
Ž .Chemometrics and Intelligent Laboratory Systems 55 2001 101–108
www.elsevier.comrlocaterchemometrics

Direct Orthogonalization: some case studies

J.A. Fernandez Pierna a, D.L. Massart a,), O.E. de Noord b, Ph. Ricoux c´
a ChemoAC, Pharmaceutical Institute, Department of Pharmaceutical and Biomedical Analysis, Vrije UniÕersiteit Brussel,

Laarbeeklaan 103, B-1090 Brussels, Belgium
b Shell International Chemicals B.V., Shell Research and Technology Centre, P.O. Box 38000, 1030 BN Amsterdam, Netherlands

c Elf-Centre de Recherche, B.P. 22, F-69360 Solaize, France

Received 6 July 2000; accepted 21 November 2000

Abstract

The effects of a Direct Orthogonalization before applying PCR and PLS are studied for several data sets. In all cases the
number of PLS factors needed to obtain the optimal model decreases but the number of PLS and DO factors together is the

Ž .same as when PLS alone is used. However, the quality of the calibration model measured as RMSECV is usually not better
Ž .when using DO, nor does the predictive quality RMSEP change significantly in most cases. The method may be used,

however, to obtain a better understanding of the variation present in the data. q 2001 Elsevier Science B.V. All rights re-
served.
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1. Introduction

Multivariate calibration establishes a relationship
between a variable to be predicted, for instance con-
centration, and several predicting variables such as
absorbances at different wavelengths. This relation-
ship is obtained in two steps. In the first one, the val-
ues of the predicted and predicting variables are
known and used to build a calibration model. In the
second one this model is used to predict new sam-
ples. Methods as PCR or PLS are used but it often

Ž .happens that some of the variables do not only con-
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tain relevant information. They can therefore in-
w xcrease the imprecision of the latent variable model 1 .

Two main methods have been proposed to cope
with this problem. The first is to decrease the num-

w xber of variables. AIntermediate Least SquaresB 2
replaces small loadings by zeros by using a pre-
pecified threshold value. This means that certain
variables are eliminated or become less important.

w xAUninformative Variable Elimination in PLSB 3
eliminates variables that are clearly uninformative.

The second method is to apply pre-treatments such
Ž . w xas multiplicative signal correction MSC 1,4 or

second-order derivatives. They eliminate background
information but can also eliminate some information
important to build the model.

Ž .Recently, Orthogonal Signal Correction OSC
w x Ž .5–7 , and Direct Orthogonalization DO were pro-
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Table 1
RMSECV values using from 1 to 11 PLS components for the polyether polyol data

Number Number of PLS components
of DO 1 2 3 4 5 6 7 8 9 10 11
components

0 9.780 4.676 4.164 3.427 2.631 2.102 1.719 1.860 2.196 2.451 2.444
1 4.648 4.107 3.336 2.621 2.058 1.684 1.793 2.068 2.266 2.200 2.155
2 4.265 3.308 2.403 1.911 1.556 1.705 1.932 2.095 2.013 1.957 1.549
3 3.543 2.411 1.940 1.504 1.655 1.813 1.970 1.904 1.812 1.483 1.408
4 2.794 2.324 1.587 1.683 1.724 1.847 1.737 1.553 1.210 1.777 1.102

w xposed 8 . The main idea of DO consists of removing
a number of factors from the data by building an or-
thogonal model with scores independent of the pre-
dicted variables being modelled. This orthogonal part
is removed from the original data in order to make a
regression model on the remaining part of the data.
Orthogonality means that these removed factors
should account for as much as possible of the varia-
tion in the data not related to the concentration.
Therefore, DO is a pre-treatment such that the varia-
tion in X that is orthogonal to y is subtracted in or-
der to make a signal correction that does not remove
relevant information from the data.

This method is studied in this article on several
data sets, one or several DO components are ob-
tained at a time and removed from the original data
in order to obtain a better understanding of the varia-
tion present in the data.

2. Experimental

For this study, four different data sets were used.
The first data set consists of NIR data collected on
gasoil derivatives in order to predict the cloud point.

The second one consists of polymer data to measure
the fluidity index. The third data set consists of NIR
data for polyether polyols to model the hydroxyl
number. This data set was repeatedly studied for other

w xpurposes 9–11 . The fourth data set consists of
polymer data to model the viscosity. Each data set
was split into a calibration set and a test set by using

w xthe Duplex algorithm 12 . All calculations were im-
plemented in MATLABe for WINDOWSe version

Ž .5.2 The MathWorks .

2.1. The cloud point data

This data set consists of 92 gasoil spectra. The in-
strument used to collect this data was an ABB
Bomem MB154S Spectrometer with a resolution of 4
cmy1. A one-point baseline correction at 4780 cmy1

was applied. Fifty-two sample spectra were used for
calibration, while the remaining 40 were used for
model validation.

