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Multivariate calibration and chemometrics
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method?
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The four most important regression methods are evaluated on very large data sets: Multiple Linear Regression
(MLR), Partial Least Squares (PLS), Artificial Neural Network (ANN) and a new concept called “LOCAL” (PLS
with selection of a calibration sample subset of the closest neighbours for each sample to predict). The Standard Er-
rors of Prediction (SEPs) are statistically tested and the results show that the regression methods are almost equal
and that the data matrices are more important than the fitting methods themselves. The types of pre-treatments
(Multiplicative Scatter Correction, Detrend, Standard Normal Variate, derivative etc.) of the spectra are too nu-
merous to be able to test all the combinations. For each test, the pre-treatment found as the best with the PLS
method is fixed for the other ones. The second part of the paper emphasises the importance of the number of sam-
ples. If any agricultural commodity, and probably any kind of product measured by an NIR instrument, can be con-
sidered as a mixture of several constituents, the databases built by collecting actual samples bringing new
information can reach hundreds, if not thousands, of samples.
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Introduction

Near infrared (NIR) spectroscopy is widely used
as a quantitative method and the main multivariate
techniques consist of regression methods used to
build prediction models. Discriminant analysis and
pattern recognition are related to qualitative analysis
and are used less intensively than the regression
methods. There are many techniques to achieve the
same goal and the user often finds it difficult to
choose the most appropriate one.

The statistical packages available to manage the
spectral data usually offer several procedures based
on different mathematical algorithms and chemo-
metric tools. Amongst the most currently used cali-

bration (or regression) procedures are Multiple Lin-
ear Regression (MLR), Principal Component Re-
gression (PCR), Partial Least Squares regression
(PLS), Local Weighted Regression (LWR), Ridge
Regression and regression methods based on Artifi-
cial Neural Network methodology (ANN).1–5

Whereas the linear methods assume that the relation-
ship between the independent and dependent vari-
ables are linear in nature, they are able to cope with
non-linear relationships.6 Other regression methods
such as Genetic Algorithm,7 Uninformative Variable
Selection8 and Interactive Variable Selection9 are
also used in multivariate calibration. These methods
are more oriented to an elimination of part of the
wavelength range.
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The aim of this paper is to compare four regres-
sion techniques (MLR, PLS, ANN and “LOCAL”).
NIR spectral databases obtained from three agricul-
tural products (fresh grass silage, wheat and whole
plant maize) and from two food products (meat and
apple) were used. The databases consist of between
380 and 2400 samples from different years of pro-
duction and were obtained with several NIR instru-
ments. In addition, the number of samples needed
for robust calibrations and the complexity of the
spectral multidimensional space are illustrated
through mixture design.

Data set description
The data sets used for the comparisons of the re-

gression methods consist of six sets of samples. The
products have been chosen to cover the whole range
of optical densities that we can expect in reflection
mode. Table 1 reports the products and the parame-
ters to be predicted with the statistics of the refer-
ence value distributions. Figure 1 represents the
average spectrum for each set. The first set is 1000
samples of grass silage measured fresh on a
NIRSystems 5000 (NIRSystems-Perstorp, Silver
Spring, MD, USA) equipped with a transport mod-
ule and within the range 1100–2498 nm. The second
is 2400 wheat samples measured by the Belgian net-
work between 1990 and 1998 on six NIRSystems
4500 instruments within the range 1300–2398 nm.

The wheat samples are ground on a Cyclotec mill
(1 mm), filled in mini-ring cups and placed on a ro-
tating drawer. The third set consists of 2250 whole
plant maize samples collected from Europe and the
USA. The samples are dried at 70°C and ground. The
spectra were collected from several NIRSystems
5000 and 6500 instruments in Europe and USA. The
fourth database concerns minced meat (pork, beef
and chicken) filled in mini-ring cups and scanned on
a NIRSystems 4500. Each spectrum is the average of
three sub-samples. The last two sets contain the
spectra of apples measured whole, either on a
NIRSystems 6500 equipped with the DCA (Direct
Contact Analyser) module, or on a Perten DA7000
(Perten Instrument, IL, USA), which is a diode array
instrument. The wavelength range of the
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Data sets Constituent N Min Mean Max SD

1. Fresh Grass Silage Protein 1000 6 14.3 23 3.1

2. Wheat Protein 2400 8 12.1 19 1.3

3. Whole Plant maize Crude fibre 2250 4 7.9 14 1.2

4. Meat Fat 650 0.5 6.0 35 7.2

5. Apple – NIRSystems Brix 775 8 12.3 17 1.5

6. Apple – Perten DA7000 Brix 380 9 13.6 19 1.4

N = number of samples; Min = minimum value; Mean = average value; Max = maximum value; SD =
standard deviation of the reference values

Table1. Data set description and statistics of the reference analyses.

