
Ž .Chemometrics and Intelligent Laboratory Systems 44 1998 99–121

Validation and verification of regression in small data sets

Harald A. Martens a,b,), Pierre Dardenne c

a Norwegian UniÕersity of Science and Technology, Department of Physics and Chemistry, N-7034 Trondheim, Norway
b Denmark Technical UniÕersity, Department of Biotechnology, DK-2800 Lyngby, Denmark

c ( )Station de Haute Belgique GRAGx , Rue de Serpont 100, B-6800 Libramont, Belgium

Received 2 October 1997; revised 17 March 1998; accepted 1 September 1998

Abstract

Four different methods of using small data sets in multivariate modelling are compared w.r.t. predictive precision in the
Ž .long-run. The modelling in this case concerns multivariate calibration: ys f X . The study consists of a Monte Carlo simula-ˆ

tion within a large data base of real data; XsNIR reflectance spectra and ysprotein percentage, measured in 922 whole
Ž .maize plant samples. Small data sets 40–120 objects were repeatedly selected at random from the data base, each time

simulating the situation of having only a small set of samples available for estimating, optimizing and assessing the calibra-
tion model. The ‘true’ apparent prediction error was each time controlled in the remaining data base. This was replicated 100
times in order to study the statistical performance of the four different validation methods. In each Monte Carlo replicate, the
splitting of the available data set into calibration set and test set was compared to full cross validation. The results demon-
strated that removing samples from an already limited set of available samples to an independent VALIDATION TEST SET
seriously reduced the predictive performance of the calibrated models, and at the same time gave uncertain, systematically
over-optimistic assessment of the models’ predictive performance. Full CROSS VALIDATION gave improved predictive
performance, and gave only slightly over-optimistic assessment of this predictive performance. Further removal of even more
of the available samples for use in an independent VERIFICATION TEST SET gave in-the-long-run correct, although uncer-
tain estimates of the predictive performance of the calibrated models, but this performance level had seriously deteriorated.
Alternative verification of the model’s predictive performance by the method of CROSS VERIFICATION gave results very
similar to those of the cross validation. These results from real data correspond closely to previous findings for artificially
simulated data. It appears that full cross validation is superior to both the use of independent validation test set and indepen-
dent verification test set. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. The purpose of modelling: predictiÕe ability

It is difficult to estimate a mathematical model’s
parameters optimally from a small set of empirical

) Corresponding author

data and, at the same time, assessing the predictive
ability of the obtained solution from the same empir-
ical data.

This problem is acute in the field of multivariate
calibration. On one hand it is important to estimate
the calibration model parameters so as to minimize
the true predictive error of the calibration model for
future ‘unknown’ objects. This determines the qual-
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ity of the calibration obtained. On the other hand it is
important to assess what this level of true predictive
error is—otherwise, the calibration model cannot be
put to sensible use.

But the problem is by no means limited to multi-
variate calibration. Mathematical modelling may be
classified according to scientific ambition level, into
causal, predictive and ad hoc modelling. Causal
modelling is applicable, e.g., in classical physics and
chemistry in cases when the causal understanding of
the system is thought to be more or less complete.
Predictive modelling is a more statistical approach
that is applicable in situations where the knowledge
may be incomplete, but where this can be made up
for by empirical measurements.

In all causal and predictive modelling, the model
parameters estimated based on data from one set of
samples are normally intended to be valid also for
future, unknown samples of the same general kind
Ž .the same statistical ‘population’ . Ad hoc mod-
elling, describing just one given data set, is seldom
of much use in science.

However, even causal or predictive modelling may
end up with ad hoc problems. One problem concerns
the input data: Causal or predictive models based on
irrelevant samples or faulty measurement can be
worse than useless. These problems will not be given
attention here; the samples are presently drawn at
random from one statistical population, and the data
have already been used for other practical purposes,
which indicates that the measurements are OK.

Instead, this paper addresses the topic of underfit-
tingroverfitting, which presents another type of ad
hoc problem in causal and predictive modelling: If too
many independent model parameters have been esti-
mated or too many alternative models have been tried
and rejected, based on too few data, then much of the
measurement noise in these data will be drawn into
the model. The result is of more or less ad hoc nature
showing wrong causality and low predictive ability,
in spite of the opposite intent.

To acquire representative samples and to make
good measurements is usually expensive and time-
consuming. Consequently, in most practical situa-
tions the available number of samples with good data
is painfully limited. On the other hand, in a normal
calibration project, if there is much more calibration
samples with good data than needed, then the cali-

bration manager has not designed the calibration ex-
periments cost-efficiently. Exceptions are some rare

Žprojects where very large data sets like the one
.presently used are generated for other reasons.

The purpose of the present study is to compare
different methods for estimation of the calibration
model parameters and the prediction error under var-
ious circumstances, based on data from a limited set
of available samples. The actual, ‘true’ prediction er-
ror will then be estimated independently, based on a
very large set of ‘secret’ control samples of the same
general type. The comparison requires statistical
modelling in several stages.

Section 2 of the paper first defines the chosen
model and the parameters to be estimated from a

Žgiven calibration situation a ‘calibration experi-
.ment’ . Then a measure of the predictive perfor-

mance of an obtained model is defined, from which a
criterion for final model optimization is developed.
Four different methods for assessing this predictive
performance are explained. Finally, the Monte Carlo
technique for statistical comparison of these methods
over many calibration experiments is explained.

Section 3 describes the input data and the resam-
pling strategy used. Section 4 illustrates the use of test
sets and of resampling for model optimization and
prediction assessment, and compares these methods.
It then attempts to explain the observed effects by a
separate simulation study of the variance of a vari-
ance estimate. Finally, it checks the potential for fur-
ther improvement in model optimization.

2. Theory

The main purpose of the multivariate calibration is
to estimate the predictor parameters from the data of
the available samples, in such a way that the future
predictions of y have as low prediction errors as pos-
sible. A second goal in multivariate calibration is to
provide an estimate of this prediction error, based on
the data from the available samples.

2.1. The linear multiÕariate model and its parame-
ters

In the present case a linear regression model with
one regressand and many regressors is studied. The
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model is applicable, e.g., for multiple linear regres-
Ž .sion MLR as well as various reduced-rank modifi-

cations such as the traditional stepwise modification
Ž . Ž .SMLR , Ridge Regression RR , Principal Compo-

Ž .nent Regression PCR and Partial Least Squares Re-
Ž .gression PLSR . More details on these calibration

w xmethods are given, e.g., in Martens and Naes 1 . It
is also the basic linear structure model behind con-

Ž .ventional Analysis of Variance ANOVA .
PLSR is used here, but the conclusions are be-

lieved to be relevant for the other regression methods
as well as to other types of mathematical modelling
at the causal or predictive ambition levels.

The structure model of a regression with many
X-variables may be written:

ys1b qX bq f 1Ž .0

Ž .where y n = 1 is the regressand measured in n
samples, e.g., percent protein, measured by a tradi-

Ž .tional reference method in ns80 samples; 1 n=1
is the conventional column of n 1’s, included to sat-

Ž .isfy matrix algebra formalism; X n=K is K X-
variables measured in the same n samples, e.g.,
high-speed spectroscopic measurements at K s 70

Ž . Ž . Žwavelength channels; b 1=1 and b K=1 , the0
.regression coefficients represent the parameters of

Ž .the model; f n=1 represents the residuals after the
modelling of y from X.

w xThe calibration model parameters b , b are to be0
w xestimated from the data y, X in the n samples. Var-

ious optimization criteria and estimation algorithms
may be used, based on ordinary least squares,
weighted least squares, generalized least squares, it-
eratively reweighed least squaresrmaximum likeli-
hood, etc. In the present study, the ordinary least
squares version of the PLSR for a single Y-variable

w xis used, as described by Martens and Naes 1 , with
the input weight for each variable and object equal to
Ž .1 i.e., no a priori standardization of variables . The

regression coefficients are here estimated for A-di-
mensional PLSR models as:

y1
X Xˆ ˆ ˆ ˆb sW P W q 2aŽ .ˆž /A A A A A

with offset:

ˆ ˆb syyxb 2bŽ .0 A A
X Ž .where means ‘transposed’; x 1=K is the mean for

Ž .the X-variables; y 1=1 is the mean for the y-vari-

Ž .able; W K=A are the loading weights for X forA
Ž .PLSR components as1,2, . . . ,A; P K=A are theA

loadings for X for PLSR components as1,2, . . . ,A;
Ž .q 1=A are the loadings for y for PLSR compo-A

nents as1,2, . . . ,A.
To make the following explanation simpler, we

Ž .shall avoid the offset term b 2b , instead includ-0A

ing it as part of vector b , which then increases in sizeA
Ž .from K to Kq1, corresponding to writing Eq. 1

as:

ysX bq f 3Ž .
The PLSR model with A s K corresponds to

classical MLR. However, in practical cases when the
X-variables are strongly intercorrelated andror noisy,

Ž .a reduced-rank regression model A - K is often
required, in order to avoid over-fitting. But the rank
A then has to be estimated somehow from the data.
During the estimation of a multivariate regression

Ž .parameter vector b in Eq. 1 it is common to split
the parameter estimation into two separate problems.

