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The use of NIR in predicting nutritive value
of Mediterranean tree and shrub foliage
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To upgrade grazing management recommendations in the Mediterranean area, one needs to assess the nutritive
value of woody foliages including their changes over time and with location. Using a wide range of native and culti-
vated foliages, our objective was to evaluate the potential of near infrared (NIR) reflectance spectroscopy to deter-
mine foliage chemistry and in vitro digestibility for ruminants. The samples, representative of small ruminant
eating bites, were divided into the different plant parts. Samples were carefully conditioned, being air-dried at
60°C; drying times were individually varied to ensure complete dehydration without excessive heating. Samples
were analysed for organic matter (OM), nitrogen (N), neutral detergent fibre (NDF), acid detergent fibre (ADF),
acid detergent lignin (ADL) and in vitro digestibility with a pepsin–cellulase method developed for forages
(IVDMD). NIR scans were made with an NIRSystems 5000 instrument and data analysis was performed using ISI
software. Partial least squares (PLS) regression equations were developed for IVDMD and each constituent. Nine
mathematical treatments, with and without scatter correction, were compared. The database of woody foliage spec-
tra and a reference fodder database were compared in two ways: the first involved a comparison of the spectral
variation in each collection while the second measured the Mahalanobis distance of each spectrum in one database
from the average spectrum in the other. In the case of N, a broad-based calibration was compared with others de-
rived from various sample sub-sets; these latter were formed either according to sample type or following a proxim-
ity analysis of five spectral groups by principal component analysis. NIR predictions of IVDMD were applied to
describe the effect of phenological changes in the edible parts ofQuercus pubescensWilld. The foliage base is very
heterogeneous and wider than the reference fodder base. The fodder base variation does not include the foliage
samples. The lowest standard errors of calibration (SEC) and cross-validation (SECV) are comparable to litera-
ture results on forest leaves, but better for lignin (SECV of 1.5 compared to SEC values of 2.5–2.9). SECV for
IVDMD is satisfactory at almost 2.0 because this value is similar to precision data normally reported forin vitro di-
gestibility estimations on narrower sample sets than the current one. The broad-based calibration for N gave simi-
lar or lower standard errors to those obtained using sample sub-sets. One can show that IVDMD values forQuercus
pubescensleaves decrease from 65 to 15% with increasing maturity; leaf IVDMD values are approximately 15%
higher than the previous year’s stem value from May until October. NIR spectroscopy appears to be an adequate
technique for the prediction of the nutritive value of Mediterranean foliages from trees and shrubs, with a reliabil-
ity similar to that obtained from classical fodder analysis procedures. This study shows that broad-based calibra-
tions with PLS regression could be made on extremely diverse sets of data (IVDMD ranging from 28 to 94%),
grouping distinct edible plant parts within the same data base.
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Introduction
In the Mediterranean area, farmers graze their

herds on a diversity of pastures, including wooded
rangelands. At certain periods, some of them ex-
pect the rangeland diet to meet up to 3/4 of the total
energy needs of high requirement ruminants such
as lactating goats.l,2 The shepherds therefore de-
sign their grazing route by combining native and
cultivated pastures, and fenced paddocks often in-
clude a wide diversity of fodder resources.3 To up-
grade pasture management recommendations, one
needs to assess the nutritive value of native foliages
including their changes with time and location.4

Assessing the nutritive diversity of native tree and
shrub foliages by the conventional wet chemical
analysis of samples is time-consuming and too ex-
pensive when very large sample numbers are in-
volved. In addition, some results may be declared
uncertain due to the particular composition of
woody foliages as compared with cultivated for-
ages for which standard analytical methods were
developed.5–8 Fibre assays are confounded by the
possible insolubility of proteins caused by their in-
teraction with phenolic compounds.9 In the last ten
years, simultaneously with studies that tried to im-
prove wet chemical analysis for lignified products,
NIR reflectance spectroscopy has been tested as a
tool to analyse diverse pastoral resources including
woody foliages.10–12 Within the same period, re-
mote sensing and ecological studies used this tech-
nique to predict leaf canopy chemistry.13–17Using a
wide range of native and cultivated Mediterranean
tree and shrub foliages, our objective was to evalu-
ate the potential of NIR reflectance spectroscopy to
determine foliage chemistry andin vitro digestibil-
ity for ruminants.

