectral resolution offered by hyperspectral imaging in com-
parison with other forms of spectral imaging (i.e. multispectral
imaging) allows formore in-depth investigation during data anal-
ysiswhichcould lead tomoreaccurateclassificationresults innew
researchapplications,where thebest separationbetweenclasses is
achieved at specificwavelengths.Once this in-depth investigation
hasbeenconductedusinghyperspectral imaging, onemaychoose
to revert to a custom-built multispectral system utilising a handful
of themost significant wavelengths for the specific application.

In hyperspectral image analysis, all pixels in an image are
typically considered individually. Some applications are better
suited for an object-wise approach as first proposed by Burger
and Geladi (2006) and later enhanced by Kucheryavskiy
(2013). In this approach, the average spectrum of all pixels
in an object, such as a kernel, is used duringmodelling. This is
an appropriate approach when emulating manual grading, as
whole maize kernels must be identified as either sound or
defective, and each kernel should thus be observed as the
lowest unit of measurement. The advantages of this approach
have been demonstrated in both quantification (Caporaso et al.
2018b) and classification (Williams and Kucheryavskiy 2016)
applications.

The aim of this study was to evaluate the capability of NIR
hyperspectral imaging and determine the key wavebands for
separating sound white maize kernels from common undesir-
able material types encountered in the South African maize
industry. Two approaches to data analysis, namely pixel-wise
and object-wise data analysis, were utilised and compared.

Materials and Methods

Samples

Maize kernels and undesirable materials were obtained from
the Southern African Grain Laboratory (SAGL, Pretoria,
South Africa) and were graded visually by expert graders
according to South African grading regulations (Act, 2009).
Of the 19 defects stipulated in the grading regulation, 13 were
evaluated during this study since these were prevalent during
the 2015 season. The graders provided all defected kernels,
which resulted in 30 kernels per class to be included for both
unique calibration and validation sample sets (60 of each class
in total), with two exceptions, where 24 pinked kernels were
used in each set due to limited availability and 60 screenings
(i.e. broken kernels) pieces due to their small size.
Subsequently, ca. 1560 samples were used in total (13 two-
way analyses of 30 sound and 30 defect kernels plus indepen-
dent validation sets). These 13 most prolific undesirable ma-
terials were distinguished as defective classes from the sound
maize class (Fig. 1). Classes included defective white maize
(heat damage, water damage, rodent damage, screenings/
broken kernels, Fusarium fungal damage andDiplodia fungal
damage); pinked white maize; other colour maize (i.e. yellow
maize); and foreign matter (wheat, soy, sunflower seeds, sor-
ghum and maize plant material).

NIR Hyperspectral System

Hyperspectral images were acquired using a Burgermetrics
SIA system (Riga, Latvia) installed at the Walloon
Agricultural Research Center (CRA-W, Belgium) that utilised
a Xenics short wave infrared (SWIR) XEVA camera with an
ImSpector N25E spectrograph and mercury–cadmium–tellu-
ride (HgCdTe) detector (SPECIM Ltd., Oulu, Finland). The
samples were carried on a conveyer belt at a speed of 1.2 mm/
s, during image acquisition on the pushbroom instrument. The
system was controlled with the HyperPro software
(BurgerMetrics SIA, Riga, Latvia). Individual images were
acquired within a spectral range of 1118 to 2425 nm with
6.3 nm spectral resolution between the 209 spectral points.
The frame rate was 100 Hz and the exposure time ranged from
0.8 to 1.2 ms. The exposure time was adjusted according to a
pre-defined profile in order to be within the limits to acquire a
correct image. This changed as light intensity varied with
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time. Images were 320 pixels wide, with a varying length of
ca. 400 pixels. White and dark references were captured prior
to each sample image and were subsequently used for image
correction and calibration. A 100% reflectance standard
(white ceramic tile) was used for the white reference, and
the shutter was closed for the dark.

