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Summary — The biochemical nature of leaf litter is a key factor in regulation of its decomposition.
Conventional wet chemical analysis of samples is destructive, time-consuming and expensive. The
objective of this study was to evaluate the potentiality of near infrared reflectance spectroscopy
(NIRS) for determining litter chemistry during the decomposition process using a wide range of spe-
cies and decomposition stages. The litter of 8 species of evergreen and deciduous broad-leaved
trees, conifers and shrubs were used in both laboratory and field experiments. Near-infrared reflec-
tance measurements were made with an NIRS Systems 5000 spectrophotometer over the range
1100-2500 nm. Calibration samples were analysed for ash, carbon and nitrogen. Acid-detergent fi-
ber (ADF) and acid-detergent lignin (ADL) were determined using Van Soest procedures. Stepwise
regression (SR) calibrations and partial least squares (PLSR) calibrations were developed and com-
pared as well as the effect of scatter correction. The PLS algorithm was used to create the predictive
models using all the information in the spectrum to determine the chemical concentration. Using
scatter correction always gave better results. Both regression methods provided acceptable valida-
tion statistics for C, N and ash. The PLSR had better prediction accuracy for ADF and ADL. For
these two constituents, the improvement of SECV was 34 and 25% respectively. Our results showed
that NIRS is an effective tool to predict nitrogen, ash and proximate carbon fractions in decomposi-
tion studies and that PSLR method improves calibration compared with SR method.
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Résumé — Utilisation de la spectroscopie proche infrarouge dans les études de décomposi-
tion de litieres. La composition biochimique des litiéres est un des facteurs clés de la régulation de
leur décomposition. Les méthodes d'analyse chimique par voie humide sont destructives, longues et
codteuses et ces contraintes sont rapidement limitantes dans les études en milieux hétérogénes et
plurispécifiques, comme le sont les milieux forestiers spontanés méditerranéens. L'objectif de cette
étude est d'évaluer les potentialités de la spectrométrie de réflexion dans le proche infrarouge
(SPIR) pour I'étude et le suivi de la décomposition des litiéres forestiéres. Les échantillons utilisés
proviennent d'expériences menées sur le terrain et en laboratoire sur 8 espéces méditerranéennes :
feuillus caducifoliés et sempervirents, et résineux. Les spectres des litiéres, obtenues a différents
stades de décomposition, ont été enregistrés entre 1100 et 2500 nm avec un spectrophotométre
NIRS 5000. Un tiers des échantillons a été analysé par voie humide : cendres totales, carbone,
azote, ligno-cellulose et lignine (ADF et ADL méthode Van Soest). A partir de ces analyses, des mo-
déles prédictifs de concentration de chaque composé chimigue ont été établis, avec et sans correc-



482 R Joffre et al

tion de tendance, par deux méthodes de régression : i) régression muitiple pas a pas (stepwise) et ii)
au moyen d'un algorithme d'ajustement par la méthode des moindres carrés PLS (partial least
squares). A la différence des méthodes de régression multiples basées sur un petit nombre de lon-
gueurs d'ondes, cette méthode utilise I'ensemble de linformation spectrale. La correction de ten-
dance améliore toujours les résultats de calibration. Les deux méthodes de régression donnent des
résultats comparables pour le carbone, l'azote et les cendres. Pour la ligno-cellulose et la lignine, les
erreurs standards de validation obtenues par la méthode de calibration PLS sont inférieures de 25 et
34% a celles obtenues par la méthode de régression muitiple. Ces résultats montrent que la SPIR
peut étre utilisée dans les études de décomposition et que la méthode de calibration basée sur l'en-
semble du spectre (PLS) est plus performante pour la prédiction des fractions carbonées complexes.
Par sa rapidité et sa fiabilité, cette méthode réduit les contraintes analytiques et permet d'aborder les

études de décomposition en milieu hétérogéne.

décomposition / litiére / chimie du feuillage / SPIR

INTRODUCTION

Within a climatic area, the biochemical na-
ture of leaf litter is certainly the most im-
portant factor in the regulation of its de-
composition (O'Connell, 1988; Berg and
McClaugherty, 1989; Taylor et al, 1989).
The rate of decay varies with nitrogen and
phosphorus concentration and also with
carbon chemistry (Swift et al, 1979;
McClaugherty and Berg, 1987). The car-
bon chemistry of the litter substrate is usu-
ally divided into 3 fractions: extractives (lip-
ids, sugars, phenolics), polymer
carbohydrates (cellulose, hemicellulose)
and acid-insoluble compounds (AIC = lig-
nins). In classical forage fiber analysis, the
last 2 fractions constitute the ADF (acid
detergent fiber) and the last fraction the
ADL (acid detergent lignin). Each of these
fractions represents a mixture of constitu-
ents extracted at the same time using the
Van Soest analytical technique (1963);
however, they are very useful to under-
stand litter decay. Indeed, because lignins
can operate both as a carbon and energy
source and as a modifier of the activity of
decaying organisms, they are as important
as nutrient content for resource quality.