2.1.1. Estimating seÕeral alternatiÕe models of in-
creasing complexity

The first problem, the estimation of the ‘bulk’ of
the linear model parameters, consists of using an es-
timation method, e.g., a projection method, to esti-
mate a whole series of alternative calibration models,
As0,1,2 . . . , AMax:

w xb b b . . . b . . . b 4Ž .0 1 2 A AMax

ŽThe model b with Aszero components consists0
.only of the y-offset b sy .0

Although all the models have the same physical
Ž .appearance a column vector of length Kq1 , each

successive model A s 0,1,2, . . . , AMax reflects an
increasing number of underlying parameters inde-
pendently estimated, in order to describe more and
more detail in the data.

For instance, in SMLR, the different b-vectors
could correspond to the increasing number of X-vari-

Žables to be used in the final model X-variables not
.used have zeros in b . In ridge regression it would

correspond to decreasing size of the ridge parameter.
In bilinear regression methods like PLSR it corre-
sponds to increasing number of bilinear components
Ž . Žlatent variables from X used for modelling y and
.X , i.e., including more columns into W, P and q in
Ž .Eq. 2a .
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2.1.2. Estimation of optimal model complexity
The second problem in the parameter estimation

consists of using a quite different estimation tech-
nique to choose which one of these alternative mod-

Ž .els b , As0,1,2, . . . , AMax, to use in Eqs. 2a andA
Ž .2b . In other words, this part concerns choosing the

Žbalance between underfitting leaving valid structure
. Žin the data unmodelled and overfitting bringing in

.ad hoc measurement noise, etc., into the model .
In the case of bilinear regression the optimal mo-

del choice is here called ‘ AOpt’. In PLSR it corres-
ponds to the number of bilinear components A s

Ž . Ž .0,1,2, . . . , AOpt to be used in Eqs. 2a and 2b in the
final calibration model.

2.2. A measure of the predictiÕe performance of an
obtained model

Unless we know what predictive performance to
expect from an estimated calibration model, the esti-
mated model cannot be put to critical use in practical
situations.

ˆAn estimated calibration model parameter b mayA

later be applied to an observed data vector x of thei

same general kind, in order to predict the value of y :i
ˆy sx b 5aŽ .ˆi A i A

If we had known the value of the reference value
y after also using the traditional measurement methodi

in the new sample, i, we could have assessed the ac-
tual prediction error:

f̂ sy yy 5bŽ .ˆi A i i A

Ž .apart from the unknown measurement errors in y .i

In almost all practical cases such ‘known’ refer-
ence values for y are, of course, unknown; the pur-i

pose of a calibration project is usually to replace the
cumbersome traditional reference analysis of y by a

Ž .quicker and often more precise prediction from X!
Still, the main quality criterion for a practical cali-

bration method is that it, again and again, results in
calibration models that give low prediction errors
when y is predicted in new samples is1,2, . . . ,ni

New of the general type calibrated for. So, it is im-
portant to be able to estimate this quality criterion
from the available data.

In a real set of samples there will always be varia-
tions between the individual samples. Therefore, we
are not only interested in the uncertainty of an indi-

vidual sample’s prediction, y . We want to have aˆi A

low ‘average’ prediction error for the type of sam-
ples calibrated for.

A commonly used uncertainty measure is de-
Ž .fined as the root-mean-square rms error of predic-

Ž .tion RMSEP over a set of new samples i s
1,2, . . . ,nNew:

Xˆ ˆf fA A
RMSEP A s 6(Ž . Ž .

nNew
ˆ ˆ Ž Ž ..where f here represents the y-residual f Eq. 5bA i A

for a whole set samples, is1,2, . . . ,nNew.
RMSEP is a vector with one value for each model

Ž .rank used As0,1, . . . , AMax . Once we have cho-
sen the optimal model rank AOpt, our final estimate
of the prediction error is a single scalar value, and
therefore here written in italics: Final RMSEP s

Ž .RMSEP AOpt .
Normally, the term RMSEP indicates that it is

Žbased on data from nNew independent samples i.e.,
.samples not used for estimating parameters b . In

contrast. the traditional corresponding measure based
directly on the data from the n calibration samples is
called the root mean error of calibration, RMSEC:

Xˆ ˆf fA A
RMSEC A s 7Ž . Ž .)

nydfŽ .
ˆ Ž .where f here is the n = 1 vector of calibrationA

residuals of the n calibration objects, obtained from
Ž .Eq. 1 after estimating the b-parameters, and df. is

the number of degrees of freedom lost due to estima-
ˆ Žtion of parameters b due to having estimated inde-

pendent parameters andror having tested and re-
jected alternative parameter combinations in the esti-

.mation process .

2.3. Criterion for choosing the ‘best’ model, AOpt

The number of PLSR components to use as A in
Ž . Ž .Eqs. 2a and 2b in the final model has to be esti-

mated. This parameter, AOpt, is chosen as the model
rank that minimizes some criterion Crit for the dif-
ferent models As0,1,2, . . . , AMax:
AOpt: min Crit A , As0,1,2, . . . , AMax 8Ž . Ž .Ž .

Ž .Different criteria may be used in Eq. 8 . One crite-
rion is to let
Crit A sRMSEP A 9aŽ . Ž . Ž .
for As0,1, . . . , AMax.
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In the present study this was modified slightly in
order to make the modelling more robust: When sev-
eral models, e.g., A s 5,6,7 have about the same
RMSEP, a lower-dimensional model is preferred over
a higher-dimensional model. This was implemented
as:

Crit A sRMSEP A qA)C 9bŽ . Ž . Ž .
for As0,1, . . . , AMax, where RMSEP represents the

Žvalidation RMSEP irrespectively of how this has
.been estimated; see more detail below , and

Cs0.05 ) s 9cŽ .
Parameter s provides automatic scaling of the

Ž .modification, and reflects the maximum RMSEP A
values between As0 and AsAMax.

This is very similar to the criterion used, e.g., in
w xthe UNSCRAMBLER program 2 on the first au-

thor’s recommendation. The only minor modification
is that the criterion was made extra robust for the
present, totally unsupervised Monte Carlo simula-

Žtions, by defining s as the square root of RMSEP-
Ž .2 Ž .2 .0 q RMSEP AMax , instead of just s s

Ž .RMSEP 0 .
In summary, a general methodology has now been

Ž .described for estimating b and RMSEP A for AsA

1,2, . . . , AMax, then for estimating AOpt from RM-
SEP via Crit, and finally, the quality control: Final

Ž .RMSEP s RMSEP AOpt . One problem remains:
precisely how to estimate RMSEP from the available
data. This will determine the actual value of AOpt
and final RMSEP.

2.4. Optimizing and assessing a model’s predictiÕe
performance from the aÕailable data

Most practical calibration experiments have to be
based on a limited set of available samples. Let us
designate the number of available samples as nAvail.
Then we must solve all three of the problems; esti-
mating b , AOpt and RMSEP, from the nAvailA

samples.
The traditional statistical approach has been to es-

timate all necessary parameters in one step, based on
distributional assumptions about the data. In the au-
thors’ experience, this is difficult to do correctly, and
it often leads to over-fitting, as discussed, e.g., by

w x Ž . Ž . Ž .Høskuldsson 3 . It implies in Eqs. 9a , 9b and 9c

Ž . Ž . Ž .replacing RMSEP A from Eq. 4 by RMSEC A
Ž . Ž .from Eqs. 5a and 5b , and this requires, among

other things, that a good estimator for the number of
degrees of freedom is available, which is often not the

Ž .case, e.g., for PLSR Here: dfs1qA .
There is thus a need for more pragmatic methods

for estimating AOpt and final RMSEP. In order to
avoid over-optimism due to over-fitting, it is impor-
tant that the estimation of AOpt and RMSEP is inde-
pendent from the estimation of b . Four methods forA

doing this will now be explained.

