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Abstract 

In this paper, transfer of calibration models between near-infrared spectrometric instruments using three different standardi- 
sation sets is described. The first set contains samples which are very similar to the agricultural samples from three different sets 
to be analysed, the second set contains generic standards, and the third one contains pure organic and inorganic chemicals. To 
test the accuracy of each standardisation, root mean square errors and correlation coefficients are computed before and after 

standardisation. To test the predictive ability, standard error of prediction for the three different prediction sets are also computed 
before and after standardisation. For standardisation, Shenk’s algorithm is used: a description of this algorithm is given. 
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1. Introduction 

Standardisation 
Several problems due to poor instrument perform- 

ances and a need for all calibrations have recently sur- 
faced in spectroscopy. They concern standardisation, 
i.e. the possibility to transfer the calibration from one 

system to another. 
The first of the encountered problems is the transfer 

tif a calibration model across two different instruments. 

If the instrumental response of a first system differs 
from that which would have been obtained with a sec- 
ond system (this can be due to many reasons such as 
different sources, different optical systems, different 

detectors, etc.), the calibration model built on the first 

system and applied to the second one wilI give erro- 
neous results. Multivariate instrument standardisation 
enables to correct the differences between instruments, 

and avoids to use time-consuming complete recalibra- 
tion procedures, and to transport qxalibration samples 
from one place to another. 

The second problem is the calibration transfer from 
an instrument to itself over a period of time, The instru- 
mental responses from a single instrument over a period 
of time can be subject to important fluctuations such as 
temperature variations [ 11, wavelength shifts, linear or 
non-linear drifts, etc. If such fluctuations occur between 
the calibration procedure and the analysis procedure of 
unknown samples, or if the instrument needs to be 
repaired because of technical problems, this could lead 
to erroneous results. Multivariate instrument standar- 
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disatian enables to correct these fluctuations over time, 
without repeating the whole recalibration. 

Standardisation methods: two dijj%rent approaches 
In order to transfer a calibration model, several 

standardisation methods have been suggested. The two 
different approaches used to transfer the calibration 

across NIR instruments are the following ones: 
The first approach consists of trying to transfer the 

spectra obtained with the secondary system to the pri- 

mary system, and applying the calibration model built 
on the primary inst~ment to these modified spectra. 
Different methods such as direct sta~dardisation~ 21, 
piecewise direct standardisation [ 23 f , and Shenk’s 

method follow this approach [4,5]. 
The second approach consists of building a calibra- 

tion model on a primary system, trying to transfer it to 

a secondary system, and applying this modified cali- 
bration model to the spectra obtained on the secondary 
instrument. This approach was developed by Forina et 

al [Ii,71 1 
In this paper, only Shenk’s method has been studied. 

This method is widely applied to transfer calibration 

between NIR ins~ments~ when results coming from 
different inst~ments have to be compared (Quality- 
control nets) 

it should be noted that the method used to correct 
these instrumental responses, and still applied today in 
several places, is a very simple method based on bias 
and slope correction of the model built on the “master” 
instrument. Some samples were measured on the 
‘“slave” instrument, the spectra obtained and the cali- 
bration model built on the “master” was used to com- 
pute the values to be predicted. Then, the values 
obtained with the model built on the “master” instru- 
ment applied to the spectra measured on the “master” 
instrument are regressedon those values: a linear model 
is computed, correcting the values found with the 
‘“slave” spectra to the right values obtained with the 

“‘master” spectra. The combination af this simple lin- 
ear model with the calibration model gives a modified 
calibration model which gives the right values 
! obtained from wet chemistry) from spectra obtained 
on the “slave” instrument. 

Three different sets of samples are involved: the first 
is the calibration set, the samples of which are used to 
build a calibration model on the ‘“master” instrument. 

To transfer calibration models between i~st~ments, 
two other sets of samples are used: 

Samples from the standardisation set are measured 
on the two instruments to compute the standardisation 

parameters. 

Samples from the prediction set are measured in the 

“slave” instrument, and the spectra obtained are trans- 
ferred on the “master” instrument with the standardi- 

sation parameters computed with the standardisation 

set. Then, those transferred spectra and the calibration 
model built with the calibration set zue used to predict 

the studied variables. 

Beside the standardisation method, the selection of 

the samples used to compute the transfer parameters 

appears to be very important, and this problem has 

received very little attention in the literature. Two dif- 
ferent approaches are possible, and the choice between 

these two approaches depends on different practical 
reasons. 