Conventional wet chemical analysis of
samples is destructive, time-consuming
and expensive when a large number of
samples is required. Moreover, for some

constituent, such as proximate carbon frac-
tions, no standard method has been estab-
lished (Ryan et al, 1990). Although near in-
frared reflectance spectroscopy (NIRS)
has become widely used as a nondestruc-
tive method for quality analysis of grain
(Williams, 1975) and forage (Norris et al,
1976), few ecological studies have used
this technique. Dalal and Henry (1986),
Krishnan et al (1980) and Morra et al
(1991), used NIRS to predict C and N con-
centrations in soils. Card et al (1988),
Wessman et al (1988) and McLellan et al
(19913, b) showed that NIRS may be use-
ful for the determination of leaf chemistry.

Using a wide range of species and de-
composition stages, our objectives were i)
to determine the changes in spectra during
decomposition process, ii) to evaluate the
potential of NIRS for determining litter
chemistry during decomposition, and iii) to
compare the stepwise regression (SR) and
partial least squares regression (PLSR)
calibration methods.

MATERIALS AND METHODS

Litter decomposition experiment

Two data set collected from 2 experiments were
used. The first experiment was conducted in the
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laboratory and concerned 8 species (Quercus
pubescens L, Quercus ilex L, Quercus coccifera
L, Castanea sativa Miller, Pinus halepensis Mill-
er, Fagus sylvatica L, Cistus monspeliensis L,
Cistus albidus L). Leaf litter of these species
were collected at the leaf-fall period near Mont-
peliier. In the laboratory, a microcosm system,
as described by Taylor and Parkinson (1988),
was used. Air dried samples of 7.00 = 0.01 g
were remoistened in water for 24 h and were
placed over a 2 mm nylon mesh on the soil sur-
face of the microcosms. Microscosms were
maintained at 22 °C and watered once a week
maintaining soil moisture at 80% of field capaci-
ty. Five replicates of each litter were removed af-
ter 0.5, 1, 2, 4, 6, 10 and 14 months. The sec-
ond experiment was conducted in the field, in a
Q pubescens forest (50 km NE of Marseille,
southern France), and concerned the 2 species
Q pubescens and P halepensis. In this experi-
ment, 5 mm mesh bags containing 10 g of air-
dried litter, collected near this forest, were
placed on the soil surface. Five replicates were
removed after 5, 12, 19 and 26 months. All sam-
ples were dried in a ventilated oven at 60 °C un-
til constant weight, weighed and then ground in
a cyclone mill through a 1-mm mesh.

NIRS analysis

A total of 330 samples were scanned with a
near-infrared reflectance  spectrophotometer
(NIRSystems 5000). Each sample was packed
into a sample cell having a quartz-glass sampte.
Two reflectance measurements of monochro-
matic light were made from 1100 to 2500 nm to
produce an average spectrum with 700 data
points at 2 nm intervals over this range. The
band-pass used 10 nm and the wavelength ac-
curacy 0.5 nm. Reflectance (R) is converted to
absorbance (A) using the following equation:

A=log (1/R)

Data analysis was conducted using ISI software
system (Shenk and Westerhaus, 1991b).

Sample selection
and chemical methods

Approximately one-third of the samples were se-
lected for providing the calibration sample set

analysed by wet chemical techniques. On the
basis of the standardized H distances from the
average spectrum in the space of the principal
components, we first eliminated 4 samples (on
the total population of 330 samples) with H > 3.0
(Shenk and Westerhaus, 1991a). The second al-
gorithm used standardized H distance among
pairs of samples to define neighbourhoods. The
average distance between pairs of closest sam-
ples was 0.068, and using an H = 0.125, 91
samples were selected.