2.2. The polymer 1 data

This data set consists of 609 spectra measured be-
tween 400 and 2500 nm, each 2 nm, collected using

Table 2
RMSECV values using from 1 to 11 PLS components for the polymer 1 data

Number Number of PLS components
of DO 1 2 3 4 5 6 7 8 9 10 11
components

0 0.548 0.522 0.461 0.411 0.373 0.369 0.367 0.366 0.365 0.365 0.362
1 0.527 0.467 0.413 0.373 0.369 0.368 0.366 0.365 0.366 0.362 0.361
2 0.493 0.417 0.373 0.370 0.368 0.366 0.365 0.366 0.362 0.361 0.366
3 0.431 0.375 0.371 0.369 0.367 0.366 0.366 0.363 0.361 0.366 0.359
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Table 3
RMSECV values using from 1 to 11 PLS components for the gasoil data to model the cloud point

Number Number of PLS components
of DO 1 2 3 4 5 6 7 8 9 10 11
components

0 2.257 1.947 1.937 1.800 1.548 1.456 1.511 1.520 1.469 1.460 1.445
1 2.010 1.991 1.838 1.570 1.468 1.520 1.498 1.447 1.411 1.451 1.455
2 2.613 2.184 1.700 1.620 1.635 1.548 1.494 1.414 1.455 1.366 1.316
3 2.507 1.723 1.648 1.650 1.541 1.442 1.386 1.421 1.323 1.256 1.259
4 1.716 1.622 1.633 1.541 1.410 1.357 1.395 1.290 1.224 1.219 1.167

a NIRSystem 6500 in granulated samples. For calcu-
lation of a calibration model, 400 sample spectra were
used. The remaining 209 sample spectra were used
for model validation.

2.3. Polyether polyols

This data set consists of 84 samples measured be-
tween 1100 and 2158 nm, each 2 nm. These spectra
were measured on a Pacific Scientific 6250 Scanning

Ž .Spectrometer NIRSystem, Silver Spring, MD . For
calibration, 60 sample spectra were used to model the
hydroxyl number in mg KOHrg and the remaining
24 sample spectra were used to validate the model.

2.4. The polymer 2 data

This data set consists of 305 NIR samples of
polymer measured at 700 wavelengths to model the
viscosity. These spectra were collected using a
NIRSystem 5000 in powdered samples. During the
building of the model, 18 samples were detected as

outliers and they were removed. Finally, 210 sample
spectra were used for calibration and the remaining 77
sample spectra were used to validate the model.

3. Results and discussion

The data sets were split into two independent sub-
sets, a calibration set and a test set. The number of
factors to retain in the model was calculated on the
calibration set, and the test set was used to obtain
prediction errors.

The calibration model was obtained in the follow-
ing way. First, one DO component was obtained, and
after subtraction from the raw data, a PLS or PCR
model was constructed. The number of PLS or PCR
factors was determined by leave-one-out cross-vali-
dation. This was repeated for two DO factors, etc.
The PLSrPCR models were also obtained for the raw
data, i.e. without subtraction of any DO component.

Ž .The root-mean-square error RMSE of residuals
from the final PLS or PCR model for calibration and

Table 4
RMSECV values using from 1 to 14 PLS components for the polymer 2 data

Number Number of PLS components
of DO 1 2 3 4 5 6 7 8 9 10 11 12 13 14
components

0 0.1096 0.0490 0.0414 0.0356 0.0309 0.0272 0.0239 0.0227 0.0198 0.0170 0.0163 0.0145 0.0139 0.0134
1 0.0490 0.0413 0.0355 0.0307 0.0270 0.0238 0.0226 0.0196 0.0169 0.0162 0.0144 0.0138 0.0133 0.0132
2 0.0490 0.0393 0.0317 0.0277 0.0242 0.0228 0.0200 0.0170 0.0162 0.0144 0.0138 0.0132 0.0131 0.0129
3 0.0491 0.0345 0.0293 0.0253 0.0233 0.0210 0.0170 0.0163 0.0143 0.0137 0.0132 0.0130 0.0129 0.0127
4 0.0420 0.0331 0.0290 0.0243 0.0225 0.0174 0.0165 0.0143 0.0137 0.0132 0.0131 0.0129 0.0127 0.0125
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test data sets was calculated by using the following
equation:

2RMSEs yyy rnŽ .ˆÝ(
n

where y is the value of y predicted for each objectˆ
at each model complexity considered, y is the re-
sponse and n is the number of objects from the con-
sidered data set.