2.4.1. Joint estimation of AOpt and RMSEP
In chemometrics there are presently two main

practical principles for internal ‘quality control’ of a
calibration model.

2.4.1.1. Independent Õalidation test set. The first in-
ternal validation principle, and probably the intu-
itively simplest one, is to set aside some of the nAvail

Ž .samples nTVal samples to be used as an indepen-
dent validation test set, leaving the remaining nTCal
snAvailynTVal samples:

Ž Ž ..Estimate b , As0,1,2, . . . , AMax Eq. 4 fromA
Ž Ž . Ž ..the nTCal calibration samples Eqs. 2a and 2b .

Use the nTVal independent test samples for esti-
Ž .mating the validation prediction error RMSEP A for

Ž . Ž .As0,1, . . . , AMax according to Eqs. 5a , 5b and
Ž .6 ; call the result RMSETVal.

ŽEstimate optimal model rank AOpt sometimes
. Ž Ž . Ž .called ‘ AOptT’ from RMSETVal Eqs. 8 , 9a ,

Ž . Ž ..9b and 9c .
Ž .Final RMSEPsRMSEPTVal AOptT .

2.4.1.2. Cross Õalidation within the calibration set.
The second internal validation principle is well es-
tablished in statistics and is called cross validation.
This method, based on a systematic resampling of the
available data, was originally pioneered by M. Stone
w x4 . It consists of using all the nAvail samples both

Ž .for estimating b and RMSEP A and then for esti-A

mating AOpt and final RMSEP. The clue here is to
repeat the estimations in such a way that the danger
of over-optimism is minimized.

Cross validation may done in many different ways.
The cross validation used here is the full-model
leave-one-out version described, e.g., by Efron and

w x w xTibshirani 5 and Martens and Naes 1 .
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Cross validation is here abbreviated ‘X-Val’. The
whole calibration modelling is repeated nAvail times,
each time in turn leaving one new object out.

In each cross validation segment is1, . . . ,nAvail:
10Ž .

Take out sample i as temporary ‘test set’
For each model As0,1,2, . . . , AMax

Ž Ž ..Estimate b Eq. 4 on the remaining nAvailA,yi
Ž . Ž .y1 samples from Eqs. 2a and 2b

ˆŽ .Predict y from Eq. 3 : y sx bˆ ˆi i , A i A ,y i
ˆEstimate and store f Val sy y ŷi , A i i , A

Ž .Estimate validation RMSEP A , A s 0,1,2, . . . ,
ˆ ˆŽ .AMax according to Eq. 5a , with f s fVal , andA A

call this RMSEPXVal.
Use the validation RMSEPXVal to estimate AOpt

Ž . Ž Ž . Ž . Ž . Ž ..s‘ AOptX’ Eqs. 8 , 9a , 9b and 9c .
Ž .Final RMSEPsRMSEPXVal AOptX .

This full-model version of cross validation is the
one implemented, e.g., in the chemometric Unscram-
bler program, but different from the local-component
cross validation used in several other chemometric
programs, which only cross validates each compo-
nent locally to find AOpt, and therefore does not at-
tempt to give estimate of RMSEP.

ŽThe same robustification method 0.05 ) s Eq.
Ž ..9b was used for test set validation and for cross
validation.

2.4.2. Separate estimation of AOpt and final RMSEP
In the conventional test set as well as in cross val-

idation as described above, AOpt and final RMSEP
are estimated at the same time. To what extent is this
a problem?

In computationally heavy modelling methods like
neural nets and genetic algorithms, where a very high
number of alternative models are tested, each with
several independent parameters, it is probably dan-
gerous. One must expect the choice of an AOpt that

Ž .minimizes RMSEP A in a test-set to be over-fitted
to the particular noise structure in the test set and

Ž .therefore under-estimate the true but unknown pre-
diction error.

It has not been clear if this represents a problem
with the simpler regression methods like, e.g., RR,
PCR or PLSR. Therefore, the present study also in-

Žcludes separate estimation of AOpt here termed
‘validation’, since that word is traditionally used in

.‘cross validation’ and estimation of final RMSEP
Ž .‘verification’ . This will be done both in the case of
using test set and using cross validation for valida-
tion:

2.4.2.1. Independent Õerification test set. In the case
Žof test set, the nAvail samples are split in three in-

.stead of just in two sets—one calibration set with
Ž .nTCal samples for estimation of b , and two testA

sets, a validation set with nTVal samples used for
estimating AOpt, and a verification set with nTVer
samples used for estimating final RMSEP:

Ž Ž ..Estimate b , As0,1,2, . . . , AMax Eq. 4 fromA
Ž Ž . Ž ..the nTCal calibration samples Eqs. 2a and 2b .

Use the nTVal independent test samples for esti-
Ž .mating the validation prediction error RMSEP A for

Ž . Ž .As0,1, . . . , AMax according to Eqs. 5a , 5b and
Ž .6 ; call the result RMSETVal.

Ž .Estimate optimal model rank AOpt s‘ AOptT’
Ž Ž . Ž . Ž . Ž ..from RMSETVal Eqs. 8 , 9a , 9b and 9c .

Use the nTVer independent test samples for inde-
pendently estimating the verification prediction error

Ž .RMSEP A for As0,1, . . . , AMax according to Eqs.
Ž . Ž . Ž .5a , 5b and 6 ; call the result RMSETVer.

Ž .Final RMSEPsRMSEPTVer AOptT .

2.4.2.2. Cross Õerification within the calibration set.
In the case of resampling, all the nAvail samples are
used both for estimating b , AOpt and final RMSEP.a

The resampling principle from conventional cross
validation is used for separating b estimation froma

AOpt and final RMSEP. In addition, a similar princi-
ple is at the same time used for separating the AOpt
estimation from the final RMSEP estimation. This is
here is termed ‘cross verification’. The cross verifi-
cation method extends the conventional ‘leave-one-
out cross validation’ to a ‘leave-two-out cross valida-
tionrverification; one for validation and one for
verification’:

In each cross validation segment is1, . . . ,nAvail:
11Ž .

Ž .Define sample js f i
Ž .Take out the two of the samples, i and j i/ j

Ž Ž ..For each model As0,1,2, . . . , AMax Eq. 3
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Estimate b on the remaining nAvail y 2A ,y i , j
Ž . Ž .samples, from Eqs. 2a and 2b

ˆŽ .Predict y from Eq. 3 : y sx bˆ ˆi i , A i A ,y i , j
ˆEstimate and store f Val sy y ŷi , A i i A

ˆŽ .Predict y from Eq. 3 : y sx bˆ ˆj j , A j A ,y i , j
ˆEstimate and store f Ver sy y ŷj , A j j, A

Ž .Estimate validation RMSEP A , A s 0,1,2, . . . ,
ˆ ˆŽ .AMax according to Eq. 5a with f s fVal ; call thisA A

RMSEPVal.
Ž .Estimate AOpt s‘ AOptX’ from RMSEPVal

Ž Ž . Ž . Ž . Ž ..Eqs. 8 , 9a , 9b and 9c .
Ž .Estimate verification RMSEP A , A s 0,1,2,

ˆ ˆŽ .. . . , AMax according to Eq. 5a with f s fVer ; callA A

this RMSEPVer.
Ž .Final RMSEPsRMSEPVer AOptX .

The following definition of sample j was used
here:

Ž .Define sample js f i : If i-nAvail then js i
q1, else js1

In the present study the samples had been ran-
domly ordered, so no particular pattern was expected

Žbetween adjacent samples. Other rules for selecting
verification samples might of course have been used
instead, and more than one verification sample might

.also have been taken out at a time.
This cross verification method appears to be a

simplified version of the double cross validation
w x w xmethods proposed by Stone 4 and Hardy et al. 6 ;

but a detailed comparison has not yet been made.
In summary, the present study of validation tech-

niques compares the performance of the four combi-
nations:

estimating both AOpt and final RMSEP in a sepa-
rate validation test set;
estimating both AOpt and final RMSEP in cross
validation;
estimating AOpt in a validation test set, and esti-
mating final RMSEP in a verification test set;
estimating AOpt in cross validation, and estimat-
ing final RMSEP in cross verification.