These samples were analysed for ash
(550 °C for 3 h) and moisture (105 °C for 24 h).
Carbon and nitrogen content were determined
with a Perkin Elmer elemental analyser (PE
2400 CHN) and acid-detergent fiber (ADF) and
acid-detergent lignin (ADL) were determined us-
ing Van Soest procedures (1963, 1965) adjust-
ed for Fibertec (Van Soest and Robertson,
1985). Considering the important weight loss of
litter after several months of incubation, analy-
ses could not be achieved on all samples be-
cause of the lack of material.

Statistical methods

Stepwise regression (SR) calibrations and partial
least squares (PLSR) calibrations were devel-
oped and compared for C, N, ADF, ADL, and ash
with each calibration using 6 math treatments
corresponding to first and second derivative and
a gap of 5, 10, and 15 data points or 10, 20, and
30 nm. For all these previous math treatments,
results obtained with and without the detrending
method (Bames et al, 1989) were compared.

Stepwise is performed by selecting the wave-
length that is the most highly correlated with the
reference values and adding it to the equation.
The second wavelength is added by calculating
all partial correlations with all other wavelengths
and selecting the wavelength with the highest
partial correlation. The process continues unti
the addition of a wavelength makes no addition-
al improvement in explaining the variation in the
reference value (F value significant at 0.01). Af-
ter each wavelength is added to the equation,
the program re-evaluates all wavelength in the
equation before continuing (Windham et al,
1989; Shenk and Westerhaus, 1991b).

Partial least squares (PLS) algorithm was
used to create predictive models (Martens and
Jensen, 1982). PLS differs from wavelength
searches in that it uses all the information in the
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spectrum to determine the analyte concentration,
a fundamental advantage over single wavelength
applications. Because the entire spectrum is
used, each wavelength is averaged into the an-
swer. PLS is the marriage of principal component
analysis (PCA) and multiple linear regression
(MLR). PCA reduces the spectral data to a few
combinations of the absorptions that account for
most of the spectral information but also relates
to the sample reference values (Shenk and
Westerhaus, 1991b). The first vector (called a
loading) used by the PLS algorithm is the result
of the cross multiplication of the spectral variance
of the data and the correlation spectrum. The first
loading is used to fit the training spectra based
on a least square is then correlated with the
chemical value. This results in an overall correla-
tion coefficient and a preliminary estimate of the
chemical values. The residual errors between the
actual and predicted chemical values are calcu-
lated, as are the residual spectra from the curve
fitting process. Both of these residuals are
plugged back into the start of the program. The
same calculations are performed on the residuals
to obtain the second loading and scores. This
stepwise addition of loadings continues until suffi-
cient terms have been added to explain the
chemical data. Cross validation is used to esti-
mate the optimal number of terms in the calibra-
tion to avoid overfitting. It consists of selecting,
for instance, 1 quarter of the samples for the pre-
diction and 3 quarters to develop the model. The
algorithm is repeated 4 times and all the residu-
als of the 4 predictions are pooled to provide a
standard error of cross validation (SECV) on in-
dependent samples. The minimum SECV deter-
mines the number of terms to be used. The final
model is then recalculated with all the samples to
obtain the standard error of calibration (SEC).

In order to compare the 2 calibration meth-
ods, only the math treatment that provided the
most accurate prediction of each constituent
has been taken into account.

RESULTS AND DISCUSSION

Changes in spectra
during decomposition process

The modification of the litter chemical com-
ponents during decomposition was related

to a progressive and important distortion of
the spectra. The example of Quercus pu-
bescens litter shows that this alteration is
far more rapid in the laboratory than in the
field (fig 1a, b). As decomposition pro-
gresses, absorbance in the region be-
tween 1100 and 1400 nm increases as
emphasized by Mc Lellan et al (1991a).
This baseline shift can be related to the
modification of the mineral matter/organic
matter ratio of the samples as decomposi-
tion progresses. Ash concentration in-
creases with time and decay state: from
82, 98, 128, 180 to 216 g kg~! dry matter
at 0, 5, 12, 19 and 26 months of decompo-
sition in field experiments whilst this con-
centration varies from 55, 78, 180, 248 to
441 at 0, 0.5, 2, 4 and 6 months in labora-
tory experiments. The increased reflec-
tance in the 1100-1400 region caused by
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Fig 1. a Spectra of litter samples of Quercus pu-
bescens at the beginning and after 5, 12, 19 and
26 months during the field decomposition experi-
ment. b Spectra of litter samples of Quercus pu-
bescens at the beginning and after 0.5, 2, 4 and
6 months during the laboratory decomposition
experiment.
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the increase of mineral component agrees
with data from Paul (1988) for soil contami-
nation in silage and Windham et al (1991)
for increasing ash concentration in forage,
esophageal and fecal samples.

