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Abstract

If a prediction sample is different from the calibration samples, it can be considered as an outlier in prediction. In this work,

two techniques, the use of the uncertainty estimation and convex hull method are studied to detect such prediction outliers.

Classical techniques (Mahalanobis distance and X-residuals), potential functions and robust techniques are used for comparison.

It is concluded that the combination of the convex hull and the uncertainty estimation offers a practical way for detecting

outliers in prediction. By adding the potential function method, inliers can also be detected. D 2002 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Once a multivariate calibration model is built, it is

used to predict a characteristic (e.g. a concentration of

a constituent) of new samples. If the prediction sample

is inconsistent with the calibration data, it is a pre-

diction outlier [1,2,3]. Multivariate outlier detection is

not simple and the methods are often difficult to

understand for nonspecialists. Therefore, we tried to

apply a visually simple method, which we call the

convex hull method [4,5]. Moreover, practicing ana-

lytical chemists want to spend as little time as possible

in looking at a variety of diagnostics. For this reason,

we looked for a diagnostic, which analytical chemists

would normally compute anyway and we investigated

if the calculated uncertainty could be used for that

purpose, that is, to detect prediction outliers. This will

be called here the uncertainty method. The

UnscramblerR software package (CAMO) [6] makes

use of an expression proposed by Martens to estimate

uncertainty for individual samples with unknown

concentration with PLS as the modelling method.

Several articles, for example, Refs. [7,8,9], proposed

to modify this equation to improve the estimation of

the prediction uncertainty. Here, the method proposed

by De Vries and Ter Braak [7] is used.

The results obtained when these methods are

applied are compared with the results using techni-

ques such as the Mahalanobis distance [10], the X-

residuals [2] and potential function [11]. Some robust

methods like resampling by the half-means (RHM) or

the smallest half-volume method (SHV) [12,13] were

included to verify that certain objects are indeed

multivariate outliers.
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The methods are applied to near-infrared spectro-

scopy (NIR) data sets of different complexity, to

which artificial outliers were added.

2. Theory

2.1. The uncertainty method

The original equation proposed by Martens and

developed by Høy et al. in Ref. [8] to estimate the

prediction uncertainty for an object i is:

Û2
yi,pred ¼ Vy,val

1

2
hi,pred þ

Vxi,pred

Vxtot,val
þ 2

I

� �
ð1Þ

where Ûyi
,2 pred is the estimated variance of the pre-

dicted ŷi-value, I is the number of objects in the

calibration data set, Vxi,pred
is the X-residual variance

of prediction object i, Vy,val is the y-residual variance

in a validation data set and hi,pred is the leverage of the

prediction object i with respect to the A PLS factors. A

brief review of the mathematical definition of each of

the terms in Eq. (1) is given in Appendix A.

Høy et al. [8] have shown that Eq. (1) should be

corrected by the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� ðAþ 1Þ=IÞ

p
, as pro-

posed by De Vries and Ter Braak [7]. It should be

noted that in fact, there is much controversy in the

literature concerning the equation to use (see e.g. Refs.

[9,14]). The aim of this article is not to demonstrate

what is the correct way of computing uncertainty but to

show that computing the uncertainty in prediction

outlier detection is useful. We applied the modified

equation with the correction factor proposed by De

Vries and Ter Braak. This modification has, of course,

an influence on the value obtained for the uncertainty.

A high value for the estimated variance, Ûyi,pred
,

means that the object is not well predicted and it can

be an outlier in prediction. To determine a critical

value beyond which the object becomes suspect, the

calibration data set is split into two subsets. The first

one is used to build the model and the results obtained

in the second one are ranked and the critical value is

the one that is exceeded, for instance, by 5% of the

objects. As nonoutliers determined this percentage, it

could result in too many false alarms. The user has

therefore to decide the percentage to use, and it might

be preferable to apply a 1% limit, as is often done with

outlier rejection.

2.2. The convex hull method [4,5]

This visual method verifies whether prediction

objects are within the boundaries of the space of the

calibration objects. To do this, a convex hull is

constructed through the extreme calibration objects

around the whole calibration data set in the score plot.

We developed earlier such a method [15] to improve

the Hopkins algorithm for detecting clusters. Several

algorithms to build the convex hull can be found in

the literature. Here we apply an algorithm proposed

by Wahl [16] that follows the arguments of the gift-

wrapping algorithm [5]. We will explain it for two

(PC) dimensions, but it can be applied to any number

of dimensions wanted.