An internal validation can be performed using the
calibration data set. Tables 1–4 show the RMSECV
Ž .root-mean-square error in cross-validation values
obtained after the use of PLS. The first row shows the
values when no DO component is removed and the
boldfaced RMSECV value indicates the optimal
complexity of the model that has been determined as
the complexity at which the first minimum RM-
SECV is encountered. The next rows in the table
show the RMSECV values when one to four DO
components are removed. It is evident from the table
that each time a DO component is removed, the opti-
mal number of PLS factors decreases.

One can see in Table 1 that for the polyether polyol
data, the optimum RMSECV value using three DO

Žfactors and four PLS factors decreases a little ;
.12.2% compared to PLS without any DO pre-treat-

ment. It is noteworthy that for each model, the sum
of the number of DO factors and the number of PLS
factors yields an optimal RMSECV constant and
equal to 7.

In Table 2 one can see the results for the polymer
1 data. It shows that the RMSECV value for raw data
by using PLS without DO for the optimal complexity
Ž . Ž9 is 0.365 or 0.369 with an optimal complexity of

w x6 if a simple randomization test 13,14 is used to de-
.termine this optimal complexity . Each time a DO

Table 5
RMSEP for PLS models for the polyether polyol data

Number Number RMSEP
of DO of PLS
components components

0 7 1.748
1 6 1.747
2 5 1.744
3 4 1.731
4 3 1.715

Table 6
RMSEP for PLS models for the polymer 1 data

Number Number RMSEP
of DO of PLS
components components

0 9 0.376
1 8 0.377
2 7 0.379
3 6 0.379

component is removed, almost the same value is ob-
tained and here also the total complexity remains al-

Ž .ways the same 9 or 6 . The same results are ob-
Ž .tained in Table 3 total complexity of 6 for the cloud

Ž .point data and in Table 4 complexity of 14 for the
polymer 2 data.

Therefore, in all cases, each time a DO compo-
nent is removed, the RMSECV value changes but the

Ž .total dimensionality DOqPLS remains the same.
As a first conclusion, one can say that when only

internal validation is considered, the results do not
improve very much with increasing number of DO’s
Žin our examples only the first one improves as com-

.pared to the original data . The total number of fac-
Žtors in the full model retained PLS-factors q

.subtracted DO’s is always the same. The complexity
of the model does not really change.

An external validation was performed using the
test data set. Tables 5–8 show the values for the
RMSEP using the optimal PLS-model for each num-

Ž .ber of DO’s. In Tables 5, 6 and 8 , one can see that
the RMSEP value does not really change with the to-
tal number of factors and Table 7 shows that for this
case, the prediction becomes worse with an increas-
ing number of DO components.

Table 7
RMSEP for PLS models for the gasoil data to model cloud point

Number Number RMSEP
of DO of PLS
components components

0 6 1.469
1 5 1.474
2 4 1.621
3 3 1.847
4 2 1.836
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Table 8
RMSEP for PLS models for the polymer 2 data

Number Number RMSEP
of DO of PLS
components components

0 14 0.0155
1 13 0.0155
2 12 0.0157
3 11 0.0159
4 10 0.0160

DO provides some insight in the data, but no new
information was obtained as compared to the infor-
mation already available from studying PCA and PLS
scores and loadings. Consider the polyether polyol
data. The PC1–PC2 score plot of these data is shown
in Fig. 1. Two main clusters can be seen because dif-
ferent product types are present, with different chem-
ical structures, making the data set inhomogeneous.

The heterogeneity of the data is due to differences
in the chemical structure of the samples. A previous

w xstudy performed by Jouan-Rimbaud et al. 9 showed
that PC1 was a descriptor of the type of CH groups,

Žthe second PC was a descriptor of the OH groups and
therefore related to the hydroxyl number, the charac-

.teristic that is being determined and that the PC3
described the presence of water in samples. These
three PCs explain more than 95% of the variance in
the data.

In Fig. 2a and b the first and second PCs when no
DO component was removed are plotted vs. the hy-

Ž .Fig. 1. PC plot PC1 vs. PC2 for the polyether polyol data. Cir-
cled objects: objects discussed in the text.

Ž . Ž . Ž .Fig. 2. ` Objects of cluster1, ) objects of cluster2. a Hy-
Ž .droxyl number vs. PC1 when no DO component was removed. b

Hydroxyl number vs. PC2 when no DO component was removed.
Circled objects: objects discussed in the text.

droxyl number. For the second PC, the obtained cor-
relation is better as could be expected. Clusters are
also evident along both PCs. The first PC explains

Žalmost 60% of the variance and the second PC re-
.lated to the response almost 33%. When one DO

component was subtracted, most of the existing vari-
Ž .ance before DO 79.34% has been removed. PC1

now becomes the PC most correlated with the hy-
droxyl number with 82% of explained variance com-

Ž .pared to 8% for the PC2 Fig. 3a and b .
w xJouan-Rimbaud et al. 9 determined the wave-

lengths most important in relation to the correlation
between the absorbance and the hydroxyl number.