Figure1. Average spectra of the six data sets as defined in
Table 1.



NIRSystems 6500 is 400–2498 nm, while the range
of the Perten DA7000 is limited to 400–1700 nm
with a 5 nm step. In both cases, each spectrum is the
average of four scans acquired around the equatorial
faces of the fruits. The optical densities cover the
whole range between 0.1 and 2.0 units.

Products with high moisture levels display non-
linearity and then the regression methods have diffi-
culty in solving the problem. As an example, Figure
2 shows the response at 1428 nm of the meat samples
as a function of moisture content.

The number of combinations to test becomes very
numerous when pre-treatments are associated with
the regression methods. The current pre-treatments
found as best for each set using PLS are kept un-
changed for the other methods. We know that this
gives a certain advantage to the PLS results, but it
was a formidable, and even unrealistic, task to test
all the possibilities. The math treatments were as fol-
lows. Fresh Grass silage: no pre-treatment followed
by a 2–5–5 derivative (2nd derivative with 5 point gap
and 5 point segment). Wheat: SNV-Detrend fol-
lowed by a 1–5–5 derivative. Whole plant maize:
SNV-Detrend followed by a 1–5–5 derivative. Meat:
no pre-treatment followed by a 2–5–5 derivative.
Apple NIRSystems: no pre-treatment followed by a
2–10–5 derivative. Apple Perten: no pre-treatment
and no derivative. It was observed that the high mois-
ture products do not like scatter correction pre-treat-
ments such as MSC, SNV and Detrend. The
influence of the water peak is too important to make
a good correction in the parts of the spectrum which

are less influenced by water and where the most in-
formation is. On the other hand, scatter correction is
appropriate for powders with variable particle size.

Regression methods
All the computing work was done using the rou-

tines included in the ISI software (Infrasoft Interna-
tional, Port Matilda, PA, USA). The data sets were
randomly split into two parts: 4/5 for the calibration
and 1/5 for the validation. MLR models are devel-
oped following a stepwise procedure which tests the
permutation at each stage before entering the next
variable. In all cases, the minimum F test on the re-
gression coefficients has been fixed at 12 and the
whole wavelength ranges have been presented for
the variable searches. With PLS, four cross-valida-
tion groups were used to fix the number of terms and,
among the X variables, every 4th data point has been
used (8 nm intervals) except for the Perten instru-
ment for which all the data points have been kept
since its resolution is already 5 nm. The number of
parameters in an artificial neural network is very
large and in this case, as we did for the pre-treatment,
we fixed most of them, even if we know that we can
miss the optimal solution. The input layer consists of
the PLS scores and the number of factors have been
fixed at a level found in the normal PLS procedure.
The number of hidden elements was three, with a
sigmoid function between the input layer and the
hidden layer and a linear function between the hid-
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Figure 2. Response of the meat samples at 1428 nm as a function of the moisture content.



den layer and the output layer. The training sessions
were restarted five times with different random
seeds. Since ANN needs an internal stop set to freeze
the best solution, the calibration sets have also been
randomly divided in the proportion 3/4 for a training
set and 1/4 for a test set to keep the original valida-
tion set unchanged. In the “LOCAL” procedure,
each “unknown sample” is spectrally compared with
the spectra of a library and the N nearest neighbours
are selected to build a temporary file. The similarity
index is the correlation between the spectra of the li-
brary and the “unknown sample”. A PLS model is
developed on this temporary file. No cross-valida-
tion is used, to speed up the system since the algo-
rithm must work in real time with an instrument
connected to the PC. The main feature of the proce-
dure is the fact that the final predicted value is
weighted according to the standard deviation of the
regression model B coefficients and to the residuals
on the X variables, which can express how well a
spectrum can be reconstructed from the PLS scores
and loadings. A main advantage of the “LOCAL”
method is the use of the spectrum of the “unknown
sample” as a guide to reach a better prediction. The
two main parameters to set up when applying
“LOCAL” are the number of samples to select and
the number of PLS terms. For each data set, an opti-
misation design was set up by varying the number of
samples from 50 to 250 in steps of 25, and the num-
ber of terms from 12 to 36 in steps of three. This
gives a factorial design of 9 × 9 or 81 runs. The re-