This method computes the most distant point (L1)

from the centroid for both PCs. The first face for the

convex hull is defined by the line that joins this L1

with another point P1, chosen such that the rest of the

points are located on the same side of the line (L1P1)

as the gravity centre. The next face is built in the same

way starting from P1 and this is repeated till the

closing of the boundary.

Once the boundary around the whole data set is

built, it can be used to detect outliers in prediction.

The prediction points are projected in the PC space

where the boundary was drawn (with the complexity

fixed by the model). Prediction points outside the

boundary are considered outliers in prediction.

The uncertainty of the model can be used to make

this method more flexible by building another boun-

dary around the first one: this will allow some kind of

extrapolation.

To make this second boundary in the two dimen-

sions case, the distances from a vertex (A) to the

adjacent vertices (A1 and A2) in the first boundary

are calculated and the smallest one, dmin (A1) is

selected (Fig. 1a–d). This distance is measured from

A toward the other adjacent vertex (A2) to obtain a

point Anew. The triangle AA1Anew is obtained. The

middle H1/2 of the side of the triangle opposite to A

is calculated and the line connecting H1/2 and A is

obtained. A certain quantity is added starting from A

and extending the line H1/2 to obtain a vertex for the

new boundary. All samples carry an associated error.

This error for new samples compared to the error for

a validation data set is shown by the relationship

Vxi,pred
/Vxtot,val

. This quantity, important to determine
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the uncertainty, could be used as quantity to add to

extend the boundary of the convex hull. Working in

such a way, a second convex hull with the same

distance from the vertices in the whole figure is

obtained.

The convex hull method can be used either in an

automatic way (it is decided computationally whether

an object is an outlier) or visually. To automatically

detect outliers, a mesh of triangles is built in the

calibration data set. New samples are then projected,

and the triangles that contain each of the samples must

be found. Each new point is considered as a mixture

of samples, which correspond to the vertices of the

triangle. If a new point does not belong to any

triangle, it cannot be predicted and is therefore con-

sidered as a prediction outlier.

In this way, one can distinguish clear outliers that

fall outside both boundaries, suspect values that fall

outside the first but not the second boundary and

samples that are within the calibration space.

This method cannot be used as such for data sets

with clustering tendency. Only if the existence of

clusters is known, a convex hull can be built around

each of them, helping to detect inliers (prediction

samples located between the clusters).

2.3. Other techniques

2.3.1. Mahalanobis distance [10]

The Mahalanobis distance for each new observa-

tion from the centroid of the centered calibration data

matrix X
_
c is derived from the covariance matrix

Fig. 1. Construction of the second boundary of the convex hull method.
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[S=X
_
c’X
_
c/(I� 1) with I the number of objects in the

calibration set].

MD2 ¼ diagðx�itS
�1x�itVÞ ð2Þ

where x
_
it is a centered prediction object that belongs

to the prediction data matrix X
_

t.

The values are compared to a critical value from a

v2 distribution (A degrees of freedom, where A is the

complexity of the PCR/PLS model and a = 0.95) [17].

2.3.2. X-Residuals [2]

The total residual standard deviation in the calibra-

tion set (se) and the residual standard deviation (sei)

of the prediction object i are calculated. Then, they are

compared and if sei is much larger than se (three times

larger as recommended in Ref. [2]), this is an indica-

tion of an abnormal object.

se2 ¼
XI

i¼1

XK
k¼1

e2ik=df ð3Þ

se2i ¼
XK
k¼1

e2ik=ðK � AÞ ð4Þ

eik ¼ xik � x̄k �
XA
a¼1

tiaPka ð5Þ

where eik are the X-residuals for each element (cen-

tered calibration and prediction objects), I is the

number of objects in the calibration set, K is the

number of variables, A is the number of factors in

the PCR/PLS model, t are X-scores and p are X-

loadings and df represents the number of degrees of

freedom, using the approximation by Martens and

Naes [2]:

df ¼ IK � K � AðmaxðI ,KÞÞ ð6Þ
Also the comparison of the root mean squared error

in spectral residuals (RMSSR) for each new sample in

the PC-space with the RMSSR values of the calibra-

tion samples can help to identify outliers.

RMSSR ¼ ððeieiVÞ=KÞ1=2 ð7Þ
where ei are the X-residuals calculated as before (Eq.

(5)).

The results for prediction samples are compared

with the critical value obtained from the calibration set

(a = 0.95).

