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Improved algorithm for clustering tendency
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Abstract

A modification of the Hopkins algorithm for clustering tendency is described in this study. Detection of clustering is an
important problem in multivariate calibration. With this modified algorithm, the automatic detection of clusters, before any
modelling, is carried out. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

An important subject to investigate in multivariate
calibration is the homogeneity of the data. In order to
guarantee the quality of the model, it is preferable that
a data set be as homogeneous as possible [1]. If the
data set is clustered, i.e. when the data set contains
subgroups of similar objects inside the given popula-
tion, one might prefer to use local modeling methods
instead of global methods [2,3].

There are many possibilities used to detect cluster-
ing. The simplest way is the use of plots. A principal
component plot can be used to give a good represen-
tation of the data because the highest amount of vari-
ance is explained by the first eigenvectors. In some
cases, however, the clustering will become apparent
only in plots of higher PCs so that one should look at
several score plots. This is the case for the data stud-
ied here as an example. They do not show clustering
in the PC1–PC2 plot, but do so in the PC1–PC3 plot.
Another useful type of plot is the plot of they-values
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(characteristic to be modelled) because clustering of-
ten becomes evident in the measured property (Figs.
1 and 2). Fig. 2 represents the moisture values for 100
NIR spectra of wheat samples.

An automatic warning using numerical criteria that
clusters are present would be a useful diagnostic in
multivariate calibration software. Hopkins statistic
[4,5] has been proposed, but does not function well
in certain cases. In this paper, a variant that should
perform better in many cases is proposed.

2. Theory

Hopkins statistic is based on the null hypothesis,H0,
that the objects in a data set are uniformly distributed
in multidimensional space and examines whether the
observed distribution differs from this assumption.

In order to achieve this, the Euclidean distance from
an experimental object to its nearest neighbour (W) is
compared with the distance from an artificial object to
the nearest real object (U). Artificial and experimental
objects are randomly selected over the whole space.
If there is a clustering tendency,W will tend to be
smaller thanU [6].
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Fig. 1. PC plot (PC1 vs. PC3) for wheat data.

The equation for the Euclidean distance between
two objectsj and j′ is

Djj ′ = (6k(xjk − xj ′k)
2)1/2 (1)

wherek= 1,. . . are the variables.

Fig. 2. Y plot for wheat data.

The Euclidean distances (U andW) are calculated
and the minimal distances for both objects are found.
These distances are summed for all objects and
used for the determination of Hopkins statistic (H)
[4,5]:

H = 6NU

6NU + 6NW
(2)

whereN is the number of selected objects.
This procedure is iterated several times with new

random selections andHaverageis calculated.Haverage
can range from 0.5 when distancesU andW are equal
(homogeneous set) to 1 whenU is much larger than
W (extreme clustering). IfH is greater than 0.75, then
there is more than 90% confidence that the null hy-
pothesis can be rejected.

Forina [7] proposed a modification of this equation
that should yield a more stable measure of the cluster-
ing tendency. In this study, a newH∗ is calculated by
usingNreal (total number of objects) and an arbitrary
Npseudo (because the reliability ofH depends onN)
in order to obtain a clustering index that ranges from
0 to 1 with the critical value equal to 0.5. Eq. (2) is
modified as follows:
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Fig. 3. Univariate space. Artificial (*) objects selected randomly.

H ∗ = Nreal6NU − Npseudo6NW

Nreal6NU + Npseudo6NW
(3)

One important step in this modification is to select
correctlyNpseudo; it is recommended that a large value
be taken for it (∼80% of the objects).

Artefacts are possible in the original version and in
the modification. Random selection within the domain
bounded by univariatex-values (Fig. 3) leads to selec-
tion of points outside the multivariate limits of the ex-
perimental points. The Euclidean distanceU becomes
very large,H (Eq. (2)) would also be very large and
clusters would be suspected when they do not exist.
Even when one works in the PC space, for example
PC1 versus PC2 (Fig. 4a), the same problem can be
found although to a lesser extent. It is therefore nec-
essary to assure that all artificial objects are selected
only within the boundaries of the experimental objects
(Fig. 4b).

To do this, a boundary is constructed through the
extreme experimental objects around the whole data
set [8] in the score plot. The first vertex of this fig-
ure is obtained as the point at the maximal distance
of the centroid (mean of each of the two respective
PCs), and a line b1 (Fig. 5a) is drawn between the
centroid and this point. The minimum distances (d1)
from each experimental point to b1 and the distances

(d2) from these experimental points to the first vertex
are calculated by using Eqs. (4) and (5). The next
selected vertex is the point that forms a maximal
angle between the line connecting the first chosen ver-
tex and the candidate vertex and the line b1 according
to A= arcsine (d1/d2):

d1 = |Ax + By + C|
(A2 + B2)1/2

(4)

whereAx+ By+ C is the equation of the line.

d2 = ((x2 − x1)
2 + (y2 − y1)

2)1/2 (5)

wherex1,2 andy1,2 are the coordinates of each point.
A line (g1) between the two vertices is drawn. For

the next selected vertex, the distances from each ex-
perimental point to the last selected vertex are calcu-
lated and the new selected vertex is the point for which
the line forms a maximal angle with g1, a line g2 is
drawn and so on.

Once the boundary is complete, random real ob-
jects and artificial objects are selected as before. Only
artificial objects inside the boundary are included.
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Fig. 4. PC1–PC2 plot. Artificial (*) objects selected randomly. (a) Artificial objects are selected over the univariately-determined space
and (b) artificial objects are selected only in the range limited by the experimental objects.