Image Acquisition

For the calibration set, images of each of the 13 undesirable
material classes and the sound maize kernels were captured.
These data sets consisted of 30 kernels/objects of a single
class, with the exception of pinked kernels (24 kernels) and
screenings (60 small pieces). To accurately emulate current
grading practices, the classes of maize kernels (sound maize,
Fusarium damage, Diplodia damage, water damage, heat
damage, rodent damage and yellow maize) were first imaged
with the kernels’ germ facing upwards (toward the camera)
and a second time with the germ facing downwards (away
from the camera). Thus, the germ-up and germ-down oriented
versions of the images consisted of the same kernels in the
same positions. The foreign matter classes (plant material,
wheat, sorghum, soy and sunflower seeds) were only imaged
once, as the foreign matter often had no obvious germ. The
independent validation image datasets were acquired in the
samemanner on new sets of kernels and objects (same number
as in calibration set) for each of the 13 undesirable material
classes.

Hyperspectral Image Analysis

Image correction, segmentation, spectral information extrac-
tion and multivariate data analysis were carried out using the
Evince v.2.7.0 (Prediktera, Umeå, Sweden) spectral image
analysis software package. The germ-up and germ-down im-
ages for each two-way analysis pair (sound kernels and

undesirable materials) were mosaicked, to give a single image
dataset containing a mosaic of four images. Each image mo-
saic was analysed individually.

Principal Component Analysis

The image calibration and correction from reflectance to
pseudo-absorbance was done automatically in the Evince soft-
ware package according to Eq. 1.

Iλ;n ¼ −log10
Sλ;n−Bλ;n

Wλ;n−Bλ;n

� �� �
ð1Þ

where

n = pixel index variable (n = 1…N) of the reorganised
hypercube

Iλ, n = standardised absorbance intensity, pixel n,
at wavelength λ

Sλ, n = Sample image, pixel n, at wavelength λ
Bλ, n = dark reference image, pixel n, at wavelength λ
Wλ, n = white reference image, pixel n, at wavelength λ

The mean-centred absorbance mosaic images were unfold-
ed, whereby the three-dimensional spectral hypercube was
unfolded to a two-dimensional matrix, with rows correspond-
ing to pixels and columns to wavebands. Principal component
analysis (PCA) was applied, and the spectral data from each
pixel was decomposed into matrices of scores (T) and load-
ings (P). The score matrix for each principal component (PC)
was refolded to give a score image, which visualises the main
source of variation accounted by respective PCs by shading
pixels with closely related spectral responses similarly. A
score plot was also generated, where similar pixels are plotted
close together, often referred to as clusters.

Image segmentation was performed to remove the back-
ground (i.e. conveyor belt without material), leaving only
the sample data (white maize kernels and undesirable

Fig. 1 Digital image of (a) sound
white maize and the 13 undesir-
able materials, i.e. (b) Fusarium
damage, (c) Diplodia damage, (d)
pinked maize, (e) water damage,
(f) rodent damage, (g) heat dam-
age, (h) plant material, (i) screen-
ings, (j) wheat, (k) sorghum, (l)
soy, (m) sunflower and (n) yellow
maize
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materials). The score images and score plots of PC1 to PC3
were used to find pixels associated with either the sample or
the background. Furthermore, other unwanted pixels, e.g. out-
liers, dead pixels, shading errors and edge effects were iden-
tified. All unwanted pixels were subsequently removed from
the dataset (Esbensen and Geladi 1989). The cleaned images
were used in subsequent analysis.

PCAwas recalculated with additional components (up to 6)
to examine the qualitative difference between sound white
maize and the various undesirable material classes. Data were
analysed with both pixel-wise and object-wise approaches,
where the average spectrum for all pixels in each kernel was
calculated as the basis for classification in the object-wise
approach, and PCA (and later PLS-DA) were applied to the
averaged spectra (Kucheryavskiy 2013). Pre-treatments were
evaluated using the cross-validated coefficient of determina-
tion (Q2) and visual inspection of the score image and score
plot. Pre-treatments yielding the highest Q2 and best separa-
tion in the score plots were selected for further analyses.
Savitzky-Golay transformation (2nd order polynomial, 1st de-
rivative, 15 points) and standard normal variate (SNV) trans-
formation were applied to the data (Barnes et al. 1989;
Savitzky and Golay 1964). In addition, the noisy wavelengths
2218 to 2425 nm were removed.