Material and methods
The database

Samples were collected from typical wooded
rangeland and fodder tree plantations in the French
Mediterranean area. The database comprises 25
species, representing the diversity of regional lig-
neous fodder resources (botanical names18): Arbu-

tus unedoL., Amorpha fruticosa, Buxus semper-
virens L., Calycotome spinosaL., Cistus albidus
L., Cistus monspeliensisL., Cistus salviifoliusL.,
Cytisus villosusPourr., Colutea arborescensL.,
Coronilla emerus L., Erica arborea L., Erica
scopariaL., Hedera helixL., Juniperus communis
L., Juniperus oxycedrusL., Morus albaL., Phil-
lyrea angustifoliaL., Phillyrea latifolia L., Pista-
cia lentiscusL., Pistacia terebinthusL., Quercus
ilexL., Quercus pubescensWilld., Rhamnus alater-
nusL., Robinia pseudoacaciaL., Ruscus aculeatus
L. Most species were sampled at different periods
in the year, when they were actually being browsed
by animals. The samples were taken from plant
parts selected as components of different goat eat-
ing bites. These eating bites were previously de-
fined after focused observations on intake
behaviour.19 The database comprises 222 samples,
including leaves and stems only, divided before
analysis into the successive growth parts

Chemical analysis
Directly after cutting, all samples were placed in

a refrigerated container at +10°C before being fro-
zen at –20°C. They were then air dried in a venti-
lated oven at 60°C. Drying kinetics were monitored
for each sample, and the drying times were calcu-
lated to obtain 93% dry material. Drying times were
much shorter than the conventional “to constant
weight” durations. We had previously confirmed
that this technique avoids excessive heating of foli-
ages and denaturation of soluble compounds.1 All
samples were then ground in a cyclone mill through
a mesh of 1 mm aperture diameter. For reasons of
cost and ground material availability, not all the
samples were analysed for all constituents. The size
of each sample group is indicated in parentheses as
follows: moisture (222) (103°C for 24 h); organic
matter (222) (550°C for 24 h); nitrogen (222)
(micro-Kjeldahl analysis); neutral detergent fibre
(98), acid detergent fibre (122), acid detergent lig-
nin (122) andin vitro dry matter digestibility (83).
Fibre estimations were performed using the
Fibertec procedure20 while IVDMD measurements
were made using a pepsin–cellulase method devel-
oped for forages.21
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NIR analysis
All samples were scanned with a NIR reflectance

monochromator (NIRSystems 5000). Each sample
was packed into a sample cell having a quartz-glass
cover. Reflectance measurements of monochro-
matic light were made from 1100 to 2500 nm at 2 nm
intervals to produce a spectrum with 700 data points.
The band-pass value used was 10 nm while wave-
length accuracy is 0.5 nm. Reflectance (R) readings
were converted to absorbance (A) values using the
following equation:A = log (1/R). Data analysis was
conducted using ISI software.22

Statistical methods
Partial Least Squares (PLS) regressions were de-

veloped for OM, N, NDF, ADF, ADL and IVDMD.
For each of these analytes, calibrations were gener-
ated using nine different mathematical treatments;
these corresponded to raw spectral data followed by
first and second derivatives. Derivatives were made
using a constant smoothing segment of five data
points but with subtraction gaps of 5, 10, 15 and 20
data points.23 For all these mathematical treatments,
results obtained both with and without spectral de-
trending were compared. This technique is com-
monly used as a scatter correction method.24 PLS
regression is recognised as a very powerful tool to
develop models from spectroscopic data25 and the
advantages over classical Multiple Linear Regres-
sion (MLR) have been shown.26 PLS, by reducing
the large set of raw spectral data into a small number
of orthogonal factors, is particularly efficient when
the data are significantly inter-correlated. Due to the
limited number of samples in this study, it was not
possible to select an independent set of samples for
validation of the PLS equations. Thus, standard er-
ror of prediction (SEP) was estimated by cross-
validation which is preferable to limiting the number
of samples in the training set. The approach used was
as follows: for each constituent, 75% of the samples
were chosen and used for the development of a pre-
diction equation containing one PLS factor. The per-
formance of this equation was then evaluated on the
remaining 25% of samples to produce a standard er-
ror of prediction. This exercise was repeated three
further times using a different batch of samples for
calibration development and evaluation; thus, four