2.5. Statistical comparison of different Õalidation and
Õerification methods

Due to random effects in selection of the ‘availa-
ble’ samples and in the measurements, one cannot
draw powerful methodological conclusions based on

one individual data set. Therefore, the job of having
to calibrate and assess the final RMSEP on a small
data set and checking the final RMSEP in a big con-
trol set was replicated many times in a Monte Carlo

Žsimulation. Initial studies showed that Ms100 such
modelling replicates gave sufficient precision in the

.conclusions The results may be summarized by con-
ventional averaging over the replicates. Final RM-
SEP was for instance averaged over M calibration

Ž .modelling experiments Monte Carlo replicates by
the Mean Final RMSEP:

M
2RMSEPÝ m

m)Mean Final RMSEPs 12Ž .
M

To summarize the variations from experiment to
experiment, the between-replicate S.D. was calcu-
lated:

S.D. of Final RMSEP

M
2RMSEPyMean Final RMSEPŽ .Ý

ms1)s
My1

13Ž .

The Monte Carlo simulation was repeated several
times with different input parameters: different num-
ber of replicates M, different number of X-variables
K , different number of available samples, nAvail.

2.6. PreÕious work

A similar study based on purely artificial data was
w xrecently published 7 . The data were generated ac-

cording to a linear mixture model with random nor-
mally distributed noise added to X and y. That study
indicated that the use of test set for validation was less
successful than the use of cross validation, and that
the use of a second test set for verification in some
respects just made things even worse.

It also showed that the present leave-one-out cross
validation and cross verification methods behaved
very similarly for the artificial data.

Finally, the study indicated that a small set of ran-
domly chosen samples always has a probability of not
including certain variation phenomena that are pre-
sent in the population at large. Consequently, any in-
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ternal validation or verification method using the
small set of available samples, be it based on test set
or resampling, will tend to underestimate the ‘true’
final RMSEP slightly.

The present study is intended to check if these
conclusions also hold for real data. Contrary to the

w xwork in Ref. 7 , where validation test set was used
with and without verification test set, validation and
verification test sets will for simplicity always be used
simultaneously in the following study.

2.7. Terminology

The term ‘RMSE’ is used when a common refer-
ence to both RMSEP and RMSEC is needed.

The abbreviations ‘Cal’, ‘Val’, ‘Ver’ and ‘Con’
are used for representing calibration, validation, veri-
fication and control-set check.

Examples: RMSEPVal, RMSEPVer, RMSEPCon
When deemed necessary for clarity, the letters ‘T’

and ‘X’ will be used for representing Test set and
Ž .cross validation ‘X-Val’ .

Examples: AOptT, AOptX, RMSEPTVal, RM-
SEPXVal, RMSEPTVer, RMSEPXVer, RMSEPT-
Con.

3. Experimental

3.1. Chemical and instrumental data

A total of 902 samples of maize hole plants were
supplied from several European breeding companies
and from Belgian field experiments, and analyzed as

w xdescribed in more detail by Sinnaeve et al. 8 .
Each sample was analyzed w.r.t. total protein per-

Ž .centage in dry matter y by standard Kjeldahl method
Ž .Mean: 8.9% protein, S.D. 1.2% . NIR reflectance
spectra were measured in an NIRSystems 5000 scan-

Ž .ning instrument 1100–2500 nm in steps of 2 nm .
Ž .The instrument reflectance R was converted to X

Ž .optical density by taking the conventional log 1rR .
Sinnaeve et al. reported an RMSEP of 0.41 percent
protein, i.e., a squared correlation of r 2 s 1 y
Ž .20.41r1.2 s 0.88, when using all these data di-
rectly in multivariate calibration. The expected mea-
surement uncertainty level of the reference Kjeldahl

Žmeasurements y reproducibility S.D. over 126

.days was found to be 0.11%, indicating that
there is a residual truly unmodellable RMSEP of

2 2( 0.41 y0.11 s0.39% protein.Ž .
Although Sinnaeve et al. showed some advantage

in spectral preprocessing of the NIR data, this was,
for simplicity, not used here. To save computer sim-
ulation time, averages of 20 nm wavelength wide
spectral segments were taken, yielding 70 X-varia-
bles to be used in most of the experiments. A slight
further loss of predictive ability may be expected due
to the loss of spectral resolution. Lower number of
wavelength channels will also be reported for com-
parison.

3.2. Estimation methods

3.2.1. Monte Carlo simulation of independent cali-
bration experiments

Replicate sets m s 1,2, . . . , M were drawn ran-
domly from the total set of 902 objects.

Each replicate data set m, of nAvails80 objects,
was modelled as if it were the only data available.
Then the predictive performance of the various cali-
bration models was checked using the remaining
nControls822 ‘secrect’ objects.

Finally, the results were averaged over the M
Ž .replicated experiments, as shown in Eqs. 12 and

Ž .13 .
Initial studies demonstrated that M s 100 inde-

pendent replicate Monte Carlo experiments were suf-
ficient for all practical purposes, as will be illustrated
by some results for larger simulation sets.

3.2.2. Data analysis within each of the calibration
experiments

Four levels of estimation was performed in each
replicate m, according to the theory described in Sec-
tion 1:

Calibration: Estimation of parameters in AMaxq
Ž w1 alternative models estimating b b b b . . .0 1 2 3

x.b ;AMax

Validation: Model optimisationrchoice of one of
Ž Ž .the alternative models estimation of RMSEPVal A ,

As0,1, . . . , AMax, plus choosing AOpt and conse-
ˆ .quently the final model, b ;

ŽVerification: Internal quality control estimation of
Ž . .RMSEPVer A , As0,1, . . . , AMax and,
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Model control: Checking the performance of
ˆ ŽAOpt, b, RMSEPVal and RMSEPVer estimation of

the ‘true’ prediction error in the control set, RMSEP-
.Con .

w xFor each replicate data set X y this was donem

twice.
Ž .1 Test set: For checking the test validation, the

set of nAvail s 80 samples was split into n s 40
calibration objects, nTVals20 validation test sam-
ples and nTVers20 verification test objects. The
remaining nControl s 822 samples were used as
‘secret’ control set.

Ž .2 Resampling: For checking the full resampling
with cross-validation and -verification, the data from
the same nAvails80 samples were used for both
calibration, validation and verification. Again, the
same nControls822 remaining samples were used
as ‘secret’ control set.

Results with other number of available samples
Ž .nAvail s 40 and 120 will also be reported, for
comparison.

Other ways of splitting the nAvail samples into
validation and verification test sets were also checked

Že.g., more validation samples than verification sam-
.ples ; they gave the same general conclusions and will

therefore not be reported here.
A simple extra simulation study was made for

studying the uncertainty of a final RMSEP estimate
as a function of number of objects used in the esti-

Ž .mation Matlab pseudocode :
w xnTestss 5 10 20 50 100

Ž .for is1:length nTests
Ž .nTestsnTests i ;

for Reps1:10000
Ž .fHats randn nTest,1 ;

Ž . Ž .RMSE Rep,i ssqrt fHat’)fHatrnTest ;
end % for Rep
end % for nTest
The cumulative distribution of RMSEP over the

replicates was plotted for the different numbers of test
samples, nTest.

3.3. Software

The computations were performed in MATLAB
w x9 , using the first author’s software.

Ž Ž ..Fig. 1. Available data X in a set of objects. NIR optical density spectra log 1rR vs. wavelength at Ks70 wavelength channels for a
representative set of nAvails80 whole maize samples.
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4. Results and discussion

4.1. Splitting one aÕailable data set into calibration,
( )Õalidation and Õerification sets A single replicate

Fig. 1 shows the X-data of one typical experiment
among the 100 replicated experiments. The NIR

Ž .spectra of a small set of nAvails80 maize sam-
ples, measured by reflectance analysis of ground
whole maize plants, and here represented at 70 NIR
wavelength channels. On the basis of these X-data
and the corresponding reference measurements y of
protein percentage, a multivariate calibration model is
to be estimated and assessed.

Fig. 2a,b,c illustrates in more detail how the avail-
able data in this experiment were used in the case of
test set validation and verification: The nAvails80

objects in Fig. 1 have been split at random into ns
40 objects in a calibration set, nTVals20 objects in
a validation test set and nTVers20 objects in a ver-
ification test set.

Multivariate calibration by PLSR was applied to
Ž . Ž . Ž .the ns40 objects in Fig. 2a. Eqs. 8 , 9a , 9b and

Ž .9c were used for automatically choosing the opti-
mal model rank, AOpt, which in this particular case
was found to be 13. Fig. 3a shows the predicted ŷi

Ž .vs. the measured y percent protein for the calibra-i

tion regression model that uses AOpts13 compo-
nents. The corresponding predictions in the valida-
tion test set and the verification test set are given in
Fig. 3b and c.