The first possibility is to select the ““best” subset 

samples from the set to be predicted (only measured 

on the “‘slave” instrument), to remeasure this set on 
the “master” inst~ment~ and to compute the transfer 
parameters with this subset. The main advantage of this 

method is that the samples used for standardisation are 

very representative for those used for prediction, and 

standardisation can be successfully applied [ 2,3]. This 
approach has the following practical limitations: 

The samples have to be measured on both instru- 

ments. If the composition of those samples changes 

over time, and if the instruments are very far fram each 

other, this can lead to serious probfems. 

For each type of product to be predicted, one needs 

a subset of samples. If the number of different products 

tube analysed is very high, many different subsets have 

to be remeasured on the “master” instrument. 

The second possibility is to use samples not coming 

from the prediction set, but of a similar nature. These 

standardisation samples are measured on the two dif- 

ferent instruments to compute the standardisation par- 
ameters, but all samples of the prediction set are 

measured only at one place. This method enables to 
standardise spectra from samples, which are not meas- 

urable on both instruments for whatever reason. Nev- 

ertheless, a drawback of this method is that it uses 

samples af the same nature as those used in the predic- 
tion set, and these samples can change over time. 
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In this paper, this second possibility and also a third 

approach are studied: in this third approach, standar- 
disation is performed with the use of more stable sam- 
ples (generic standards) which are completely 
different from the studied samples. This approach 

should be very helpful to overcome the problems of 
stability, and should be applicable to samples from 
different natures. The type and the number of these 
generic standards should be well chosen, not to lose 

information during the transfer of spectra. For example, 
if one wants these standards to be applicable to samples 
with very different NIR spectra, the spectra of these 
generic standards should probably cover a larger range 
of optical density, in order to contain all possible linear 
and non-linear variations in the optical density (O.D.) 

field where the measured spectra are located. 
In this article therefore, different types of standar- 

disation samples are tested: 

30 standardisation cells, made of different agro- 
nomic products. 

6 standardisation cells, which contain 6 different 

inert standards. 
12 standardisation cells, which contain organic and 

inorganic pure products. 

Interlaboratory experiment 
Since 1987, the Station de Haute Belgique (SHB, 

Libramont, Belgium) has been running a network of 

NIRS instruments, in order to analyze cereals and for- 
ages [ 81. The software developed by IS1 (InfraSoft 
International, Port Mathilda, USA), which involves 

Shenk’s algorithm for standardisation, is the key of this 
network. Recently, the idea of an European Network 
has surfaced from participants of QUEST (food quality 

established by spectroscopic techniques), which is a 
concerted action subsidized by the CEC in the frame- 
work of the general FLAIR program (Food-Linked 

Agro-Industrial Research). 
The standardisation and prediction sets were meas- 

ured by three participants of QUEST (referred to as 

DA, SP, UK), and by the Station de Haute Belgique 
(referred to as SHB). 

2. Theory: Shenk’s method 

Shenk’s patented [ 51 method is based on two main 

steps: wavelength index correction, followed by spec- 

tral intensity correction. These two corrections are 
stored in a standardisation file, which is used to transfer 
spectra from one “slave” to one “master” instrument. 
The main advantage is that the software based on this 
method can be directly linked to NIR spectrometers, 
and can use raw data obtained on those spectrometers. 

The main steps of this method are graphically 
described in Fig. la+, and the following notations are 
used: Xs = matrix which contains spectra of the stan- 
dardisation samples measured on the “slave” instru- 
ment; Xm =matrix which contains spectra of the 
standardisation samples measured on the ‘ ‘master” 
instrument; X.j = ith column of the X matrix (it corre- 

sponds to the responses of all samples at the ith wave- 
length); Xi. =jth row of the X matrix (it corresponds 
to the spectrum of the jth sample) ; NW = number of 
wavelengths; Ns = number of samples; N = Ns - NW = 
number of measurements in one X matrix. 

2.1. Mathematical treatment 

Step 2 
All spectra from the standardisation set are trans- 

formed by a first derivative mathematical treatment. 
Those spectra will be used for wavelength adjustment 
(steps 2 to 4). 

2.2. Wavelength index correction 

Step 2 (see Fig. 1 a) 
For each “master” instrument wavelength (i), a 

spectral window (i - w,i + w) of neighbouring wave- 

lengths on the “slave” instrument is chosen, the cor- 

relations between Xm.i and each Xs,, (k from i-w to 
i + w) are computed, and the “slave” instrument wave- 
length from this window (m), for which the absorp- 

tions X5., are most highly correlated with those 
measured on the “master” instrument Xm.i is found. 