3. Experimental

The data set consists of 100 NIR spectra of wheat
samples (X-matrix) for the determination of moisture
(y-matrix). The spectra were measured between 1100
and 2500 nm at each 2 nm interval in a Bran+ Luebbe
instrument. The data were corrected for offset, and are
known to consist of two clusters.

This data set was obtained from the database of
Chemometrics and Intelligent Laboratory Systems [9].

4. Computer programs

All procedures were programmed in Matlab for
Windows, version 4.0.
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Fig. 5. Construction of the boundary.

5. Results and discussion

Hopkins algorithm is repeated several times. Cent-
ner et al. [10] recommend choosing the number of rep-
etitions so that each of them uses more than 5% of the
total population. In their article, they present a table
with all combinations of population size and number
of iterations. According to this table, it was decided
that three repetitions and 10% of the population be
used.

Three examples are proposed to demonstrate the
modified algorithm. Before using the algorithm, a vi-
sual first study was performed to look for inhomo-
geneities, such as outliers and clusters. To do this, the
PC plots are used. The PC plots for the centered data
are given in Fig. 6. In the PC1–PC2 plot (Fig. 6a), no

clusters were found, but when the PC1–PC3 plot (Fig.
6b) is studied, two clusters become evident. Outliers
can also be found but the Hopkins algorithm will be
applied before their elimination to study their possible
influence.

In the space of PC1 versus PC3 where clusters are
present, the original and the modified algorithm were
applied and the results are presented in Table 1.

Both algorithms detect the presence of clusters, but
the modified Hopkins algorithm gives clearer results
than the original because the value for the Hopkins
statistic (Haverage) is larger. The original algorithm
yields results that are only marginally higher than the
critical 0.75 value. The modification introduced by
Forina combined with the modification proposed here
gives still better results for this case. Table 1 shows
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Fig. 6. (a) Plot of PC1 and PC2 after centering and (b) plot of
PC1 and PC3.

the results and the best models are indicated by the
boldfacedH-values.

Fig. 7 shows the selection of the experimental points
by both algorithms.

The next example is a case where no clusters are
present and both methods (original and modified algo-

Table 1
Hopkins statistic for an example with clear clusters

Haverage Hmin Hmax Range

Original algorithm 0.7767 0.7333 0.8106 0.0772
Modification Forina (Nps= 20) 0.8312 0.7784 0.8987 0.1204
Modification Forina (Nps= 80) 0.5691 0.5084 0.6299 0.1215
Modified algorithm 0.8777 0.7957 0.9581 0.1624
Modified algorithm+ modification Forina (Npseudo: 20) 0.9195 0.8652 0.9718 0.1066

Fig. 7. Experimental (s) and artificial (*) objects selected ran-
domly for one iteration. (a) Original Hopkins algorithm; (b) mod-
ified Hopkins algorithm.

rithms) give good results. This example is useful to see
the limits of clustering detection of both methods and
shows that the modified algorithm also gives clearer
answers even in the case where no clusters are present.
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Fig. 8. Experimental (s) and artificial (*) objects selected ran-
domly for one iteration. (a) Original Hopkins algorithm; (b) mod-
ified Hopkins algorithm.

Table 2 and Fig. 8 show the results for this example.
In both cases, a value less than 0.75 is obtained

but theHaveragefor the modified algorithm is better
because, as no clusters exist, a smaller value for the

Table 2
Hopkins statistic for an example without clusters

Haverage Hmin Hmax Range

Original algorithm 0.6635 0.6120 0.7317 0.1197
Modification Forina (Nps= 20) 0.7995 0.7489 0.8731 0.1242
Modification Forina (Nps= 80) 0.4079 0.3888 0.4170 0.0181
Modified algorithm 0.6089 0.4383 0.6948 0.1909
Modified algorithm+ modification Forina (Npseudo: 20) 0.6423 0.4742 0.7102 0.1237

Fig. 9. Experimental (s) and artificial (*) objects selected ran-
domly for one iteration. (a) Original Hopkins algorithm; (b) mod-
ified Hopkins algorithm; arrow: point added to the data set.

Hopkins statistic is expected. The selection ofNpseudo
in Forina’s algorithm seems to be important as rather
bad results are obtained whenNpseudois 20 but good
results are obtained when it is 80.
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Table 3
Hopkins statistic for an example without clusters

Haverage Hmin Hmax Range

Original algorithm 0.7933 0.7731 0.8246 0.0515
Modification Forina (Nps= 20) 0.8244 0.7790 0.8905 0.1114
Modification Forina (Nps= 80) 0.4700 0.4443 0.4956 0.0513
Modified algorithm 0.6707 0.6443 0.700 0.0557
Modified algorithm+ modification Forina (Npseudo: 20) 0.7012 0.6742 0.7402 0.1237

For the next example, the data set was modified;
the modification consists of the introduction of an
extreme value.

In this example, the application of the two algo-
rithms leads to the results presented in Table 3.

In the first and second cases, a value ofH larger than
0.75 is obtained, so that it would be wrongly concluded
that clusters are present. Concerning the algorithm by
Forina, the same conclusions are reached as for the
preceding example and the PC plots also give the same
results as the previous example (Fig. 9).

The presence of the extreme value is responsible and
we can conclude from the results in this data set that
the new algorithm is less influenced by the presence
of extreme values.

6. Conclusions

The modified Hopkins algorithm enables an au-
tomatic warning that clustering occurs. The results
obtained agree to a great extent with the visual obser-
vation on PC plots. The boundary drawn through the
multivariate limits of the experimental points allows
to obtain better and more reliable results in order to

detect and quantify clusters. In certain cases, good
results are also obtained with Forina’s method. These
results can be better than those of the original Hopkins
algorithm, but this depends on the choice ofNpseudo.
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