In the present study we actually have X- and y-
data for a much larger set of additional objects
Ž .nControls822 ; their spectra are given in Fig. 2d.

Ž .Fig. 2. Test set validation and verification: NIR spectra. The 80 available objects in Fig. 1 were randomly separated into a a calibration set
of nCals40 objects, from which the regression coefficient vectors b are estimated for several alternative models with different number ofA

Ž . Ž .PLSR components rank , As0,1,2, . . . , AMax. b A validation test set of nVals20 objects from which the optimal model rank AOpt is
Ž .estimated, and c a verification test set of nVers20 objects from which final RMSEP for the regression coefficient vector b is esti-AOpt

ˆŽ .mated. d A control set of nControls822 objects, from which the ‘true’ prediction error occurring when b is applied to the wholeAOpt

population, can be estimated.
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Ž .Fig. 3. Test set validation and verification: Predicted vs. measured y. Percentage protein measured by Kjeldahl-N abscissa and predicted
Ž . .from NIR spectra ordinate for the four sets of objects in Fig. 2a–d , using AOpts13 PLS components.

Since we are studying the analysis of small available
data sets, this larger set is presently regarded as
‘secret’—in real situations it would not be available.
The prediction performance of the model with AOpt
s13 in this ‘secret’ control set is shown in Fig. 3d.

Together, the subplots in Fig. 3 indicate that the
objects vary quite a bit in how well y and y fit to-ˆi i

Žgether, and that the fit for the calibration data Fig.
.3a appears to be better than in the three other sets.
The optimal number of components, AOpt, was

Ž .determined from the RMSEP A summary of the y-
predictions for As1,2, . . . , AMax in the validation

Ž .test set of 20 objects Fig. 3b , modified according to
Ž . Ž . Ž . Ž .the criterion in Eqs. 8 , 9a , 9b and 9c . Al-

though As15 components showed the lowest com-
Ž .puted validation RMSEP, the correction in Eqs. 9a ,

Ž . Ž .9b and 9c led to AOpts13. The RMSEP for this
Ž .test validation set ‘TVal’ is shown by the circles in

Fig. 4b, with the automatically obtained model rank
AOpts13 marked. Fig. 4a and c show the corre-
sponding RMSEP for the calibration set of 40 ob-
jects and the verification set of 20 objects. The ap-

parent true RMSEP from the control set of 822 ob-
Ž .jects, ) in Fig. 4d, is included in the three other

subplots for comparison.
It should be noted that in practical calibration sit-

uations with higher risk for non-stationarity prob-
Žlems later instrument drift or unexpected sample

.qualities , an even lower number of components
should have been used as AOpt, say, 10. However,
nonstationarity problems are considered more or less
irrelevant for the present study, since it probably af-
fects the different validation methods in the same
way. The control data set shows that AOpts13 was
about right in this particular case; all models with
10–15 components performed well.

Fig. 4 confirms that the fit in the calibration set is
too good, compared to the predictive performance in
the control set. It also shows that RMSEP in the vali-
dation and verification sets changes somewhat errati-
cally.

ŽIt may be noted that the first couple of PLSR
components have little or no predictive power for y.
This is quite common for NIR data; there are sys-
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Ž .Fig. 4. Test set validation and verification: The effect of PLSR model rank. Prediction error for y Root Mean Squared Error; RMSE vs.
Ž . . Ž .number of bilinear components ‘PLS Factors’ , for the sets of objects in Fig. 2a–d . The ‘true’ control set prediction error RMSEP )

Ž . Ž .from d is included also in a–c for comparison.

tematic optical variation between the samples, such as
diffuse light scattering and surface reflection varia-
tions, that dominate the NIR reflection measurements
Ž . .Fig. 1 with little or no relationship to y.

Was this splitting of the available data set into
three separate data sets an optimal usage of the 80
available objects’ data? What is the probability that
the different variation phenomena are sufficiently
represented in each of these three data sets?

4.2. Calibration with Õalidation and Õerification test
sets, in 100 replicate experiments

Fig. 5 shows the results from Ms100 replicated
analyses of the type illustrated in Fig. 4. The figure
shows that while RMSEP of the replicates behave
reasonably similar in the calibration set of 40 objects
Ž . Ž .Fig. 5a and the control set of 822 objects Fig. 5d ,
it varies strongly in the validation test set and the

Ž .verification test set, Fig. 5b and c , of 20 objects
each.

Ž .Fig. 6 shows the Mean Final RMSEP A of the
results in Fig. 5, computed for components A s

Ž Ž .0,1, . . . , AMax in analogy to Eq. 12 , defined at A
. Žs AOpt . The control set results Mean RMSEP

‘TCon’, ) in Fig. 6d have been included also in Fig.
6a–c for comparison. The figure shows that while the
RMSEC ‘TCal’ in Fig. 6a on the average underesti-
mates the true apparent prediction error, the valida-

Ž . Žtion test set Fig. 6b and the verification test set Fig.
.6c RMSEP on the average give results very similar

Ž .to the mean "true" average RMSEP Fig. 6d . Thus,
the RMSEP averaged over, e.g., 100 replicates was
more stabile than RMSEP of the individual repli-
cates, as expected.

In each of the 100 individual replicates, the opti-
mal number of components, AOpt, was automati-
cally selected from the minimum of the criterion in

Ž . Ž . Ž .Eqs. 9a , 9b and 9c , and the final RMSEC and
RMSEP values estimated for this replicate at AOpt
components.

Fig. 7 summarizes the results from the various es-
Ž .timators for the final RMSEP: Final RMSEC ‘Cal’ ,
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Fig. 5. Test set validation and verification: Individual replicates. RMSE for y vs. number of PLS factors A, for Ms100 replications of
randomly selecting a set of nAvails80 ‘available objects’ from the total set of 902 objects, splitting this in 40 calibration, 20 validation
and 20 verification objects, and using the remaining 822 for control, as exemplified for one replicate in Figs. 2–4.

Ž . Ž .final RMSEPVal ‘Val’ , final RMSEPVer ‘Ver’ and
Ž .the ‘truth’—the final RMSEPCon ‘Control’ . For

each of these estimators the circle represents the main
Monte Carlo results—the Mean Final RMSEP, sum-
marizing the estimated RMSEP at AOpt overm m

Ž .modelling replicates m s 1,2, . . . , M by Eq. 12 ,
Žwhen test set was used. The cross symbols will be

.explained later . The vertical bar represents " one
uncertainty standard deviation of the M replicate

Ž .RMSEP results over the replicates Eq. 13 . Thism

reflects the uncertainty of RMSEP estimates fromm
Žeach single replicate ‘experiment’. The uncertainty

of the Mean Final RMSEP results from Monte Carlo
simulations, basis for the subsequent method com-

' .parisons, is on the order of 1r M s1r10 smaller .
ŽThe figure confirms that final RMSEC abscissa

. Ž .a1 underestimates the ‘true’ RMSEP a7 , as is
well known; the present estimator of degrees of free-
dom probably renders it useless as estimator for final
RMSEP.

More significantly, the figure also shows the vali-
Ž .dation test case estimator RMSEPVal a3 to under-

Ž .estimate the ‘true’ RMSEP a7 , and therefore calls
for the use of a second test set for independent veri-
fication.

Ž .The figure also shows that the RMSEPVer a5 on
the average in fact gives a very good estimate of the

Ž .corresponding ‘true’ control RMSEP a7 .

4.2.1. Does estimating AOpt cause some oÕerfit?
Ž .Considering that the RMSEPVal A and RM-

Ž .SEPVer A results for As1,2, . . . , AMax in Fig. 6
behaved almost identically, how can they cause so
different final RMSEP estimates in Fig. 7? The an-
swer must lie in the fact that the validation test set
was used for estimating AOpt: The chosen model will
tend to fit to the measuring errors etc. in this valida-
tion test set, and therefore the final RMSEPVal un-
derestimates the true apparent RMSEP. A further
support for this hypothesis is that the variation be-

Ž .tween replicates shown as vertical bar "1 S.D. is
seen to be lower for RMSEPVal than RMSEPVer; the
estimation of AOpt seems to have removed some
residuals in the validation set that ideally should not
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Fig. 6. Test set validation and verification: Mean over 100 replications. RMSE for y vs. number of PLS regression factors A, averaged over
Ž . Ž . Ž .the Ms100 replications in Fig. 5. The ‘true’ control set prediction error RMSEP ) from the control set d is included also in a–c for

comparison.

have been drawn into the model. Hence, estimating
AOpt can cause over-fitting.