Step 3 (see Fig. lb) 
To obtain a more precise estimation of the wave- 

length at which the correlation is maximum, one fits a 
quadratic model to the wavelength with the highest 
correlation (m), and its two neighbouring wavelengths 
(m-l andm+l): 

Correlation = a + b. i + c. i2 (1) 
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Fig. 1. Graphical description of Shenk’s method ( steps 2 to 6). B = step 2; b :I step 3; c= step 4; d =step 5; e = step 6, 
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Wavelength by wavelength, the response of the 

“slave” instrument is then adjusted with the corre- 

sponding regression coefficients. 

XStd.i =a(i) + b(i) .XS: (5) 

where Xstd is the Xs matrix after standardisation. 

Step 8 
The wavelength index and spectral intensity correc- 

tion factors are stored in a standardisation file. 
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3. Experimental 

Fig. 2. Spectra of the 3 standardization sets. a = STDl set: 30 cells 

with agronomic samples; b = STD2 set: 6 generic standards; 
c = STD3 set: 12 cells with pure organic and inorganic chemicals. 

Step 6 (see Fig. le) 
Spectral intensity correction is obtained by linear 

regression of the responses of the “slave” instrument 
at each shifted wavelength XS.~’ on the response of the 
“master” instrument at the corresponding wavelength 

Xrn,i. 

2.4. Transfer of spectra 

Each spectrum obtained with the “slave” instrument 
can be standardised by using the standardisation file of 
step 8. To obtain the standardised spectra, the “slave” 
instrument wavelengths are shifted with the quadratic 
model given by Eq. 2, in order to obtain the calculated 
wavelength values. Interpolations are performed to 
compute the responses of the spectra measured on the 
“slave” instrument at the wavelengths suggested by 
the quadratic model. Finally, these “slave” instrument 
responses are corrected wavelength by wavelength 
with the regression coefficients of the spectral intensity 
correction matrix computed in step 6. 

NIRS instruments 
The measurements are made on different spectrom- 

eters. The NIRSystem 6500 monochromator of SHB is 
referred to as the “master” instrument; The NIRSys- 
tern 5000 monochromators of UK, DA and SP will be 
referred to as the “slave” instruments. Before making 
the measurements, the instruments have been checked 
up and set up according to the diagnostic procedure of 
ISI’s software: noise level, detector response and wave- 
length accuracy [ 91. 
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T;ible 1 

( a) Name and composition of the standardization and prediction sets 

Set name Description 

ST-D1 

sTD2 

STD3 

HE 

MA 

CO 

(h) Studied variables for each agronomic samples 

30 sealed cups with agronomic products (ISI standardization set) 

6 generic standards (4 from Labsphere + 2 made by SHB) 

12 sealed cups with pure organic and inorganic products 

6 grass samples 

6 corn samples 

17 colza samples 

Agronomic samples Studied variables 

HE 

MA 

co 

Proteins, cellulose 

Proteins, cellulose 

Proteins, fat 

Standardisation samples 
Three different types of standardisation samples 

were tested: 

30 standardisation cells, made of different agro- 
nomic products by InfraSoft International (ISI, Port 
Mathilda, USA). These cells contain dried powders of 

different products such as grass, corn, wheat, colza, 
etc.... This standardisation set will be referred to as 
STDl. 

6 standardisation cells, which contain different 
standards: 4 standards made by Labsphere, INC. 

(North Sutton, USA), and 2 made in the Station de 
Haute Belgique (Libramont, Belgium). These stan- 
dards have very flat NIR spectra, but they cover a larger 

range of O.D. than the former 30 samples. This stan- 
dardisation set will be referred to as STD2. 

12 standardisation cells, made by the Station de 
Haute Belgique (Libramont, Belgium). These cells 
contain different pure products (urea, glyceride, 

butyric acid, polyethylene, ammonium carbonate, 
starch, naphthalene, lactose, saccharose, calcium sul- 
fate, citric acid, oxalic acid). These products have NIR 

spectra which cover a larger range of O.D. than the 
former 30 samples. This standardisation set will be 

referred to as STD3. 