sults are entered and a response surface is fitted to
find the exact minimum of the SEP. The response
surface has been computed using Unscrambler® 7.5
(Camo ASA, Norway) and the figure plotted by
Minitab® (Minitab Inc., PA, USA). Figure 3 gives
the response surface of this design for the meat data
set for which the observed minimum is reached with
125 samples and 24 PLS terms.

To be able to carry out the SEP comparisons we
did not remove any outliers (neither T nor H outli-
ers).

SEP comparisons

Table 2 shows the SEP values for the six data sets.
Statistical tests have been performed on a pairwise
comparison of SEPs for the data sets, following the
procedure published by Fearn.10 Based on the stan-
dard deviations [or the SEP(C), SEP corrected for
bias] of the residual vectors coming from two mod-
els and on the R2 between these two vectors, we can
define the lower and upper limits of a 95% confi-
dence interval for the ratio of the standard deviations
following the formula 1, 2, 3 and 4. S is the standard
deviation of the n errors for each method.
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Data sets Constituent Np MLR PLS ANN LOC Nmin

1. F.G.Silagea Protein 200 1.08a 0.90b 0.95b 0.91b 60

2. Wheat Protein 500 0.27a 0.22b 0.21b,c 0.20c 30

3. W.P. Maizeb Crude fibre 450 1.02a 0.97b 0.96b 0.86c 60

4. Meat Fat 130 0.36a 0.35a 0.32a,b 0.29b 40

5. Apple NIRSyst. Brix 155 0.64a 0.60a,b 0.55b 0.60a,b 90

6. Apple DA7000 Brix 75 0.57a 0.50a 0.40b 0.60a 15

aFresh Grass Silage; bWhole Plant Maize
Np = number of independent samples of the test sets. Nmin = number of samples for which all the four
methods can not be defined as statistically different

Table 2. Data set description and comparisons of the SEPs.
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where ei is the error on sample i (= 1, …, n) and m is
the mean error or bias.
Two intermediary variables K and L are calculated:

where t n −2 0 025
2

, . is the upper 2.5% point of a t distribu-
tion for n – 2 degrees of freedom and R2 is the square
of the correlation between the error vectors by the
two methods,

Then, the two next functions define the lower and
upper confidence limits,

Based on these formulae, the comparisons of the
SEPs lead to the determination of the number of SEP
pairs with non-significant differences (marked as
superscript a, b and c in Table 2). This means that
two SEPs marked with different superscript letters
are significantly different or, conversely, two SEPs

marked with the same letters are not significantly
different. Globally, MLR is the worst method, fol-
lowed by PLS whereas ANN and LOC give the best
and similar results. On the first sample set, SEP from
MLR is different to the three others and these three
are not statistically different. Notice that for the last
set, the differences between PLS-LOC and PLS-
ANN are 0.1 in each case. PLS and LOC are “equal”,
but PLS and ANN are different, since the R2 between
the corresponding residual vectors are not the same.

We can see that the PLS and even MLR produce
good accuracy and the analysis of the residuals does
not reveal any non-linearity. The linear methods can
handle some non-linear responses providing the
combination of the predictors define a plane in the
multivariate space.11 The tests made with large data
sets allow us to conclude that ANN and the “local”
algorithm give better results. The local algorithm
needs enough information and the number of sam-
ples in the data base is important to be able to define
subsets with a sufficient number of closest neigh-
bours.

The last column of Table 2 contains the number of
samples in the data set which is the minimum (keep-
ing the SEPs and the R2s constant) to reach the
threshold of significant differences between the two
extreme SEPs in each data set. In many publications
dealing with regression method comparisons, these
statistical tests are not often used and conclusions
are taken on too small data sets.