It should be noted that although RMSEPVer aver-
aged over 100 replicates may be an ‘unbiased’ esti-
mator of the ‘true’ RMSEP in the long run, its varia-
tion between individual replicates is high. RM-
SEPVer estimated from the available data in an indi-
vidual calibration experiment was sometimes much
too high or much too low.

4.3. Calibration with resampling, in the same 100
experiments

Fig. 8 shows the results with resampling instead of
using test sets, for the data in the same 100 replicate
experiments of nAvails80 objects and 822 remain-
ing control objects as those used previously with test
sets. Compared to Fig. 5 it shows that the validation
Ž . Ž .b and verification c RMSEP now behaves much
less erratically. This is to be expected, since now
there are 80 objects behind each curve, instead of just
20.

Fig. 9 summarizes the data in Fig. 8, in analogy to
Fig. 6 for the use of test sets. The ‘true’ cross valida-

Ž .tion RMSEP solid curve, Fig. 9d is included in Fig.
9a–c for comparison.

The figure shows that both the cross validation
Ž . Ž .Fig. 9b and the cross verification Fig. 9c RMSEP,
on the average, give curves very similar to the ‘true’

Ž .RMSEP curve Fig. 9d .
Fig. 9 also shows that this ‘true’ prediction error

ŽRMSEPVal, obtained with cross-validation Fig. 9d
.solid curve , is lower than that obtained with the use

Žof test set validation Fig. 6d, included in Fig. 9a–d
.as a dotted curve .

4.4. Comparison of test sets Õs. resampling

The cross-validation results are compared to the
test set results in more detail in Fig. 7. The crosses

Ž Ž ..represent the Mean Final RMSEP Eq. 12 obtained
by cross-validation estimation of AOpt , and them

vertical bar the variation range of "1 uncertainty
standard deviation of the individual modelling repli-

Ž Ž ..cates Eq. 13 . Again, the uncertainty of the Monte
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ˆFig. 7. Comparing final RMSEP of b from the different ways to use the available samples. Prediction error RMSEP for y, estimated byAOpt
Ž .four methods Calibration, Validation, Verification and Control , in each case at the PLSR rank AOpt estimated by either test set validation

Ž . Ž . Ž Ž .. Ž Ž ..AOptT, ‘o’ or by cross validation AOptX, ‘x’ : Mean rms, Eq. 12 "S.D. Eq. 13 of the 100 replicates. Same conditions as in Fig.
5Fig. 6. Vertical lines represent"1 S.D. of the final RMSEP. Solid horizontal line corresponds to the ‘true’ RMSEP when using cross
validationrverification.

Carlo results Mean Final RMSEP is smaller by a fac-
'tor of about 1r M s1r10.

A horizontal line has been drawn though the ‘true’
Ž .control RMSEP for the cross-validation case, to fa-
cilitate the visual comparisons.

Fig. 7 first of all confirms that the ‘true’ control
Ž .RMSEP in this case of cross validation a8 is, on

the average, considerably lower than that obtained by
Ž . Ž .test set validation a7 , 0.55 vs. 0.65 . The uncer-

Ž Ž ..tainty range Eq. 13 of this ‘true’ RMSEP is also
much lower than that obtained with test set valida-

Ž .tion 0.09 vs. 0.18 .
Secondly, Fig. 7 shows that the cross-validation

Ž .RMSEP a4 in the long run slightly underestimates
Ž .the corresponding ‘true’ RMSEP a8 , although

Žmuch less so than in the test set validation case a3
.vs. a7 . The variation of the cross-validation RM-

Ž .SEP a4 between replicates is much smaller than
Ž .that for the test set RMSEP a3 , but higher than the

Ž .variation of the ‘true’ RMSEP a8 .

Thirdly, Fig. 7 shows the cross-validation RM-
Ž .SEP a4 is marginally lower than that of cross-

Ž . Ž .verification RMSEP a6 , on the average rms mean
0.528 vs. 0.529. A difference was indeed expected,
since AOpt was estimated from the cross validation
data. The differences is in fact surprisingly small in
comparison to the corresponding difference between
test set validation and test set verification; this needs
further investigation.

Fig. 10 displays the distributions of the estimated
and ‘true’ RMSEP for 1000 individual replicates, un-
der the same condition shown in the previous fig-
ures. AOpt was in each replicate estimated by test set
validation in Fig. 10a and b and by cross-validation
in Fig. 10c and d. The left figures show validation
results, the right figures verification results.

ŽThe figure shows that the ‘true’ RMSEP ab-
.scissa has more narrow distributions than the corre-

Ž .sponding estimated final RMSEP ordinate in all four
subplots.
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Ž .Fig. 8. Cross-validation and cross-verification: Individual replicates. Root Mean Squared Error RMSE vs. number of PLS factors A, for
the same 100 replicates of randomly selecting a set of 80 ‘available objects’ as in Fig. 5.

Ž .Fig. 9. Cross-validation and verification: Mean over the replications. Root Mean Squared Error RMSE vs. number of PLS factors A, aver-
Ž . Ž .aged over the 100 repetitions in Fig. 8. The ‘true’ control prediction error RMSEP solid line from the control set d is also included in

Ž . . Ž .a–c . The corresponding ‘true’ control set RMSEP from Fig. 6d is included dotted line in all four subplots.
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Fig. 10. Comparison of test set and cross-validation and -verifications: Distribution of mean prediction error over 1000 replicate of 80
Ž .‘available objects’. Upper figures: Test set; Lower figures: Resampling. Left side: Validation RMSEPVal AOpt , Right side: Verification

Ž . Ž .RMSEPVer AOpt . Abscissa: ‘True’ RMSEP AOpt from control set.

There is little or no correlation between estimated
Ž .and ‘true’ RMSEP in the lower plots rs0.04 , but

Žthere is a clear correlation in the upper plots rs0.36
.and 0.55 . The reason for this difference is not yet

clear.
Comparison of the upper vs. lower subplots shows

that the estimation of AOpt by test set validation
gives higher and more widely varying final RMSEP
than the use of cross validation, both for the ‘true’ and
the estimated values, and both during validation and
verification. This is probably due to the difficulty in
obtaining precise estimates of squared summaries like
a variance or an MSE, and hence of RMSEP in small
data sets. This uncertainty in estimating RMSEP from
small test sets will now be demonstrated by a simula-
tion using separate, artificial data.

4.5. An estimated uncertainty Õariance has itself a
large uncertainty Õariance

Fig. 11 shows the estimated cumulative distribu-
tion of 10 000 replicate estimates of the final RM-

SEP in independent verification test sets. The RM-
SEP values are based on artificial data, and were
generated as explained in the Experimental part. The

Ž .simplifying assumptions are a that the true RMSEP
Ž . Ž .is known exactly s1 , b the X-data are error-free,

Ž .and c the calibration model has no estimation er-
Žrors corresponding to infinitely many calibration ob-
.jects . The only remaining variation source is inde-

pendent, identically normal distributed variation
Ž .N 0,1 , simulating, e.g., measurement noise in y and

true variations in y not predictable from X. This er-
ror will have to be sampled in the test set, and this
sampling will be more or less satisfactory, depending
on the size of the test set.

The five curves simulate verification test sets of
size nTests5, 10, 20, 50 and 100. It shows that the
smaller the test set, the more widely distributed and
hence uncertain are estimates of RMSEP in individ-
ual test sets. Approximate confidence intervals for the
estimated RMSEP around the true RMSEPs1 may
be read from the figure. For instance, when the test

Ž .set is very small nTests5 , at the confidence level
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Fig. 11. The uncertainty of an estimated uncertainty. The uncertainty in estimating RMSEP, for a simulated case where the true RMSEP
equals 1.0: Abscissa: Estimated RMSEP value; ordinate: Cumulative frequency distribution over 10 000 replications, for test sets of sizes
nTests5, 10, 20, 50 and 100.

Žas low as 80% see dots at cumulative fraction of
.casess0.1 and 0.9 the confidence interval is as wide

Ž .as 0.8 -0.5 1.3) . In contrast, for the largest test
Ž .set nTest s 100 , the 80% confidence interval is

Ž .only 0.12 -0.92 1.1) .
Hence, part of the large variation found above in

RMSEP from the present NIR test sets is probably
due to the small size of the test sets themselves,
compared to the model complexity.

It is thus important to have enough objects in the
test set, when estimating variances and standard de-

Ž .viations e.g., RMSEP . But in most practical situa-
tions, the more objects we put in an independent test
set, the less objects we have left for calibration, and
the higher will the true predictive error be.