Sample measurements 
Before being measured by each “slave” system, the 

samples were measured once in SHB. The measure- 

ments consist of 6 different sets of samples (see Table 

la). The STDl, STD2, and STD3 sets contain stand- 
ardisation samples, and the HE, MA, and CO sets con- 
tain agronomic samples (HE = grass, MA = corn, 

CO = rapeseed) used as the prediction set. The studied 
variables for all agronomic samples are summarized in 
Table lb. 

For each sample, two spectra are measured to check 
the repeatabilities. From these duplicates, the mean 
spectra are calculated. These are used in the calcula- 

tions. Trimming of spectra obtained with 6500 NIR- 
Systems is done, to obtain the same wavelength range 
(1100-2498 nm, step 2 nm) as the spectra obtained 
with NIRSystems 5000. Spectra of each standardisation 
set are plotted in Figs. 2a to 2c, and spectra of each 
prediction set are plotted in Figs. 3a to 3~. 

SofhYare 

Pretreatment of spectra, determinations of standar- 
disation files, transfers of spectra, and statistical cal- 
culations are performed with ISI’s software. Graphical 

displays and further treatments of the results are per- 
formed in Matlab 4.0. Conversion of data from ISI’s 
software to MATLAB and vice versa are performed by 

programs in QBASIC. 

Calibration on the master instrument 
For each set of agronomic samples, a calibration 

model is built on the “master” instrument in SHB. The 

calibration equations obtained are used to estimate the 
values of the studied variables given in Table lb. 
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Fig. 3. Spectra of the 3 prediction sets. a = HE set: 6 grass samples; 

b = MA set: 6 corn samples; c = CO set: 17 colza samples. 

Details about those calibration models are given in 
Table 2. 

The root mean square errors RMSE (Eq. 6), the root 
mean square errors corrected for bias RMSE( c) (Eq. 
7) and the determination coefficients R2 (Eq. 8) 

between non-standardised spectra obtained an the 
“slave” instrumentsandspectraobtained on the “mas- 
ter” instrument are computed. 

RMSE( cf 

(7) 

(81 
where S, and S, are the standard deviations computed 
with aI1 the values obtained on the “master” and on 

the “slave” instrument. 
With the calibration equations built on the “master” 

instrument, prediction for the different variables is cal- 
culated with the non-standardised spectra, and standard 
errors of prediction SEP (Eq. 9) are computed. In the 

literature, SEP gives usually the differences between 
computed values and reference values. In this paper, 
the SEP has a quite different meaning: in this case, the 

reference values used are the values obtained with the 
spectra measured on the “master” instrument. In other 
words, SEP gives the differences between values com- 
puted with spectra obtained on the c‘slavet’ instrument 

(standardised or not), and values computed with spec- 
tra obtained on the “master” instrument. 