2.3.3. Potential functions [11]

Potential methods first create so-called potential

functions around each individual object. The potential

of a certain point in the calibration space is obtained

by adding up the individual potentials developed in

that point by the objects of the calibration set. By

dividing by the number of calibration samples, a

global potential is obtained. The method defines a

contour that delimits the potential surface around the

clusters in the calibration set by using the global

potentials and those prediction samples that are out

of the defined contour are outliers in prediction.

Inliers can also be detected, which is usually not the

case with the Mahalanobis distance and the X-residual

method. A disadvantage is that the width of the

potential functions around each object has to be

optimized. It should not be too small, because many

objects would then be isolated and each of them

would be considered a cluster; it should not be too

large because all objects would be part of one global

potential function and no clustering would be

detected. Two main potential functions are used:

Gaussian and triangular, and two methods to optimize

the width. Here, the so-called centroid method is used.

It consists of taking randomly a pair of samples from

the calibration set to check whether their centroid has

a non-null potential for a given value of the width.

This is iterated several times. The appropriate width is

the smallest one for which, for any pair of points, the

centroid has a positive potential.

2.3.4. Resampling by the half-means method (RHM)

[12,13]

If within the calibration data outliers are present,

they can influence the statistics that will be used later

in the detection of outliers. This should not be the case

when robust techniques for outlier detection are

applied. If outliers occur in the calibration set and

have escaped attention or have been left in anyway,

methods such as the convex hull method would not

detect outliers in prediction in the same region. With

robust methods, such prediction outliers would be

detected. Here, two robust techniques are applied:

resampling by the half-means method and smallest

half-volume method.

With the RHM method, the orientation of each

observation in p dimensions is thought of as a vector

projecting out from the centroid in a particular direc-
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tion. The length of each vector is determined with

respect to the centroid of the data. In this method, only

half the observations of the full data set are used to

make a method more robust.

Outliers are detected by studying the distribution of

vector lengths obtained by sampling without replace-

ment from the original data set. The column mean and

standard deviation of a matrix of a random sample of

50% of the entire data matrix are calculated. Then, the

data matrix is autoscaled using this mean and standard

deviation, and this autoscaled matrix is used to cal-

culate a matrix of vector lengths for all objects. This is

repeated several times (two or three times the number

of samples). Outliers can be detected by examining

Fig. 2. Data set 1: (a) PC1–PC2 plot for subset 1, (b) PC1–PC4 plot for subset 1, (c) y vs. y predicted with four PLS components for subset 1,

(d) PC1–PC3 plot for subset 2, (e) PC1–PC3 plot for subset 3, (f) PC1–PC3 plot for subset 4.
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the distribution of the vector lengths for each resam-

pling experiment by using a fixed percentage of the

longest vectors. The number of times an observation

appears in this set of longest vectors over the course of

many resampling experiments is recorded.

In our case, the upper 5% of the distribution is

used.

2.3.5. Smallest half-volume method (SHV) [12]

This second robust method makes use of the dis-

tances between each pair of observations in the multi-

variate space. For each observation, the first n/2 smal-

lest distances are summed and the n/2 observations

with the smallest sum are considered as a clean subset.

The distributions of the Mahalanobis distances for all n

observations toward the clean subset are obtained.

Objects are considered outliers by comparing with

the v2 distribution (A degrees of freedom and a = 0.95).

3. Experimental

Data set 1 is based on a data set first published by

Kalivas [18]. It can be obtained from the database of

Chemometrics and Intelligent Laboratory System. It

consists of 100 NIR spectra of wheat samples meas-

ured between 1100 and 2500 nm each 2 nm for the

determination of moisture. One obvious outlier was

removed from the data set. Two clusters are evident in

the PC1–PC3 score plot. The original data were

manipulated to contain different types of outliers. A

model was made with a calibration set consisting of a

certain number of the original samples and new points

are added as outlier/inlier prediction samples. Four

subsets are proposed:

. Subset 1: only one of the two clusters was used

as calibration set and five samples from the other

cluster are used as prediction samples. The calibration

model is a 4 PLS component model and it was

verified that the new prediction samples fit the model.

Thus, they are outliers in y compared to the calibra-

tion set, but the spectra (the X-values) fit the calibra-

tion model (Fig. 2a–c).

. Subset 2: the same cluster as in subset 1 was used

as a calibration set with the same model. The five

prediction outliers were made by mixing the spectrum

of the object nearest to the centroid of the calibration

set with spectra from a different set of samples (alfalfa

samples) in varying amounts. Thus, outliers in X are

obtained (Fig. 2d).