4.6. The potential for further improÕement of the
AOpt estimation

The test set validationrverification was found to
perform less satisfactory than the cross validationr
verification, and one probable explanation is the dif-

ference in number of validation and verification ob-
jects. However, could another reason be that the

Ž Ž . Ž . Ž .method of estimating AOpt Eqs. 8 , 9a , 9b and
Ž ..9c in the test set validation or the cross validation
was suboptimal?

The two plots in Fig. 12 show the potential for
Žimprovement in the two rank estimation methods test

.set validation and cross validation , for the Ms100
replicates. In each figure the abscissa represents the
number of PLSR components used, A, and the ordi-

Ž .nate represents the ‘true’ RMSEPCon A in the con-
trol set obtained at A components Each replicate m
is represented by two connected points, one for As

Ž .the estimated AOpt m from the validation, and the
other for the A that corresponds to the minimum
value of the ‘true’ RMSEPCon itself in replicate m.

Ž .The result at AOpt m is represented by ‘o’ for test
set validation in Fig. 12a, and by ‘x’ for the cross
validation in Fig. 12b

The figure shows that for some replicates AOpt
was too low and for other replicates it was too high,
for both validation method.
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Ž .Fig. 12. Potential for further improvement in estimating optimal PLSR model rank AOpt. a Test set validation: For each of 100 replicates,
Ž .the final ‘true’ prediction error in the control set, RMSEPTCon AOpt , with AOpt estimated in validation test set, ‘o’, is connected to the

Ž . Ž .corresponding RMSEP TCon AOptCon when AOptCon was instead taken at the minimum of RMSEPTCon itself. b Cross validation: As
Ž . Ž .for a , but with prediction error in the control set, RMSEPXCon AOpt calculated using the calibration model based on all available sam-

Ž .ples in cross validation, and with AOpt ‘x’ vs. the corresponding minimal RMSEPXCon AOptCon when AOptCon was instead at the
minimum of RMSEPXCon itself.

Incidentally, Fig. 12a shows that AOpts0 was
automatically chosen in one of the 100 replicates, in
the case of using test set. Closer inspection of this
replicate in Fig. 5c revealed it had very low initial
RMSEP in the validation test set. Removing this one
abnormal replicate from the average results in Figs. 6
and 7, however, had virtually no effect on the mean
final RMSEP and its standard deviation summaries
over 100 replicates.

The results for the two validation methods in Fig.
12 are summarized in Table 1. A small underestima-
tion of the average AOpt of y0.8 and y0.6 compo-
nents could be observed for the two validation meth-
ods, respectively, with a corresponding deterioration
of the ‘true’ RMSEPCon of about 0.03 percent pro-
tein. This systematic underestimation of AOpt may

Ž .be due to the ‘punishing’ term in Eq. 7 that favours
the lower-rank solution among several almost equal
solutions. This term was in preliminary simulations
found to stabilize the rank estimation and improve

predictive ability, however. It is possible that the use
w xof local cross-validation 7 could give somewhat

Žmore optimal estimates of AOpt S. Wold, pers.
.com., 1997 , but then probably with much more

strongly underestimated cross-validation RMSEP
values. It should also be kept in mind that we here
assume a homogenous, stationary population of sam-
ples.

4.7. SensitiÕity to experimental conditions

Table 2 compares the results at the estimated AOpt
in Fig. 7, to other experimental conditions. In order
to make it easier to see the effects on final RMSEP
in the table, the results from one particular ‘basis’

Ž .condition column 4 have been subtracted from ev-
Žery RMSE result, both w.r.t. rms mean results 0.55

. Ž .subtracted and standard deviations 0.03 subtracted .
Test set validation and cross validation results are

compared explicitly at the bottom of the table.
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Table 1
Control of AOpt and the associated ‘true’ RMSEP

Ž . Ž .a Test set b Cross-
validation validation

Number of cal. objects, n 40 80
Number of val. objects, nVal 20 80

Ž . Ž .AOpt from validation 10.2 2.6 11.3 1.5
Ž . Ž .AOptCon from control set 11.0 1.9 12.7 1.7

AOpt difference y0.8 y0.6
Ž . Ž . Ž .‘True’ RMSEPCon AOpt 0.63 0.10 0.54 0.03
Ž . Ž . Ž .‘True’ RMSEPCon AOptCon 0.60 0.05 0.52 0.03

RMSEPCon difference 0.03 0.03

Model rank AOpt from validation is the model rank estimated by
Ž . Ž .a test set validation and b cross-validation, averaged over Ms

Ž .100 replicates with its standard deviation .
AOptCon is the corresponding model rank at the minimum of the
‘true’ RMSEP from the control set, RMSEPCon.

Ž Ž ..The actual ‘true’ mean RMSEP from the control set Eq. 12 with
Ž Ž ..the uncertainty standard deviation Eq. 13 are given at AOpt and

AOptCon components.
Conditions: 80 available objects, 822 control objects, 70 X-varia-
bles, 100 Monte Carlo simulation replicates.

4.7.1. Reliability of the Monte Carlo simulation re-
sults

Ž .Using 100 replicates column 4 gave almost the
Ž .same results as 1000 replicates column 1 ; hence, the

conclusions drawn on 100 replicates are regarded as
reliable.

4.7.2. Changing the number of X-Õariables
Comparison of column 4 with column 2 shows that

reducing the number of X-variables from 70 wave-
Ž .length channels average of 20 nm intervals to 28

Ž .average of 100 nm intervals in this case had little
or no influence on the results. Apparently, the NIR
information was sufficiently well distributed over the
spectrum that no loss of rank was experienced, and
the multiplexing effect of having 70 X-variables in
the PLSR model was similar to the noise reduction
effect of having averaged over wider wavelength in-
tervals.

4.7.3. Changing the number of aÕailable objects,
nAÕail

Table 2 shows that when number of available ob-
Ž . Žjects decreases from 120 column 3 via 80 column

. Ž .4 to 40 column 5 , the ‘true’ prediction error in-
Žcreases, both for test set and cross validation RMSEP

.TCon and XCon . Likewise, the standard deviations
of the RMSEP estimates increase, and the estimated
AOpt value decreases and gets a higher standard de-
viation.

The damaging effect of splitting the available set
of objects thus becomes even more evident when the
number of available objects is low: The under-esti-
mation of the ‘true’ RMSEP increases more with test

Žset validation RMSEP difference TVal y TCon:
y0.05, y0.08, y0.20 percent protein for nAvails

.120, 80 and 40, respectively than with cross valida-
Žtion RMSEP difference XVal y XCon: y0.02,

.y0.02, y0.06 percent protein . The mean loss of
predictive ability due to splitting the data set in-

Žcreases RMSEP difference TCon y XCon: 0.06,
.0.10 and 0.24% protein .

The full cross verification gave results surpris-
ingly similar to those of the full cross validation un-
der all the conditions tested, the difference being
0.001, 0.001, 0.000, 0.001 and 0.014 percent protein
for columns 1–5, respectively. The reason for this is
unclear. However, in the present case the good per-
formance of the full cross validation appears to re-
duce the need for independent verification during
cross validation.

Before drawing final conclusions from the results,
the following should be noted.

4.8. Critical parameter: limited number of aÕailable
samples

This study was performed under the conditions
where the number of objects with X- and y-data
available is limited. This is in the authors’ experi-
ence a common situation, although we have exagger-
ated it somewhat here in order to illustrate our point.
Experienced NIR users know that, e.g., 40 samples is
too little to allow good calibration in material as

Žcomplex as whole maize plants, with cross-valida-
tion the ‘true’ prediction error corresponded to an r 2

Ž Ž .2 .of only 0.82 s 1 y 0.68r1.2 , down from the
Ž Ž .2 .original 0.94 s1y 0.41r1.2 .