Table 2 

Calibration models: numbers of samples involved, means of the 

values obtained, Standard error of calibration (SEC)) and determi- 

nation coefficient 

Variables Set Number of samples Mean SEC R2 

Proteins HE 564 15.56 0.85 0.98 
Cellulose HE 563 26.21 1.27 0.96 

Proteins MA 482 7.78 0.43 0.90 

CelIulose MA 449 20.70 1.04 0.93 

Proteins CO 382 22.47 0.56 0.94 

Fat CO 354 45.85 0.73 0.91 



Table 3 

Root mean square errors (microlog) for each prediction set and for 

each “slave” instrument 

Before STDl STDZ srD2 sTD3 

UK HE 5779 6579 7279 6740 9429 

MA 6174 7618 8394 7848 11199 

CO 6513 11126 10599 9332 8187 

SF’ HE 8737 1460 5395 5875 10484 

MA 8435 1169 5439 5898 11130 

CO 14004 9148 32349 12428 11292 

DA HE 4043 2659 6664 6948 13693 
MA 3703 1957 6164 6119 14786 
CO 10660 9437 15974 16255 17913 

Table 4 

Root mean square errors corrected for bias (microlog) for each 

prediction set and for each “slave” instrument. (s) indicates 

acceptable RMSE( c) values 

UK HE 5306 4457 4966 4619 6072 

MA 4867 4113 4590 4213 6331 

CD 5300 6274 8164 7315 7830 

SP HE 2157 453* 5738 4451 3663 

MA 2115 508* 4231 4503 5873 

CQ 7053 5575 4314 7333 6551 

DA HE 351% 1770* 5237 4923 8316 

MA 3583 1748 g 5601 5144 9037 

co 7676 6301 ll844 9695 10538 

Before STDl sTD2 STD2’ sTD3 

Table 5 

Determination coefficients between spectra obtained on the “mas- 

ter” instrument and spectra obtained on the “slave” one, before and 

after standardization 

Before STDl STIX! STDZ’ ST133 

UK HE 0.9982 0.9998 

MA 0.9982 0.9998 

CO 0.9998 0.9998 

SP HE 0.9999 1.0000 

MA 0.9999 1.0000 

co 0.9996 0.9999 

DA HE 0.9996 0.9998 

MA 0.9995 0.9999 

CO 0.9999 0.9999 

0.9984 

0.9984 

CL9997 

0.9997 

0.9996 

0.9995 

0.9987 

0.9984 

0.9988 

0.9985 0.9984 

0.9986 0.9984 

0.9997 0.9997 

0.9999 0.9994 

0.9998 0.9992 

0.9997 0.9999 

0.9992 0.9982 

0.9991 0.9982 

0.9993 0.9998 

where Y, are the values of the variables to be predicted 
(e.g., concentrations) I obtained with the spectra meas- 

ured on the “master” instrument, where Ypred are the 
values of the variables to be predicted, obtained with 
the “spectra” measured on the ‘%lave” instrument, 

with or without standardisation. 
Four different standardisations are computed: the 

first three involve the complete method of Shenk and 

one of the three sets of standardisation samples, and 
the last one involves the STD2 set of standardisation 
samples, and Shenk’s method without the wavelength 
adjustment (this st~dar~sation will be referred to as 
STD2’ ). This is due to the fact that this wavelength 
adjustment uses derivative spectra, and in the case of 
the samples of the STD2 set, which have very flat NIR 
spectra, derivative spectra will not contain any infor- 

mation. 
After all standardisation files are computed, RMSE, 

RMSE(c), and determination coefficients (R’) 

between standardised spectra and spectra obtained on 
the “master” instrument are computed. With the cali- 
bration equations buiIt on the “master” instrument, 
prediction for the same variables is calculated with the 
standardised spectra, and standard errors of prediction 
( SEP) are calculated and compared to those obtained 

with the non-standardised spectra. 

4. Results and discussion 

Before we describe the results, it should be noted 
that all the instruments are 5000 and 6500 NlRSystems 

and therefare very similar, The results and the conclu- 
sions should be interpreted in that context. It is probable 
that transfer between more different inst~ents would 

lead to other conclusions. 
The results concerning RMSE, RMSEf c), and cor- 

relation coefficients between spectra obtained in SHE! 

and spectra obtained in UK, SP, DA (non-standardised 
and standardised with the 4 different sets) are sum- 
marized in Tables 3, 4 and 5. The values with star in 

Table 4 are acceptable RMSE(c) values far standar- 
dised spectra (values under 2000 plog) . 

To test the predictive ability, SEP are given for each 
test set (HlZ, MA, CO} measured in UK9 SP, and DA 

(Tables 6-8). SEC obtained on the master i~st~ment 
are given for comparison. The SEP obtained should be 
smaller than half the corresponding SEC: if SEP is 
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Fig. 4. Comparison between the CO and STDl sets. 

larger or of the same order of magnitude, standardisa- 
tion is not useful. 

Standardisation with the 30 agronomic samples 

gives the best results: this must be due to the fact that 
the 30 samples are of the same nature as the samples to 

be predicted, and that the 30 spectra have a similar 
optical density (O.D.) range as the HE and MA spectra. 
Fig. 4 shows that the CO spectra are in a different O.D. 

range compared to the 30 standardisation samples. The 
bad results obtained with CO samples can be explained 

by the different natures of the samples, but can also be 
due to the fact that one is measuring in different O.D. 

ranges. This was in fact the reason for trying to use 
generic standards, which cover a wider O.D. range. 

Standardisation with STD2’ gives results, which are 
not as good as those obtained with STDl; RMSE( c) 

and R2 coefficients are not good, SEP are average. 

025 
SF. WITH ST01 

0 24 TFIANSF. WITH STD3 

0.23 

0.19’ I 
1450 i5M 1550 16CdJ 1650 1700 1750 1800 1850 

Fig. 5. Comparison of the spectra of one corn sample (h4A set) 

obtained with the “master” instrument, with the *‘slave” instrument, 

and transfered with one of the three STD sets. 