Partial Least Squares Discriminant Analysis

Partial least squares discriminant analysis (PLS-DA) models
were calculated to distinguish between two classes, namely
sound and each of the respective undesirable materials. As
the purpose of this study is to distinguish sound maize from
defective kernels of each of the 13 different categories, it is
regarded as a discrimination problem, not an authentication
one. PLS-DA is a technique for dimension reduction and dis-
crimination based on conventional PLS regression; however,
class membership is to be predicted (Barker and Rayens
2003). A binary dummymatrix (Y) of the two classes, namely
sound class and undesirable material class, is related to the
calibration set spectral data (X). PLS is calculated, and the
validation set is tested by assigning class membership. Pixel-
wise and object-wise PLS-DA models were calculated on the
calibration image data, with partial even spread cross-
validation for the pixel-wise models, as the number of pixels
was large, and full cross-validation for the object-wise models.
The mean spectrum of all the pixels in a kernel was used to
obtain an object during object-wise analyses. The PLS-DA
models were applied to the independent validation image
dataset, pixels or objects were predicted, and a classification
image was generated. The pixels or objects were shaded as
blue (predicted as sound) or green (predicted as undesirable
material), and this image was referred to as the unaltered clas-
sification image in later sections.

External validation of the germ-up and germ-down image
pairs was conducted to determine each kernel’s overall classi-
fication, according to Table 1. For food safety reasons, if any
kernel is classified as undesirable on either one or two sides, it
is immediately flagged as an undesirable material. Once the
unaltered classification image was generated, the correct and
incorrect classifications were totalled with reference to the
kernels’ true classes (as determined by expert graders). The
kernels were shaded according to correct and incorrect classi-
fications, and this image was referred to as the overall classi-
fication image. A correctly classified sound kernel corre-
sponds to a true negative, and a correctly classified undesir-
able material corresponds to a true positive. Conversely, a
false positive occurred when a sound kernel was incorrectly
classified as undesirable material, and a false negative was
when an undesirable material was incorrectly classified sound.

All correct overall classifications (true positives and true
negatives) formed part of the correct classification accuracy
(%). Incorrect classifications were either false positives or
false negatives, forming part of the false positive error (%)
or false negative error (%), respectively. Classification accu-
racy, false positive error and false negative error were calcu-
lated according to Eqs. 2, 3 and 4, respectively.

Classification accuracy %ð Þ

¼ Correct defectþ correct sound

Total
� 100% ð2Þ

False positive error %ð Þ ¼ False positives

Total
� 100% ð3Þ

False negative error %ð Þ ¼ False negatives

Total
� 100% ð4Þ

where

Correct
defect

= correctly classified class ‘defect’ kernels

Correct
sound

= correctly classified class ‘sound’ kernels

False
positives

= ‘sound’ class kernels incorrectly classified
‘defect’ class

False
negatives

= ‘defect’ class kernels incorrectly classified
‘sound’ class

Total = sum of ‘defect’ and ‘sound’ kernels

Sensitivity and specificity were calculated according to
Eqs. 5 and 6, respectively. The sensitivity describes the prob-
ability that undesirable materials will be detected and correctly
classified and is sometimes described as the true positive rate.
Specificity is the probability that a sound kernel will be clas-
sified correctly, also known as the true negative rate.

Sensitivity %ð Þ ¼ Correct defect

Total defect
� 100% ð5Þ
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Specificity %ð Þ ¼ Correct sound

Total sound
� 100% ð6Þ

where

Correct defect = correctly classified class ‘defect’ kernels
Correct sound = correctly classified class ‘sound’ kernels
Total defect = total ‘defect’ kernels

(correct defect + false negatives)
Total sound = total ‘sound’ kernels

(correct sound + false positives)

Results and Discussion

Spectral Analysis

The raw average pseudo-absorbance spectra (1118 to
2211 nm) of the sound white maize, defective white maize
and pinked white maize classes are given in Fig. 2, and sound
white maize, yellow maize and the foreign matter classes are
shown in Fig. 3. The spectra of the classes tend to follow a
similar shape. The only exception was the first section of the
sunflower seeds’ spectrum. This is likely due to the seed being
contained within an outer black husk through which the NIR
wavelengths could not fully penetrate (Pérez-Vich et al. 1998).
Thus, information regarding the absorption characteristics of
the husk were measured and not the inner sunflower seed. The
outer husk, comprising mostly of cellulose (ca. 48%), hemi-
cellulose (ca. 35%) and lignin (ca. 17%), has a very different
chemical signature to the other starch-rich cereal commodities
(Demirbaş 2002).