Calibration equations

The calibration equations were carried out
on samples characterized by a wide range
of chemical components concentration (ta-
ble ). Furthermore, as emphasized by
McLellan et al (1991a), the chemical na-
ture of decomposing plant materials was
more heterogeneous than that of green fol-
iage. This sample heterogeneity could

Table I. Wet chemical range (%) for each consti-
tuent within the calibration sample set.

Variable n Mean Range
C 51 45.3 27.3-58.6
N 47 1.09 0.45-1.94
ADF 73 53.4 33.4-704
ADL 70 33.1 17.7-516
Ash 68 15.9 3.4-441
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have led to low determination coefficients
and high SEC and SECV. Yet, on the
whole, SEC and SECV were weak except
for ADF (tables I, Hll). The use of scatter
correction gave similar or better result in all
cases. Determination coefficients ranged
from 0.87-0.99 (except 0.82 and 0.78 for
ADF by SR with and without scatter correc-
tion). The 2 methods of regression gave
similar good prediction results for C, N and
Ash. The PLSR had better prediction accu-
racy for ADF and ADL. For these 2 constit-
uents, the improvement of SECV was 34
and 25% respectively.

Among all the analysed constituents,
ADF is the most complex, as it is made up
of all lignins and celluloses which probably
have different decomposition rates. ADF
thus results from several different compo-
nents in variable proportions, registered by
chemical analysis as a single entity, but
probably related to different spectra. The
SEC value indicates that different chemical
components are not expressed by the ADF
global value measured here.

Graphic comparisons between values
predicted with NIR calibration equations
and those obtained by chemical analyses
are displayed in figure 2. The prediction
equation is all the more effective as the

Table 1l. Modified partial least squares regression. Equation calibration statistics for C, N, ADF, ADL

and Ash.

With scatter correction

Without scatter correction

Variable n SEC R2 SECV SEC R? SECV  Math treatment”
C 51 0.68 0.98 1.1 1.29 0.95 2.29 255
N 47 0.04 0.99 0.09 0.05 0.98 0.09 2105
ADF 73 2.64 0.90 3.60 2.99 0.88 5.25 255
ADL 70 1.93 0.96 2.58 2.03 0.96 3.04 255
Ash 68 0.87 0.99 1.52 1.74 0.98 242 255

* Math treatment indicates the mathematical transformation of spectral data: the first number is the order of the deri-
vative function, the second is the segment length in data points over which the derivative was taken, and the third

the segment length over which the function was smoothed.
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Table lll. Stepwise regression. Equation calibration statistics for C, N, ADF, ADL and Ash.

With scatter correction

Without scatter correction

Variable n SEC R? SECV SEC R2 SECV Math treatment”
C 51 0.76 0.97 0.82 1.23 0.95 1.40 255
N 47 0.06 0.96 0.08 0.07 0.96 0.09 2105
ADF 73 3.61 0.82 3.96 4.05 0.78 4.29 255
ADL 70 3.30 0.91 3.42 2.81 0.87 2.94 255
Ash 68 1.58 0.98 1.73 2.51 0.95 2.63 255

* Math treatment indicates the mathematical transformation of spectral data: the first number is the order of the deri-
vative function, the second is the segment length in data points over which the derivative was taken, and the third

the segment length over which the function was smoothed.
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points are near the theoretical correspon-
dence 1:1 (diagonal line).

The results obtained show that NIRS is
an effective tool to predict nitrogen, ash,
and proximate carbon fractions from for-
age fiber techniques in the study of decom-
position of leaf litter from a variety of ever-
green and deciduous broad-leaved
species, conifers and shrubs. However,
the interpretation of forage fiber analysis in
decomposing leaf material remains diffi-
cult. Ryan et al (1990) emphasized that
“forage fiber lignin analysis may be less
sensitive than the forest products lignin
analysis to changes that occur during de-
composition”. Complementary studies are
now in progress using the same plant ma-
terial to test NIRS efficiency in order to de-
termine carbon chemistry according to for-
est product techniques.
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