Standardisation with the STD2 set gives results 
which show only small differences with the STD2’ set. 
This proves that wavelength shifts between those NIR- 

Systems are very small. 
Standardisation with the STD3 set gives bad results: 

spectra after standardisation are often more different 

than before. 
Fig. 5 represents a zoomed part of spectra from one 

sample of the MA set in order to show how similar the 
standardised spectra are to the spectra obtained on the 

“master” instrument. 
Figs. 6a and 6b show the mean of the differences and 

the standard deviation of the differences between spec- 

tra obtained in SHB and in SP for the MA, HE, CO and 
STDl sets. Those two figures show that the mean and 
the standard deviation of the differences between SHB 
and SP for CO and STDl are very different. This could 

be due to the different O.D. ranges of the two sets. The 
comparison of MA and HE with STDl seems to con- 

firm this assumption: thus, the mean and the standard 
deviation of the spectra from MA, HE, and STDl are 
very close together, and those three sets are exactly in 
the same 0-D. range. This could explain the results 

obtained in Tables 3, 4 and 5. Differences between 
spectra from one instrument to another seem to depend 
on the O.D. range, where the spectra are located. 

Figs. 7 and 8 show the mean of the differences and 
the standard deviation of the differences between spec- 

tra obtained in SHB and in SP for the MA, HE, CO and 
STD2 sets (Fig. 7a-b), and for the MA, HE, CO and 
STD3 set (Fig. 8a-b) . The curves corresponding to the 

STD2 and STD3 sets are very far from those of the HE, 
MA, and CO sets, and standardisations with STD2 and 

Table 6 

(a) Standard errors of prediction (proteins) for the HE set 

SEC Before Stdl Std2 Std2’ Std3 

UK 0.85 0.66 0.21 0.35 0.45 1.18 

SP 0.85 0.37 0.14 0.73 0.69 1.68 

DA 0.85 0.53 0.45 1.38 0.47 3.87 

(b) Standard errors of prediction (cellulose) for the HE set 

SEC Before Stdl Std2 Std2’ Std3 

UK 1.27 0.45 0.21 0.93 0.48 7.07 

SP 1.27 1.17 0.35 1.02 0.52 0.85 

DA 1.27 0.49 0.34 0.82 0.95 1.16 



Fig. 6. Mean and standard deviation of the differences between spec- 

tra obtained in SP and in SHB for the samples of the MA, HE, CO, 

and STDl sets. a = Mean; b = standard deviation. 

STDJ do not give good results, as indicated in Tables 
$4 and 5. 

In other words, if one computes differences between 
instrumental responses of two systems with standardi- 
sation samples located in one U.D. range, and if those 
differences are then used to standardise spectra located 

in a second 0-D. range different from the former, the 
results obtained will not be acceptable. Differences 
between spectra obtained on two different instruments 
depend probably on the O.D. ranges, where the spectra 

are located. 
When standardisation samples are in the same O.D. 

range as the samples to be predicted, the standardisation 
parameters computed should give good results. Nev- 
ertheless, some unexpected problems might appear: in 
Fig. 6a, the curve corresponding to the STDl set is 
quite the same as those of the MA and HE sets, but it 
is shifted to the top: this means that spectra of the STDZ 
set showed smaller differences than samples of the MA 

and HE sets. It should be noticed that this systematic 
bias fit does not depend on the wavelength) influences 
the RMSE, which is significantly larger than the 
RMSE( c) . However, the standard errors of prediction 
after standardisation with the STDl set are not influ- 
enced by this bias, because the calibration models 
developed to predict the studied values involve first 
derivative spectra, which removes constant shifts in 
absorbency. However in some NIR applications, one 
uses the raw spectra to build the calibration model. In 
this case, the bias would give erroneous predictian val- 
ues. 

The presence of this bias proves that attention should 
be paid to the standardisation samples chosen, and 
although the standardisation and prediction samples are 

of the same nature, some unexpected differences might 
appear. 

To explain the presence of this bias, some hypotheses 
can be advanced: 
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Fig. 7. Mean and standard deviation of the differences between spec- 
tra obtained in SP and in SHE% for the samples of the MA, HE, CO, 

and ST332 sets. a= Mean; 6 = standard deviation. 
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Fig. 8. Mean and standard deviation of the differences between spec- 

tra obtained in SP and in SHB for the samples of the MA, HE, CO, 

and STD3 sets. a = Mean; b = standard deviation. 