They found that the wavelength with the highest
correlation coefficient was 1430, and the effect of
applying the DO method can also be seen when the
absorbance at this wavelength is plotted against the
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Ž . Ž . Ž .Fig. 3. ` Objects of cluster1, ) objects of cluster2. a Hy-
Ž .droxyl number vs. PC1 when one DO component was removed. b

Hydroxyl number vs. PC2 when one DO component was re-
moved. Circled objects: objects discussed in the text.

Ž .hydroxyl number Fig. 4a and b . The improvement
is also evident.

It is interesting to investigate what the effect of the
DO method is on the variation in the data. To do this,

Ž .PCA Principal Component Analysis is applied to the
original matrix and to the matrix after removing sev-
eral DO components.

PCA score plots are obtained for the centered raw
data and the data after applying DO. In Fig. 1 one can
see the score plots for the original data. Two main
clusters are evident in the PC1–PC2 score plot. Each
time a DO component is removed, a PC plot is ob-
tained and these score plots are also shown in Fig.
5a–c.

Ž .After removal of DO1 first DO component most
of the points corresponding to different clusters merge
together in one cluster. To check this grouping, sev-

eral points belonging to both clusters are outlined to
follow their changes. In Fig. 1, objects can be seen
in the original data space. Fig. 5a–c shows that after
DO, these points merge in the same group. Objects
1, 4, 6, 11 and 13 are extreme points of several elon-
gated clusters in Fig. 1 and after DO, take on ex-
treme positions in the main cluster. The fact that they
are extreme in hydroxyl number remains, but the dif-
ferences, not relevant for hydroxyl number, have dis-
appeared. Objects 12, 23 and 49, for instance, are part
of different clusters in the original data space, but
their differences disappear after subtraction of one
DO. The percentage of variance explained for each
PC is shown in the plots and it is easy to see that the
first PC becomes more and more important each time
a DO component is removed. This was also demon-

w xstrated by Andersson 8 .

Ž . Ž . Ž .Fig. 4. ` Objects of cluster1, ) objects of cluster2. a Hy-
droxyl number vs. the absorbance at 1430 nm without DO compo-

Ž .nent. b The hydroxyl number vs. the absorbance at 1430 nm with
one DO component. Circled objects: objects discussed in the text.
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Ž . Ž .Fig. 5. PC plot PC1 vs. PC2 for the polyether polyol data. a
Ž . Ž .With one DO component, b with two DO components, c with

three DO components. Circled objects: objects discussed in the
text.

In Fig. 6 the loading plot for the first PC is shown.
This plot allows to identify spectral regions that are
important in describing the data. The peak at 1690 nm

Fig. 6. Loading plot for PC1.

is responsible for the inhomogeneity of the data: the
objects belonging to one of the clusters show a peak
at this wavelength, the objects belonging to the other
cluster do not. The cluster identity of a sample de-
pends on the chemical structure. Absorption at 1690
nm indicates first the CH stretch overtone. The role
of this variable is therefore to bring into account the
difference between the two clusters.

After the subtraction of one DO component, the
variation in the spectra is reduced especially for the
wavelength more important for the clustering ten-
dency, the variables that are not relevant for y have
been removed and differences between samples dis-
appear. The loading plot in Fig. 7 shows high load-

Žings for the peaks related to OH around 1430 and
.2100 nm .

Fig. 7. Loading plot for PC1 after removing one DO component.
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Fig. 8. Y pred. vs. Y test with the removed part for the polyether
polyol data.

In order to verify that the removed part contains
only irrelevant information concerning the response,
a calibration model was made by using only informa-
tion in the first DO component. The RMSECV value
for this model is 83.9 and Fig. 8 shows the predicted
y value vs. y test. It shows that there is no relation-
ship between them, they are indeed uncorrelated and
the DO component represents information not related
to y.

4. Conclusions

Ž .Direct Orthogonalization DO shows similar re-
sults for the four data sets. The number of PLS fac-
tors decreases compared to the number of factors in
a PLS without DO pre-treatment, but at the expense
of increasing the number of DO factors that are nec-
essary to remove irrelevant information. The total

number of factors to be used remains constant for al-
most the same RMSECV value when only calibra-
tion is considered. Using DO with PCR leads to worse
RMSECV values compared to PLS. For the same
model complexity, more DO components should be
removed, and therefore the total number of factors
Ž .PCRqDO increases considerably.

The results for PLS and PCR in prediction do not
change or become worse. With DO no better results
are obtained than with classical pre-processing meth-
ods applied in PLS or PCR regression. Removing
Y-orthogonal factors allows, however, to obtain a
better understanding of the variation present in the
data, which may be useful.
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