The differences in intensity exhibited between the spectra
of the classes cannot be solely attributed to the internal chem-
ical composition of the kernels directly. Instead, physical ef-
fects such as scattering likely contributed substantially to the
varying intensities. Furthermore, direct interpretation of het-
erogeneous samples like whole maize kernels are difficult, as
the spectra contain the combined information from all kernel
components. However, general trends were observed. Four

main absorption bands in the spectra of the 14 classes were
exhibited around 1219, 1476, 1941 and 2117 nm. The peaks at
1219 (C–H stretch, second overtone) and 1476 nm (O–H
stretch, first overtone) indicate variation in the starch compo-
sition of the endosperm (Delwiche and Hareland 2004;
Manley et al. 2009). The broad peak around 1476 nm also
has a contribution from moisture at approximately 1430 nm.
A clear moisture peak was apparent due to an O–H stretch
around 1941 nm (Manley et al. 2009) and the peak present
around 2117 nm relates to amino acids (N–H stretch, first
overtone), and thus protein content (Fernández-Ibañez et al.
2009).

Multivariate Data Analysis

Principal Component Analysis

The class heat damage and screenings (broken kernels) vs.
sound class are used to illustrate the PCA results, as given in
Figs. 4 and 5 for the pixel-wise analyses and Figs. 6 and 7 for
the object-wise analyses. Note that the score plots (a) are
shaded according to density of points, while the score images
(b) are shaded according to scores value, where blue is nega-
tive and red is positive.

During the pixel-wise PCA analyses, the spectrum from
each pixel in the cleaned image is included during modelling.
The PC1 vs. PC2 score plot showed amajor overlap of the two
classes, where the two semi-defined clusters did not relate to
the two classes but were uniformly associated with both (Figs.
4a and 5a). The variance accounted by PC1 (ca. 80% SS) was
likely due to variation within the kernels and their anatomical
kernel components. The cluster to the left of the PC score plot
(Figs. 4a and 5a) is associated with negative scores in PC1 and
is related to the pixels shaded in blue and green tones on the
PC1 score images (Figs. 4b and 5b). These regions of the
kernel are anatomically known as the soft (inner regions)
and hard endosperm (outer regions) (Fox and Manley 2009).
These parts of the kernel consist mainly of starch. The cluster
to the right of the PC score plot is associated with positive
scores in PC1, and these pixels are shown in red and known as

Table 1 Method used to determine the classification result of a kernel/object

True class Germ-up Germ-down Overall Result

Sound (negative result) Sound Sound Sound ✓ True negative

Sound Defect Defect ✗ False positive

Defect Sound Defect ✗ False positive

Defect Defect Defect ✗ False positive

Defect (positive result) Sound Sound Sound ✗ False negative

Sound Defect Defect ✓ True positive

Defect Sound Defect ✓ True positive

Defect Defect Defect ✓ True positive
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the germ, which has higher lipid content. Thus, the clusters
that appeared in the direction of PC1 in the score plots were
found to correspond with the differences in chemical content
of the anatomical components of the kernels regardless of the
kernel’s class. Furthermore, there is an observable difference
in overall shading of the germ-up and germ-down images
(Figs. 4b and 5b), again exhibiting variation attributed to an-
atomical differences and not difference between classes. For
the maize classes heat damage (Fig. 4), water damage, rodent
damage, yellowmaize, screenings (Fig. 5),Fusarium damage,
Diplodia damage and pinked kernels, the majority of variance

in PC2 continued to arise from within individual kernels as
opposed to between the classes. PC3 (not shown) accounted
for the difference in germ orientation, where a cluster ap-
peared in the score plot related to the large germ appearing
on the germ-up oriented kernels. The foreign matter classes
exhibited differences between the two classes in the initial
PCs.Wheat, sorghum and soy exhibited similar variancewith-
in kernels in PC1, but exhibited clear separation of classes
from PC2 onward. This was likely due to less similarity be-
tween chemical components of these cereal commodities.
Sunflower seeds (which included the outer husk) and plant

Fig. 3 Unprocessed average absorbance NIR spectra for sound white maize; yellow maize; and foreign matter (sunflower seeds, sorghum, wheat, plant
material and soy)