Calibration updates and
regression coefficient stability

Using cross-validations [Standard Error of
Cross-Validation (SECV)] on a data set generally
gives an over-optimistic idea of the actual perfor-
mance of the models. When new and totally inde-
pendent samples are predicted with a “young” cali-
bration, it is very rare to get an SEP at the same level
as the SECV. In most of the databases, the samples,
even if they are “different” (of course not the repli-
cates), are processed in batches. For example, from
experimental plots, a breeder can submit 50 samples
from the same field. The 50 samples (different vari-
eties) are harvested on the same day, dried at the
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Figure 3. Response surface of the meat data with the com-
binations of the number of samples (NS) and the PLS
terms (NF).



same temperature in the same oven, ground on the
same grinder and measured on one instrument by the
same operator. The information the samples carry is
not completely independent from each other be-
cause they have been processed together. Once in-
cluded in the calibration set with previous other sam-
ples, they will be split automatically in the calibra-
tion segment and in the cross-validation segment
and then the SECV is estimated with an over optimis-
tic value.

In the experiment presented, we use totally inde-
pendent test sets, which is the only way to have a de-
termination of the actual performance of the models.
Having whole plant maize samples collected from
1986 to 1995, allowed interim models to be evalu-

ated with the samples of the succeeding years. More
details of this experiment can be found in the article
by Dardenne.12 Table 3 gives the results of the cali-
bration for starch and Table 4 the results of the vali-
dation for each interim model. Figure 4 shows the
typical behaviour of the SEC, SECV and SEP with
the interim models for four constituents. In the cali-
bration process, the SECs increase with the number
of samples, whereas the SECVs increase as well, but
at a lower rate. The differences between SEC and
SECV become smaller when the numbers of samples
increase. The number of terms used shows a ten-
dency to increase according to the number of sam-
ples. The R2 (R2C and R2V) remain almost constant.
Calibration models can be viewed as stable when the
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Mod N Min Max SEC R2C SECV R2V Tpls

90

91

92

93

94

198

245

522

709

1125

2

2

2

2

2

48

48

53

53

53

1.26

1.37

1.37

1.59

1.61

.99

.98

.98

.98

.98

1.69

1.70

1.62

1.74

1.74

.98

.97

.98

.97

.97

8

9

13

10

11

N = number of samples included in the calibration sets; Min = minimum value; Max = maximum value;
SEC = standard error of calibration; R2C = determination coefficient of calibration; SECV = standard
error of cross-validation; R2V = determination coefficient obtained by cross-validation; Tpls = number of
PLS term in the model

Table 3. Interim models for starch content in whole plant maize samples.

Model Val N SEP %H > 3

90

91

92

93

94

91–95

92–95

93–95

94–95

95

1779

1733

1448

1259

831

2.80

2.47

2.41

2.31

1.89

22

21

13

11

10

Val = validation sample set; N = number of samples; SEP = standard error of prediction; %H > 3: percent-
age of the validation samples with a Mahalanobis distance higher than 3

Table 4. Validation of the interim models on the succeeding years for starch content.



SEP values are close to the corresponding SECV val-
ues.

Statistical tests, as explained previously, can be
used to compare SEC and SECV, and when they are
significantly different we can expect to have to add
new information coming from future routine sam-
ples. Between SEP and SECV, the statistical tests ex-
ist, but they are different since the objects (samples)
are not paired. A full explanation of the statistical
tests can be found in the article by Shenk et al.13

Mixture model
For agricultural products, it becomes obvious as a

result of the previous experiment and from the
literature12,14 that many samples are needed to cover
all the sources of variation: varieties, climate, fertili-
sation, water availability, harvest stages, sample
preparation etc. Based on a theoretical view, a binary
mixture can be represented by only one dimension
(Figure 5). When the range of the two constituents is
divided by five, six points are defined and the neigh-
bourhood standardised distance between the closest
points is 0.66. Standardised distance means that the
average distance of the distances between all the
points and the centre is one. A mixture of three com-
ponents (such as meat, with protein, fat and water)
can be defined with two dimensions. As the sum of

the three components is always 100, the design is the
well-known triangle (Figure 6). If each edge is di-
vided into five intervals, 21 points are needed to
cover the space and the standardised distance be-
tween the closest points is 0.60. A design with four
components can be drawn with a tetrahedron (three
dimensions) (Figure 7). When the edges are divided
into two intervals, 15 points cover the space: four
corners, six edge centres, four face centres and the
overall centroid. When each edge is divided into five
intervals, 56 points are necessary to evenly fill the
volume and the standardised distance between the
closest points is 0.57.