equations were produced for a one factor equation
for each constituent. The standard error of cross-
validation (SECV) for each constituent was then de-
rived from the above four SEP values by calculating
the square root of the mean of the SEP squared val-
ues. This exercise was repeated for models contain-
ing 2,3,4,...n factors and for each a SECV value was
obtained. The best model was determined to be that
with the lowest SECV and the final calibration equa-
tion was developed on the entire sample collection
using the number of factors in the calibration with
the lowest SECV. Cross-validation determines the
optimum number of factors and minimises overfit-
ting. The results displayed in the figures are the pre-
dicted values from cross-validation and are not the
values of the calibration process. The standard error
of cross-validation gives a more realistic estimate of
accuracy than the standard error of calibration
(SEC). The woody foliage database and a reference
forage database27 were compared, in terms both of
the variation in their spectral information and their
Mahalanobis distance from the average spectrum in
the opposite file. Calibrations for the different con-
stituents andin vitro digestibility were carried out on
the whole 222 sample set (broad-based equations).
The number of times the outlier elimination se-
quence was invoked was fixed to 1. This means that
the computer program only attempts to remove out-
liers once before completing the final calibration.
The critical “T” outlier value was fixed at 2.5. As the
spectral structure of the data was checked previously
by principal component analysis (PCA), the critical
“H” outlier value was set at 50 to retain maximum
spectral variability. For nitrogen content, calibra-
tions were made on various sample sub-sets. These
sub-sets were formed either according to sample na-
ture or origin (deciduous vs evergreen foliages; cal-
careous vs acid soils; trees vs shrubs) or using the ISI
“3D-Symmetry” option to produce a proximity
analysis of five spectral groups.

Annual changes in oak foliage
digestibility

Twelve samplings ofQuercus pubescensWilld.
were taken from April 1991 to May 1992 in an area
near Avignon, France. Each sampling consisted of

M. Meuretet al., J. Near Infrared Spectrosc.1, 45–54 (1993) 47



20 leafy branches with representative proportions of
edible plant parts collected along a 20 m transect.
The edible plant parts consisted of the current year’s
growth of leaves (L0), the three most recently
emerged stems (S0, S-1, S-2) and acorns (A). The
IVDMD prediction equation from the 222 sample
data base was applied to the plant parts. The plant
parts were collected at a stage corresponding pre-
cisely to the opening of the buds; thus, the age of
each sample was known to within a few days. Using
the set of the current year’s growth of leaves and
stems, a calibration equation was developed to pre-
dict the age of plant parts.

Results and discussion
Foliages compared with a fodder
reference

The foliage base is very heterogeneous and wider
than the reference forage base. Figure 1 shows the
standard deviation spectra of the raw spectra of the
foliage and forage databases. It is apparent that the
variation in foliage spectra is greater than that in the
forage spectral collection. The mean Mahalanobis
distance of each foliage spectrum from the average
forage spectrum is equal to 26 and vice versa; the
mean Mahalanobis distance of each forage spectrum
from the average foliage spectrum is equal to 3. This
indicates that the foliage spectral variation includes
much of the spectral variation of the forage samples
but not the converse, though the reference forage
samples themselves come from many species of
grasses and mixtures cut at different stages and
grown in several locations and years.