Fig. 2 Unprocessed average absorbance NIR spectra for sound white maize; white maize defects (heat damage, rodent damage,Diplodia damage, water
damage, screenings and Fusarium damage); and pinked white maize
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material had extremely different chemical surface characteris-
tics to maize, likely due to their high cellulose contents, and
thus were clearly separated from sound maize in PC1. This
type of separation should have ideally occurred in more of the
13 analyses, but was prevented due to similarities between
classes. Overall, the overwhelming lack of separation between
sound maize and most undesirable materials emphasises the
need to investigate an object-wise approach, where these in-
ternal variances were excluded by averaging the spectra of all
individual pixel spectra in a single kernel.

The object-wise PCA analyses revealed distinctions in the
score plot between the classes in PC1 that were not seen in the
pixel-wise results. The PC1 vs. PC2 score plots (Figs. 6a and
7a) of most classes show a clear separation of scores between
the sound (green) and undesirable material (blue) objects. It
seems that by eliminating the variation within the kernels and

their anatomical kernel components through the calculation of
average spectra, the more subtle overall variation between the
classes may be expressed in the earlier PCs during object-wise
analysis. Generally, the points on the score plots were separat-
ed predominantly in the direction of PC1, as illustrated by heat
damage (Fig. 6) and screenings (Fig. 7a). PC1 accounted for
the differences between the two classes, while the variance
explained in PC2 may relate to intra-class separation, such
as endosperm hardness effects (Manley et al. 2009).

All analyses projected the sound class with negative scores
and the undesirable material class with positive scores.
Although assigned arbitrarily, scores values indicate which
class will be associated with high absorbance of wavelengths
with either positive or negative loadings. The loading line
plots of PC1 and PC2 (Figs. 4c, 5c, 6c, 7c and 4d, 5d, 6d,
7d) were similar throughout the classes in both the pixel-wise

Fig. 4 Pixel-wise PCA analysis of heat damage class vs. sound class
(Savitzky-Golay (2nd order polynomial, 1st derivative, 15 points) and
SNV transformations). Scores given as a PCA score plot of PC1
(72.8% SS) vs. PC2 (10.9% SS) and b PCA score image (PC1).

Loading line plots given for c PC1 and d PC2. SS, sum of squares;
SNV, standard normal variate; PCA, principal component analysis; PC,
principal component

Fig. 5 Pixel-wise PCA analysis of screenings class vs. sound class
(Savitzky-Golay (2nd order polynomial, 1st derivative, 15 points) and
SNV transformations). Scores given as a PCA score plot of PC1

(72.8% SS) vs. PC2 (10.6% SS) and b PCA score image (PC1).
Loading line plots given for c PC1 and d PC2
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and object-wise results. Prominent positive bands were ob-
served in PC1 at 1231, 1275 and 1910 nm, and thus associated
with the positive scores of the undesirable materials, and neg-
ative loadings at 2045 nm, and 1162, 1388, 1966 and
2180 nm, associated with the negative scores of the sound
class. As the first derivative was calculated with the Savitzky-
Golay smoothing transformation, the original sharp single peaks
observed in the spectral analysis were split into two peaks, one
positive and one negative. The first derivative spectrumwill cross
zero at the original (raw) spectrum’s maximum, with the two
peaks either side exhibiting maxima where the original peak
had its maximum gradients (Brereton 2003). The negative and
positive pairs at ca. 1162 and 1275 nm, respectively, are likely
related to the C–H stretch second overtone for starch originally
identified at ca. 1219 nm. Furthermore, there is a second unre-
solved positive peak between the two at ca. 1231 nm which
could be paired with the negative peak at 1388 nm. This is likely

also related to a C–H stretch second overtone absorption by
similar groups (Osborne and Fearn 1986). Although there is a
slight shoulder in this region on the original spectrum (ca.
1370 nm), it remained unresolved and overshadowed by other
major bands. This emphasises the importance of inspecting both
the original spectrum and loadings for keywavebands. Themois-
ture band at ca. 1941 nm was split into the positive and negative
pair at ca.1910 and 1966, respectively, while the pair at 2045 and
2180 nm is likely related to the N–H stretch first overtone related
to amino acids originally at ca. 2117 nm. The last prominent peak
identified in the spectral analysis was an O–H stretch first over-
tone related to starch at ca. 1476 nm; however, the bands
appearing in the loadings at ca. 1439 and 1520 nm may be
considered minor due to relatively lower loading value. This
indicates that, despite starch content resulting in high absorbance,
there was little difference between the samples. This band was
thus not a strong driver in the separation during PCA.