Table 7 

(a) Standard errors of prediction (proteins) for the MA set 

SEC Before Stdl Std2 Std2’ Std3 

UK 0.43 0.40 0.12 0.95 0.04 1.24 

SP 0.43 0.23 0.10 0.89 0.14 5.71 

DA 0.43 0.39 0.22 1.58 0.69 7.65 

(b) Standard errors of prediction (cellulose) for the MA set 

UK 
SP 

DA 

SEC Before Stdl Std2 Std2’ Std3 

1.04 0.47 0.30 0.38 0.60 2.89 
1.04 0.74 0.15 0.85 0.38 2.45 

1.04 0.92 0.33 1.22 0.61 1.72 

Table 8 

(a) Standard errors of prediction (proteins) for the CO set 

SEC Before Stdl Std2 Std2’ Std3 

UK 0.56 0.97 1.33 0.37 0.15 

SP 0.56 0.95 1.08 2.65 1.13 

DA 0.56 0.51 1.23 4.23 2.08 

(b) Standard errors of prediction (fat) for the CO set 

0.99 

1.20 

1.93 

SEC Before Stdl Std2 Std2’ Std3 

UK 0.73 1.30 0.64 1.14 0.74 6.79 

SP 0.73 0.64 1.41 0.52 1.06 4.16 

DA 0.73 0.54 0.95 2.15 1.20 5.54 

hypothesis 1: different evolutions of the products 
over time (different modifications of their composi- 
tions) . 

hypothesis 2: different contributions of the cells used 
(the cells used from standardisation set and prediction 

set are not exactly the same}. 
hypothesis 3: temperature variations between meas- 

urements of the standardisation and prediction set. 

The last hypothesis is improbable, because the time 
required for each analysis is very short (a few seconds 
for each sample), and because all sets are analysed one 

after the other: in this case, such an important shift is 
almost impossible. 

To explain the presence of the bias, hypothesis 1, 
hypothesis 2, or a combination of those two seems to 

be more suitable, than hypothesis 3. There is probably 
a modification of the amount of water in the samples 
to be predicted between the measurements made in 

SHB and in SP. Thus, Fig. 6a shows some fluctuations 

of the bias between standardisation and prediction sam- 

ples. Moreover, Fig. 6b shows humps at 1900-2000 
nm for the spectra to be predicted, but no hump for the 
standardisation samples is present. In fact, those dif- 

ferent origins of the amount of water are probably due 
to the fact, that standardisation samples are in cells, but 
prediction samples are in normal cups (they are more 

sensitive to external variations). As can be seen here, 
different evolutions of the samples do not lead to a 
constant bias, but to local variations at particular wave- 
lengths. This remark shows that hypothesis 2 seems to 
be improbable to explain the origin of the bias. 

5. Conclusions 

Differences between spectra obtained on two differ- 

ent instruments depend probably on the O-D, ranges, 
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where the spectra are located. If the standardisation 

samples used to correct differences between instru- 

ments are very different from the samples of the pre- 

diction set, and particularly if the differences between 

“master” and “slave” instrumentsin the same spectral 

region are different in the standardisation set compared 

to the prediction set, this could lead to poor predictions. 

It appears that one needs standardisation samples 

which cover exactly the same O.D. range as the predic- 

tion samples. In this case, the best standardisation set 

used to standardise spectra from one prediction set 

should be the prediction set itself, or a representative 

subset of it. Another possibility could also be to find 

standardisation samples which cover exactly the same 

range for each spectral region, but to know in which 

region they are, one needs to remeasure some samples 
on the “master” instrument to compute the differences. 

If some samples have to be remeasured, standardisation 

with subset selection seems to be a better choice. 

If we decide that products very similar to the predic- 

tion samples (e.g., grass samples to predict other grass 

samples) can be used for standardisation without any 

remeasure of prediction samples on the “master” 

instrument, some problems might appear: in this paper, 

it is shown that a systematic bias can surface, although 

the products used in the two sets (standardisation and 

prediction) are very similar. If possible to remeasure 

some samples on the “master” instrument, this is to be 

recommended. In that case, as said higher, standardi- 

siltion with subset selection has to be applied, since no 

systematic unexpected difference between standardi- 
sation and prediction sets will occur with this method. 

In case of standardisation samples different from 
those used for prediction, a good compromise has to be 
found, between too similar standardisation samples 
(which could only be applicable for the prediction of 
particular samples) and too different standardisation 
samples (which could lead to bad standardisations) . 
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