Calibration equations
Broad-based calibration

The 222 sample database is characterised by an
extremely wide range in concentration of the com-
ponents analysed (Table 1). The range of nitrogen
and lignin values is wider than that found in previous
studies with foliages.13,14,16Since not all the sam-
ples were analysed for each constituent, which
might have result in an unbalanced spectral broad-
base, a matrix of Malhanobis distances was made to
compare the spectral variation in the different
constituent-based data sets (Table 2). It is apparent

that the two largest sets (OM and N) include all the
others since the averageH values are close to or
lower than 1; thus, the reference sample sets for OM
and N may be used also to predict successfully the
other constituents. On the other hand, spectral varia-
tion in the OM and N sets is wider than that in the
NDF, ADF, ADL and IVDMD sets; this means that
calibrations derived using the latter sample sets will
not be suitable to predict several samples included in
the OM and N sets. In the case of nitrogen, the lowest
standard errors of calibration (SEC) and cross vali-
dation (SECV) obtained in this work are comparable
to literature data (SEC approximately equal to 0.1);
results for lignin are better than those previously re-
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Figure 1. Standard deviation spectra of reference fodder
base set and for woody foliage base set.

Variable n Mean STD Range

OM 222 93.8 3.2 82.6–98.3

N 222 1.84 0.86 0.39–4.17

NDF 98 52.0 13.0 85.0–23.8

ADF 122 31.5 10.7 12.7–54.1

ADL 122 13.9 6.2 3.0–26.9

IVDMD 83 64.0 19.8 28.2–94.0

Table 1. Wet chemical range (%) for each constituent
within the calibration sample set.



ported, with a SECV of 1.48 compared to SEC val-
ues of 2.5–2.9 in previously cited work (Table 3).
Reduced prediction errors were obtained for all con-
stituents when PLS regression was preceded by a
scatter correction procedure. CalibrationR-squared
values ranged from 0.96 to 0.99. With respect to
IVDMD, the SECV of approximately 2.0 is satisfac-
tory and close in magnitude to IVDML standard er-
rors27,28 determined on narrower sets than the
current one. For OM and N, the SEC and SECV are
close in value while for the other parameters, the dif-
ferences between SEC and SECV are higher. This
arises from the number of samples used in the cross-
validation procedure; approximately 150 samples
were used to make the OM and N sub-calibrations
while corresponding figures for the other sub-
calibrations ranged from 60 to 85. Graphical com-
parisons between reference (wet chemistry) values

and NIR predicted values for each constituent are
shown in Figure 2. Despite the skewed distribution
of OM and N values, the pre diction equations are all
effective.

Calibration on sub-sets for nitrogen content
Calibration equations for 11 sub-sets generated

give standard errors worse than, or similar to, the
broad-based calibration (Table 4).R-squared values
are lower in all cases but one, because of the smaller
range of values and number of samples. The SECV
level depends on the number of factors used in the
model. With very few samples, the SECV limits the
number of factors and thus the accuracy; this would
certainly be improved if the number of samples in
each sub-set was similar to the broad-based calibra-
tion.
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OM N NDF ADF ADL IVDMD

nb data= (204) (206) (90) (110) (108) (75)

OM 243 1.0521 0.800 0.799 0.812 0.982

32 2 2 2 2

N 1.002 24 0.717 0.719 0.727 0.871

1 0 0 0 0

NDF 8.380 8.391 15 1.704 1.754 1.191

88 86 11 12 1

ADF 4.278 4.266 0.902 18 1.059 1.070

64 64 1 5 1

ADL 4.310 4.304 0.907 1.044 18 1.073

70 69 2 5 2

IVDMD 4.356 4.340 0.891 1.022 1.083 15

65 65 0 3 6

1Hbar: Average distance of the predicted set versus average spectrum of the reference set.
2Number of samples which haveH distance greater than 3.
3Number of principal components used to compute theH distance.

Table 2. Mahalanobis distance metrics between constituent sets.
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Figure 2. Relationship between NIR predicted value for independent samples and wet chemistry value (% of dry matter).



Application to oak foliage annual digestibility
changes

The broad-base equation for IVDMD was applied
to the 46 collected plant parts. Since oak species are
well represented in the calibration database, all the
leaf and stem samples, although not the acorns, are
well predicted with the conventional limit of 3.0
used for theH-statistic. As maturation progresses,
leaf IVDMD values decrease from 65 to 15% dry
matter; leaf IVDMD values are approximately 15%
higher than values for last year’s stem samples over
the period May to October 1991 (Figure 3). The two
older growth stems have a regular and very similar
variation around 30% IVDMD. This type of infor-
mation, with a high frequency of sampling on indi-
vidualised edible plant parts, should be linked with
the intake models of small ruminant browsing on oak
foliages.1 From these models, one can estimate that
the nutritive value of this oak during the summer pe-
riod (mid-June to September) varies from 55 to 52%
OM digestibility. The calibration on age of the cur-
rent year’s leaves and stems led to poor quality re-
sults, mainly because of the mixing of the two types
of plant organs and probably because of the insuffi-
cent number of data. The SEC and SECV are, respec-
tively, 20.7 and 41.8 days for a 384 days range, with

an R-squared value of 0.88 (best math treatment is
2–10–10) (Figure 4). These figures are twice the re-
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With scatter correction Without scatter correction