The sequence can be continued with five compo-
nents: this four-dimensional design is more difficult
to draw and the number of points is 126. The number
of points can be calculated with the combination for-
mula below, where p is the number of components
(p – 1 dimensions) and r the number of intervals for
each constituent:
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Figure 4. Trends of SEC, SECV and SEP with the interim
models for four constituents (PRO = protein, CF = crude
fibre, STA = starch, OMD = organic matter digestibility).

Figure 5. Binary mixture model: 6 points, 5 intervals and
standardised neighbourhood distances of 0.66.

Figure 6. Ternary mixture model: 21 points, 5 intervals on
each edge and a standardised neighbourhood distance be-
tween the closest point equal to 0.60.



Table 5 gives the number of samples (or points) to
cover the space as a function of the number of com-

ponents into a theoretical mixture. We can notice
that the number of points increases very quickly with
the complexity of the mixture. Of course, a full fac-
torial design restricted to a mixture model is cer-
tainly not necessary in all the cases. Fortunately, oth-
erwise NIR spectroscopy would never have pro-
duced results. In the case of total linearities, the cor-
ner points would be enough to calculate the models.
But as soon as the shapes of the relationships are not
well known, and especially when the “LOCAL” con-
cept is applied, the spectral space must be evenly
filled.

On the basis of only the main constituents, a for-
age sample can be considered as a mixture of water,
ash, proteins, fibre, starch and sugar. But these con-
stituents consist of hundreds of different molecules.
In practise, a forage database can be reduced to 15 to
30 principal components including the variation
coming from the sample preparation. Considering
the complexity of such mixtures, it is not surprising
to see how it is difficult to select samples to cover all
the variations, and many years, as well as thousands
of screened samples, are needed to obtain robust cal-
ibrations.
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Const. Dim. Nspl Const. Dim. Nspl Const. Dim. Nspl

3 2 21 13 12 6188 23 22 80730

4 3 56 14 13 8568 24 23 98280

5 4 126 15 14 11628 25 24 118755

6 5 252 16 15 15504 26 25 145506

7 6 462 17 16 20349 27 26 169911

8 7 792 18 17 26334 28 27 201376

9 8 1287 19 18 33649 29 28 237336

10 9 2002 20 19 42504 30 29 278256

11 10 3003 21 20 53130 31 30 324632

12 11 4368 22 21 65780 32 31 376992

Const. = number of constituents; Dim. = dimension; Nspl = number of samples

Table 5. Relationship between the number of constituents in a theoretical mixture and the number of points necessary to
cover the space with five intervals on each constituent.

Figure 7. Quaternary mixture model: 15 points with two
intervals on each edge; 56 points with five intervals and a
standardised neighbourhood distance between the closest
point equal to 0.57.
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Conclusion

A first conclusion is that multivariate linear re-
gression methods can deal with non-linearity and
produce accurate models for the analysis of agricul-
tural products. The differences between the methods
(MLR, PLS, ANN and “LOCAL”) are quite small
and more work and time must be dedicated to col-
lecting the right spectra and good reference values
than to testing several methods. Also, when methods
are compared, the set of samples must be wide
enough to be able to compare the results. Adequate
statistical tests on the SEPs coming from sets of
paired samples must be done before reaching any
conclusion.

A second comment is the difficulty of obtaining
robust and stable equations over time. During the
calibration process, the gap between SECVs and
SECs informs the user that he will have to update the
calibration when new samples arrive. New samples
must be added to the calibration data base while the
SECV remains higher than the SEC and of course
while the SEP is higher than the SECV. In the latter
case, other statistical tests can be done to compare
SECV and SEP. With big databases, it has been
shown that SEC, SECV and SEP can be very close
providing enormous effort has been taken in select-
ing samples and determining the reference values.

Based on theoretical mixture models, the com-
plexity of the agricultural products has been shown
and thus the need for wide databases. If it is possible
to define the population boundaries, it is much more
difficult to fill all the intervals in the multidimen-
sional space. We believe that a calibration data base
can always be improved and should be open to new
samples, especially with the concept of the
“LOCAL” calibration.
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