Fig. 6 Object-wise PCA analysis of heat damage class vs. sound class
(Savitzky-Golay (2nd order polynomial, 1st derivative, 15 points) and
SNV transformations). a PCA score plot of PC1 (75% SS) vs. PC2

(9.9% SS). b Classes of sound (green) and heat damaged (blue) objects.
Loading line plots given for c PC1 and d PC2

Fig. 7 Object-wise PCA analysis of screenings class vs. sound class
(Savitzky-Golay (2nd order polynomial, 1st derivative, 15 points) and
SNV transformations). a PCA score plot of PC1 (46.7% SS) vs. PC2

(25.2% SS). b Classes of sound (green) and screenings (blue) objects.
Loading line plots given for c PC1 and d PC2
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The loadings of PC2 show prominent bands at very similar
points to PC1. Notably, the unresolved positive peaks around
1256 nm in PC1 separated into negative and positive peaks at
ca. 1231 and 1275 nm, respectively. Somewavebands showed
inverted loading values (positive changing to negative and
vice versa). However, as the loading value is allocated arbi-
trarily, this does not greatly affect how these results should be
interpreted and only indicates that in PC2 the absorbance of
the waveband is associated with scores of opposite value to
PC1.

Partial Least Squares Discriminant Analysis

PLS-DAwas selected to determine class membership to each
of the pre-defined 13 defective categories. The classification
accuracy, false positive error and false negative error demon-
strate the classification performance of the models when ap-
plied to an independent validation image dataset. The classi-
fications by pixel-wise PLS-DA exhibited a large incidence of
errors, with classification accuracy results varying widely be-
tween 63% (pinked white maize) and 99.7% (sunflower
seeds) (Table 2). All object-wise PLS-DA models performed
well (Table 3) with 8 of the 13 analyses achieving 100%
classification accuracy, includingDiplodia damage, heat dam-
age, screenings, plant material, wheat, sorghum, soy and sun-
flower. The 5 remaining classes only predicted one kernel
incorrectly. The classes with one false positive (sound kernel
incorrectly classified as undesirable material) include
Fusarium damage and yellow maize, and the classes with
one false negative (undesirablematerial not detected) included
water damage, rodent damage and pinked white maize
kernels.

The pixel-wise PLS-DA score plots for PLS factors 1 vs. 2
for yellow maize and screenings vs. sound class are given in

Figs. 8a and 9a. The score plots were indicative of the limited
classification abilities of the models. Although the plots ex-
hibit slightly clearer separations of class’s pixels than in the
pixel-wise PCA results, there was an overlap between major-
ity of the points. Some separation was apparent, notably in the
screenings class (Fig. 9a). In general, the separation occurred
in the directions of both PLS factors 1 and 2, where the sound
class was associated with the positive scores of both factors
and the undesirable material class with the negative scores.

The considerable overlap of points, thus representing pixels
with very similar spectral information between both classes,
throughout the PLS-DA score plots was accompanied by a
large number of pixels being incorrectly classified, as seen
in the pixel-wise classification images (Figs. 8b and 9b). In
the pixel-wise classification images, pixels cannot be related
back to an exact location between sets of images in the same
manner one would compare whole kernels. It was thus not
possible to compare the outcomes of the germ-up and germ-
down image pairs pixel by pixel. For these analyses, the re-
sults of correct and incorrect predictions were simply aver-
aged for the sum of all pixels in the image pair. The large
number of errors tended to arise in regions of the kernel that
were very similar in both classes. Figure 8b demonstrates that
the model appears to be unexpectedly strongly calibrated for
classifying the kernel components as opposed to the classes,
despite the use of a supervised method such as PLS-DA. The
sound class seems to be associated with correct classification
of the hard endosperm and the germ, and the soft endosperm is
often misclassified. The inverse occurred for the yellowmaize
class, where the hard endosperm and germ were often
misclassified as sound. The model was predicting endosperm
hardness as opposed towhite and yellowmaize. Unlike wheat,
which generally consists of one endosperm type, maize con-
tains both vitreous and floury endosperm in a single kernel. A