Variable n SEC R2 SECV SEC R2 SECV
Math

treatmenta

OM 204 0.54 0.97 0.63 0.59 0.96 0.66 1 5 5

N 206 0.11 0.98 0.14 0.13 0.98 0.15 1 5 5

NDF 90 1.36 0.99 2.06 1.37 0.99 2.11 1 5 5

ADF 110 1.85 0.97 2.36 1.83 0.97 2.50 1 10 5

ADL 108 1.04 0.97 1.48 1.1 0.96 1.66 2 5 5

IVDMD 75 1.51 0.99 2.10 1.61 0.99 2.68 2 20 5

aMath treatment indicates the mathematical transformation of spectral data: the first number is the order
of the derivative function, the second is the length in data points over which the derivative was taken and
the third the segment length over which the function was smoothed.

Table 3. Modified partial least squares regression. Equation calibration statistics for OM, N, NDF, ADF, ADL and IVD
without outliers.

Figure 3. Variation over time in thein vitro pepsine–cellu-
lase digestibility for the edible plant parts ofQuercus pu-
bescensWilld. L0/S0 is the current year’s growth
leaf-to-stem ratio (% of the dry matter).



spective figures quoted in results obtained on rice
and wheat plants.29

Conclusion
The compositional prediction of foliages from

Mediterranean trees and shrubs by NIR reflectance
spectroscopy is adequate for nutritive value estima-
tions. NIR analysis was able to identify which sam-
ples had deteriorated during the conditioning
process. It is a highly valuable tool for international
networks that conduct surveys on the quality of
woody fodder and have to compare samples from
various origins.30This study shows that broad-based
calibrations can be made on extremely diverse sets
of data, including leguminous shrubs of high nutri-
tive value, such asCitisus and Robinia, and very
coarseEricaceaspecies, grouping leaves and stems
within the same database. The calibration for ligni-
fied fibre fractions appears quite satisfactory con-
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Data sets n Mean STD Range SEC R2 SECV

Deciduous foliages 64 2.11 0.81 0.4–4.2 0.24 0.91 0.33

Evergreen foliages 158 1.73 0.87 0.5–4.0 0.27 0.90 0.31

Calcareous soils 152 1.63 0.60 0.4–3.8 0.22 0.87 0.25

Acid soils 70 2.29 1.14 0.5–4.2 0.39 0.92 0.39

Trees 72 1.46 0.49 0.6–4.0 0.16 0.89 0.34

Shrubs 150 2.01 0.91 0.4–4.2 0.26 0.92 0.29

Set A 21 1.72 0.19 1.3–2.0 0.07 0.87 0.12

Set B 22 3.58 0.23 3.0–4.0 0.10 0.83 0.13

Set C 74 1.48 0.49 0.6–3.8 0.16 0.90 0.23

Set D 22 1.25 0.59 0.6–3.5 0.46 0.38 0.51

Set E 19 2.29 0.61 1.2–3.7 0.02 1.00 0.17

Table 4. Modified partial least squares regression. Equation calibration statistics for N from distinct sub-sets of data. Math
treatment: 1 5 5 (see Table 3).

Figure 4. Relationship between NIR predicted values and
observed values for the age ofQuercus pubescensWilld.
current year’s growth leaves (L0) and stems (S0).



firming the appropriateness of our specific
oven-drying technique for woody foliages. Predic-
tion of pepsin–cellulasein vitro digestibility could
be reliably used for these foliages, as is the case with
more conventional green forages and herbage, to de-
termine the effect of maturation on the nutritive
value of plant parts.
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