If there had been unlimited available data, then the
different validation and verification methods proba-
bly would probably give more similar results. If the
full leave-one-out cross validation then is considered
too time-consuming, a reduced number of cross vali-
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Table 2
Results for different estimation conditions

Column 1 2 3 4 5

Experimental conditions
a Replicates 1000 100 100 100 100
a X-variables 70 28 70 70 70
Available objects 80 80 120 80 40
Control set objects 822 822 782 822 862

Use of the aÕailable objects with test sets
Calibration 40 40 60 40 20
Validation 20 20 30 20 10
Verification 20 20 30 20 10

( )Mean model rank with standard deÕiation
Ž . Ž . Ž . Ž . Ž .AOpt TVal 10.3 2.5 10.3 2.4 10.9 2.3 10.2 2.6 8.1 3.5
Ž . Ž . Ž . Ž . Ž .AOpt XVal 11.3 1.6 11.6 1.2 11.9 1.8 11.3 1.5 10.7 2.1

( )Mean prediction errors: final mean RMSE with standard deÕiation , deÕiations from the ‘true’ results for cross Õalidation, =100
Ž . Ž . Ž . Ž . Ž .RMSEC TCal y11 9 y8 10 y11 5 y10 11 1 28
Ž . Ž . Ž . Ž . Ž .RMSEC XCal y13 2 y12 2 y12 2 y13 2 y15 7

Ž . Ž . Ž . Ž . Ž .RMSEP TVal 2 8 3 7 y2 6 2 7 17 6
Ž . Ž . Ž . Ž . Ž .RMSEP XVal y2 3 y1 3 y4 1 y2 2 7 9
Ž . Ž . Ž . Ž . Ž .RMSEP TVer 10 11 13 11 4 7 11 11 38 24
Ž . Ž . Ž . Ž . Ž .RMSEP XVer y2 3 y1 3 y4 1 y2 2 7 9
Ž . Ž . Ž . Ž . Ž .RMSEP TCon 10 6 12 7 3 2 10 6 37 14

( ) Ž . Ž . ( ) Ž .RMSEP XCon 0 0 0 0 y3 y1 0 0 13 6
( ) Ž .RMSEP XCons 0.55 0.03 subtracted from each result above

Comparison of Õalidation based on test set and cross-Õalidation, differences between the final mean RMSEP, =100
RMSEP TValyTCon y8 y9 y5 y8 y20
RMSEP XValyXCon y2 y1 y2 y2 y6
RMSEP TConyXCon 10 12 6 10 24

Ž . Ž . Ž Ž ..Comparison of various mean RMSEP AOpt results from Eq. 12 , with uncertainty standard deviations, Eq. 13 in simulations: Different
Ž . Ž .number of replicates column 1 vs. column 4 , number of X-variables column 2 vs. column 4 and different number of available objects

Ž .column 3 vs. column 4 vs. column 5 .
‘T’ and ‘X’ represent the use of test set validation and cross-validation, respectively.
‘Cal’, ‘Val’, ‘Ver’ and ‘Con’ represent calibration, validation, verification and ‘true’ control set results.

dations based on independent, randomly selected
cross validation sets of objects, will probably be just
as good. On the other hand, with that many available
samples, overfitting is not a problem, so even RM-
SEC may be expected to be a good estimator for
RMSEP.

4.9. The need for a stationary population and repre-
sentatiÕe sample selection

The assumption that the training set data are rep-
resentatiÕe for the X–y relationships in a certain large
population of objects is critical. Multivariate calibra-

tion gives best results as an interpolation method, not
an extrapolation method, especially with randomly
selected objects and a forward regression method like

w xPLSR 1 . This means that all X–y co-variation types
in the population of future objects is supposed to be
spanned representatively by the available objects, and
that the noise level in X is supposed to remain the

Žsame X and y may be said to reflect a ‘stationary
.process’ .

If, e.g., in industrial process control, the process
calibrated for is non-stationary—if new X–y co-
variation types arise over time, or the X-measure-
ments become more noisy, then the data available at
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one point in time cannot be representative for the
process at a later point in time.

In such cases the use of independent verification
test sets at later points in time is recommended, in
order to check and correct for drift. However, these

Žverification test sets should not be too small cf. Fig.
.11 . Also, this control against non-stationarity over

time should not be confused with the concept of tak-
ing out independent, more or less randomly selected,
validation and verification test sets from the avail-
able data set during the actual calibration.

4.10. Comparison to preÕious work

4.10.1. Monte Carlo simulations
w xThe data in the previous study 7 were generated

from a Beer’s Law model, with one analyte and two
interferants, each with randomly chosen spectra and
concentrations, with 20 available objects and 3000
control objects in 1000 replicates. Among other
things, various noise levels in X and y were tested,

Ž .as well as various numbers of X-variables 5 or 20
and the use of one vs. two independent test sets. The
results found with the artificial data were very simi-
lar to the present ones found with the real NIR and
Kjeldahl protein data.

However, there is still a need for further evalua-
tion, using independently programmed software.

4.10.2. Cross Õerification methodology
w xHardy et al. 6 found their double-case cross-

validation to give unacceptable predictors in some
cases were conventional cross-validation appeared to
perform well. This was not found with the present
study. There may be several reasons for the differ-
ence.

It may in part be that a different criterion for de-
termining the optimal number of components was
used. Hardy et al. rightly rejected the oÕerall mini-

Žmum of the Prediction Error Sum of Squares PRESS,
which is proportional to cross-validation RMSEP-

2 .Val , as criterion. Instead they defined AOpt as the
rank of the first minimum in the PRESS. In our ex-
perience this can be quite misleading; instead, the

Ž . Ž . Ž . Ž .modification in Eqs. 8 , 9a , 9b and 9c was used
for stabilization against incidentally choosing AOpt
too high.

A difference between our results and those of
Hardy et al. may also be in the way they imple-
mented their cross-verification, using a different rank

Ž .AOpt i for each different calibration object i s
1,2, . . . ,nCal: For each object in the main cross vali-
dation, the authors performed a full leave-one-out
cross validation on the remaining nCaly1 objects to

Ž .determine AOpt i for this object i, which was then
Ž .predicted, using the obtained AOpt i -dimensional

regression model for this cross validation repetition.
Another difference between Hardy et al.’s results

and the present results may be in the amount of input
data and how they have been analyzed: Hardy et al.
used three small data sets and had no control data. We
have averaged 100 or 1000 Monte Carlo replicates of
small data sets, each time checking the ‘true’ perfor-
mance with a control set of more than 800 real ob-
jects. The Monte Carlo simulation with artificial data
w x7 was even more extensive. The present conclu-
sions should therefore be statistically more reliable.

4.10.3. Further improÕement of the full cross Õalida-
tion

The full leave-one-out cross validation should be
further investigated in order to develop a correction
component for the slight under-estimation of the true
apparent prediction error.

ŽIt has been suggested Kim Esbensen, Lars
.Nørgaard, pers. com., 1997 to use reduced cross-

validation as a way to counter-act the slight over-op-
timism of the full cross-validation. Reduced cross-
validation could be to take out, e.g., 10 objects, in-
stead of one, in each cross-validation segment.

This means intentionally to leave some aÕailable
systematic variability types in the data as unmod-
elled ‘noise’ in RMSEPVal; they should presumably
simulate other, non-aÕailable systematic variability
types in the population. In other words, the distribu-
tion of variability types that incidentally are repre-
sented by only a few objects in the available data set
are taken as simulating the distribution of variability
types in the population that are not properly repre-
sented in the available data set. This may or may not
in some cases be valid. Little is yet known about the
distribution of distributions of interferences in vari-
ous kinds of real experimental data; it is probably a
fairly deep problem.
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5. Conclusions

For the data types and calibration conditions tested
w xhere and in the previous study 7 , the following can

be concluded.
( )1 Independent zalidation test set was wasteful

and uncertain, and gave over-optimistic estimates
of future predictive error.

When setting aside some of the available objects
as independent validation test, the ‘true’ prediction
error on the average was much higher, and showed
greater Õariability, than when all the available ob-
jects were used for calibration and full cross-valida-
tion used for estimating AOpt.

To make things worse, test set validation strongly
underestimated the resulting true apparent prediction
error.

( )2 Independent zerification test set gave, on the
average, realistic, but uncertain estimates of the
predictive error.

Setting aside yet some of the available objects as
independent verification test set gave, on the aver-
age, correct estimates of the leÕel of true apparent
prediction error. But the individual estimates had
particularly high Õariability. And the leÕel of this er-
ror was unnecessarily high, compared to that of full
cross-validationrcross-verification.

( )3 Full cross-zalidation and cross-zerification
gave very similar results.

The cross-verification gave only slightly, although
consistently higher RMSEP estimates than the cross-
validation.

( )4 Even cross-validation gave a slight over-op-
timism.

Full leave-one-out cross-validation and -verifica-
tion on the average gave a slight under-estimation of
the true apparent prediction error.

( )5 Both real and simulated data supported the
theoretically expected conclusions.

The above conclusions are supported by two very
different types of data sets, and are close to what was
expected theoretically prior to the analyses.
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