Table 2 Results of pixel-wise PLS-DA models for the separation of sound white maize class from 13 undesirable material classes

Undesirable material PLS factors Classification accuracy (%) False negatives (%) False positives (%) Sensitivity (%) Specificity (%)

Fusarium damage 5 82.67 9.35 7.97 84.38 86.07

Diplodia damage 5 85.22 7.83 6.95 80.04 84.99

Water damage 4 78.78 13.17 8.05 92.45 89.19

Rodent damage 3 82.95 6.13 10.92 74.64 83.26

Heat damage 4 90.72 3.54 5.74 71.99 86.02

Screenings 3 91.58 2.85 5.57 88.77 92.54

Pinked maize 4 62.94 14.23 22.83 40.91 69.93

Yellow maize 4 75.32 9.02 15.65 90.17 96.20

Plant material 2 86.86 6.43 6.71 98.49 99.63

Wheat 4 90.87 2.09 7.04 2.38 92.80

Sorghum 5 96.04 0.26 3.70 68.68 92.80

Soy 3 99.46 0.23 0.31 83.17 89.15

Sunflower 2 99.65 0.00 0.35 77.85 73.59
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kernel is not only hard or only soft, and hardness is classified
by the ratio of the two as soft, intermediate and hard (Manley
et al. 2009; Sendin et al. 2018b). Similar outcomes occurred in
the remaining analyses, due to either substantial variation
within a kernel’s components (such as endosperm hardness)
which were more distinct than differences between classes, or
when a defect did not invade all particular regions of a kernel
and leaving particular regions seemingly sound and thus sim-
ilar in both classes. The classification of wheat was the poorest
outcome of all analyses. The classification accuracy was not
as severely affected (90.87%) as the much smaller wheat

kernels contributed very few pixels toward the averaged value
relative to the large maize kernels. However, the incredibly
low sensitivity of the model (2.38%) reveals how poorly suit-
ed the model was for the prediction of wheat content in a
maize sample. The similarities in chemical composition be-
tween maize and wheat (e.g. high starch content) could have
affected the separation of the two commodities in the NIR
region and could potentially be better predicted based on dif-
ferences in the visible region.

The broad range of classification accuracies (63–99%),
sensitivity (2–98%) and specificity (70–99%) (Table 2)

Fig. 8 Pixel-wise PLS-DA classification of yellow maize class vs. sound class (90.72% classification accuracy). a PLS-DA score plot of PLS factor 1
(81.4% SS) vs. 2 (7.37% SS). b Classification image

Table 3 Results of object-wise PLS-DA models for the separation of sound white maize class from 13 undesirable material classes

Undesirable material PLS factors Classification accuracy (%) False negatives (%) False positives (%) Sensitivity (%) Specificity (%)

Fusarium damage 5 98.33 0.00 1.67 100.00 96.67

Diplodia damage 5 100.00 0.00 0.00 100.00 100.00

Water damage 4 98.33 1.67 0.00 96.67 100.00

Rodent damage 3 98.33 1.67 0.00 96.67 100.00

Heat damage 4 100.00 0.00 0.00 100.00 100.00

Screenings 3 100.00 0.00 0.00 100.00 100.00

Pinked maize 4 98.15 1.85 0.00 95.83 100.00

Yellow maize 4 98.33 0.00 1.67 100.00 96.67

Plant material 2 100.00 0.00 0.00 100.00 100.00

Wheat 4 100.00 0.00 0.00 100.00 100.00

Sorghum 5 100.00 0.00 0.00 100.00 100.00

Soy 3 100.00 0.00 0.00 100.00 100.00

Sunflower 2 100.00 0.00 0.00 100.00 100.00
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demonstrates the difficulty of differentiating between classes
when there is a large overlap of pixels with similar chemical
composition. The only class with an exceptionally high clas-
sification accuracy was sunflower seeds (99.65%), most likely
due to the complete difference in spectral information because
of the chemical composition of the cellulose-rich sunflower
seed husks versus the starchy maize kernels.

The object-wise PLS-DA score plots for yellow maize and
screenings vs. sound class are given in Figs. 10a and 11a. The
score plots demonstrate little overlap between the classes, in-
dicating improved model calibration. The score plot of the
screening class (Fig. 11a) exhibited the most striking separa-
tion, with two tightly arranged clusters on either side of the
PLS factor 1 axis. There was little separation in the direction
of PLS factor 2. Similarly, the foreign matter classes (wheat,

soy, sorghum, sunflower and plant material) and yellowmaize
exhibited the majority of separation in the direction of PLS
factor 1, while the spread across PLS factor 2 was generally
intra-class separation. The remaining maize classes, demon-
strated by yellow maize (Fig. 10a), tended to show separation
occurring in the direction of both PLS factors 1 and 2.

The object-wise PLS-DA analyses yielded promising re-
sults and clearly demonstrated the advantages of using an
object as the lowest unit of measurement. The majority of
classes were predicted perfectly, and no more than one error
per two-way classification occurred in the remaining analyses.
The yellowmaize class (Fig. 10) demonstrated the importance
of capturing images of the kernels in both the germ-up and
germ-down orientation. In the germ-up image, 2 of the 30
pinked kernels were misclassified. However, when the kernels

Fig. 9 Pixel-wise PLS-DA classification of screenings class vs. sound class (91.58% classification accuracy). a PLS-DA score plot of PLS factor 1 (64%
SS) vs. 2 (14% SS). b Classification image

Fig. 10 Object-wise PLS-DA classification of yellow maize class vs.
sound class (100% classification accuracy). a PLS-DA score plot of
PLS factor 1 (79.3% SS) vs. 2 (11.5% SS), b unaltered classification

image (predictions only) and c overall classification image (predictions
evaluated according to correct class)
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were turned over, the 2 previously misclassified kernels were
correctly identified as defective, while 2 different kernels were
misclassified. Thus, all 30 kernels were flagged as undesirable
on at least one side and no false negatives occurred. Similar
instances occurred during the analysis of the Diplodia and
pinked maize classes.

The sensitivity and specificity were all above 95%, with
classification accuracies ranging 98–100%. Overall, the sen-
sitivity and specificity of the object-wise models were consid-
erably higher than their pixel-wise counterparts. This demon-
strates the ability of an object-wise approach to see beyond the
noise of class overlap and find meaningful differences be-
tween two classes for the purpose of classification.

Conclusion

Hyperspectral imaging was successfully used to separate sound
white maize from the 13 major classes of undesirable materials
encountered during industry grading practices. The pixel-wise
PCAresultswere influencedby largeheterogeneityof thekernels,
which overshadowed the less prominent differences in spectral
informationbetween the closely related classes. Themain sources
of variancewere due to differenceswithin the kernels (the various
anatomicalkernelcomponents)andnotduetodifferencesbetween
the classes. The pixel-wise PLS-DA analyses yielded classifica-
tions that were not sufficiently accurate for industry implementa-
tion. They included a large number of errors with classification
accuraciesranging63–99.7%.Theobject-wiseapproacheliminat-
edanypossibilityofdetectingvariancewithinakernelbyusingthe
whole kernel as the smallest unit of measurement. By calculating
an average spectrum per kernel, the object-wise PCA analysis
achieved reasonable separation of the classes. The object-wise
PLS-DA analyses were successful in achieving accurate classifi-
cation of both classes. Of the 13 two-way analyses (ca. 30

validation objects per class), 8 achieved perfect results, and the
remaining 5 analyses contained only 1 error each per analysis of
ca. 60 kernels (1.6% error). Thus, of the 804 kernels/objects im-
aged,799werecorrectly classified,givinganoverall classification
accuracy of 99.4%. As the models were independently validated,
the results have demonstrated the accuracy of the model calibra-
tions.Hyperspectral imaging pairedwith object-wisemultivariate
data analysiswas shown tobehighly suitable for separating sound
whitemaize from commonundesirablematerials and has a prom-
ising future in cereal grading applications. For continued routine
analysis in this application, the wavelengths 1219 and 1476 nm
(associated with starch), 1941 nm (associated with moisture) and
2117 nm (associated with protein) are suggested for developing a
rapidmultispectral instrument.
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