The alfalfa spectra consist of 305 samples and 174

NIR reflectance values recorded in the range 1108–

2492 nm. Before mixing, the number of variables was

corrected (wheat data: 701 variables, alfalfa data: 174

variables).

. Subset 3: in this subset, the calibration set

consists of nearly all the samples in the original data

set. A few samples were deleted to achieve a clearer

separation of the two clusters. The five prediction

samples each are 50:50 mixtures of two objects, one

from each cluster. Thus, inliers are obtained that fit the

model (Fig. 2e).

. Subset 4: the calibration subset is the same as for

subset 3 and four prediction samples are obtained by

mixing the prediction samples of subset 3 with spectra

from a different set of samples (alfalfa samples, as for

subset 2). Thus, inliers are obtained that do not fit the

model (Fig. 2f).

Data set 2 is more complex. It consists of 84

samples of polyether polyol measured between 1100

and 2158 nm each 2 nm. There are two main clusters,

but the space within these clusters is covered in a less

homogeneous way than is the case for the data set 1.

A PLS-calibration model was built to model the

hydroxyl number in milligrams KOH per gram and

the complexity of the model, determined by leave-

one-out cross-validation was 7 latent variables (LV).

Jouan-Rimbaud et al. [11] used this data set to

prove the potential function as a technique for outlier

detection. In their article, new prediction samples

were simulated from the real calibration samples.

For our study, the same simulation is performed and

the prediction data set (NS2) contains 38 samples.

Because of the way the simulation is performed, the

first 20 objects are situated within the calibration

space but can be inliers (this is the case for objects

7, 16 and 18) while the last 18 objects can be outliers,

inliers or good points (Figs. 3 and 4).

All calculations were implemented in MATLABTM

for WINDOWSTM version 5.2 (The MathWorks).

4. Results and discussion

Table 1 shows the results for the uncertainty

method applied for the four subsets of data set 1. In
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the same table, the two components that together

make up the uncertainty, namely the leverage values

and the ratio between the residual variance of pre-

diction object i and the total residual of the calibration

set (Vxi,pred
/Vxtot,val

) are also shown. In all cases, out-

liers are detected by the estimated variance of the

predicted ŷi-value (Ûyi,pred
) but this is not the case

when inliers are present (subset 3). The differences in

Ûyi,pred
between subsets can be explained by looking

at both leverage and Vxi,pred
/Vxtot,val

values. Outliers

Fig. 3. PC1 vs. PC2 plot for data set 2. Prediction samples projected in the space of the calibration ones (.).

Fig. 4. PC1 vs. PC3 plot for data set 2. Prediction samples projected in the space of the calibration ones (.).
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will probably have extreme scores on at least one PC,

so those extreme scores will be present in the t-matrix

(matrix of scores for the prediction sample) and

consequently in the leverage values. High leverage

values can be seen as high distances of the objects to

the centroid of the data. In subset 1, the five points are

outliers in y but they can also be detected in PC4 (Fig.

2b). This PC was included in the model and used to

calculate the leverage values. However, as one can see

in Fig. 2c, the outliers fit the model quite well, so that

the residuals Vxi,pred
are low and the relationship

Vxi,pred
/Vxtot

,val is also low, but still higher than the

critical value. In subset 1, the influence of the leverage

values (due to PC4) is higher than the influence of the

residuals. This is not the case for subset 2 where

leverage values are sometimes close to the critical

value, while Vxi,pred
/Vxtot,val

discriminates the outliers

very clearly. In this case, outliers do not fit the model

and residuals are high. The semi-inliers of subset 4 are

far from the centroid of the data set and do not fit the

Table 1

Results for the uncertainty method for data set 1

Objects Ûyi,pred
Leverage

values

Vxi,pred
/

Vxtot,val

Subset 1

A 0.2433 1.1256 0.0061

B 0.2457 1.1520 0.0031

C 0.2713 1.4116 0.0040

D 0.1984 0.7353 0.0053

E 0.2520 1.2089 0.0077

critical

value:

0.0642

critical

value:

0.0558

critical

value:

0.0018

Subset 2

A 0.0804 0.0582 0.0343

B 0.1055 0.1067 0.0774

C 0.0900 0.0754 0.0495

D 0.0944 0.0837 0.0568

E 0.0739 0.0478 0.0252

critical

value:

0.0642

critical

value:

0.0558

critical

value:

0.0018

Subset 3

A 0.0532 0.0693 0.0030

B 0.0373 0.0226 0.0008

C 0.0361 0.0197 0.0007

D 0.0357 0.0184 0.0012

E 0.0405 0.0317 0.0003

critical

value:

0.0728

critical

value:

0.0781

critical

value:

0.0048

Subset 4

A 0.0864 0.1213 0.1074

B 0.0827 0.1083 0.0991

C 0.0786 0.1065 0.0790

D 0.0831 0.1421 0.0678

critical

value:

0.0728

critical

value:

0.0781

critical

value:

0.0048

Table 2

Results for the other methods for data set 1

Objects Mahalanobis

distance

RMSSR TRSD SHV RHM Potential

function

Subset 1

A 60.1576 0.0200 – 34.1855 yes yes

B 65.6649 0.0143 – 24.4399 – yes

C 80.4626 0.0162 – 18.2107 – –

D 41.9113 0.0187 – 17.8469 – –

E 68.9101 0.0225 yes 51.0696 – –

critical

value:

9.49

critical

value:

0.0161

critical

value:

9.49

Subset 2

A 12.7542 2.7739 yes 12.9345 – yes

B 19.0307 2.8887 yes 30.4819 yes yes

C 15.0938 2.8198 yes 19.0644 yes yes

D 16.1663 2.8395 yes 22.0543 yes yes

E 11.2226 2.7410 yes 9.2818 – yes

critical

value:

9.49

critical

value:

0.0161

critical

value:

9.49

Subset 3

A 5.7516 0.0183 – 9.6078 yes yes

B 1.8793 0.0095 – 1.3099 – yes

C 1.6388 0.0086 – 1.6128 – yes

D 1.5252 0.0115 – 1.2099 – yes

E 2.6341 0.0060 – 2.1329 – yes

critical

value:

9.49

critical

value:

0.0187

critical

value:

9.49

Subset 4

A 10.0670 0.0272 yes 12.2112 yes yes

B 8.9918 0.0261 yes 12.3155 yes yes

C 8.8406 0.0233 yes 9.9882 yes –

D 11.7930 0.0216 yes 16.5548 yes yes

critical

value:

9.49

critical

value:

0.0187

critical

value:

9.49
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model, so big values for the residuals are obtained. It

can be concluded that sometimes leverage values

discriminate better than the Vxi,pred
/Vxtot,val

ratio and

that sometimes the inverse is true. It is therefore better

to combine them and use Ûyi,pred
as the diagnostic.

With the convex hull method, all the outliers of the

subsets 1 and 2 are detected visually as outliers, on the

proper PC score plot, and also automatically. Inliers in

subset 3 cannot be detected this way, except if one uses

the knowledge that there are two clusters and makes a

convex hull around each of them. All the semi-inliers of

subset 4 are found to be outliers in the three-dimen-

sional PC1–PC2–PC3 plot and only point A is not

detected as outlier in the PC1–PC3 plot. Subset 1

illustrates the limitations of the purely visual approach.

To detect the outliers, it is necessary to go to the PC1–

PC4 plot. Therefore, the algorithm was adapted in such

Table 3

Results for the convex hull method for the polyether polyol data

Objects Convex

hull 2D

Convex

hull 3D

1 – –

2 – –

3 – –

4 – –

5 – –

6 – –

7 – –

8 – –

9 – –

10 – –

11 – –

12 – –

13 –

14 –

15 – –

16 – –

17 – –

18 –

19 –

20 – –

21 yes yes

22 – –

23 yes yes

24 – yes

25 – yes

26 – –

27 yes yes

28 – –

29 yes yes

30 – yes

31 – –

32 yes yes

33 yes yes

34 – yes

35 yes yes

36 – yes

37 – yes

38 yes yes

Table 4

Results for the uncertainty method for the polyether polyol data

Objects Ûyi,pred
Leverage

values

Vxi,pred
/

Vxtot,val

1 0.3775 0.0362 0.0011

2 0.3471 0.0267 0.0011

3 0.4002 0.0433 0.0016

4 0.3314 0.0212 0.0021

5 0.2832 0.0100 0.0006

6 0.2845 0.0106 0.0003

7 0.3511 0.0286 0.0004

8 0.3326 0.0228 0.0008

9 0.3698 0.0343 0.0005

10 0.3207 0.0193 0.0010

11 0.3267 0.0211 0.0009

12 0.3166 0.0179 0.0012

13 0.3145 0.0179 0.0007

14 0.2705 0.0069 0.0007

15 0.5093 0.0846 0.0028

16 0.3596 0.0305 0.0011

17 0.5090 0.0856 0.0016

18 0.3280 0.0203 0.0020

19 0.2931 0.0122 0.0008

20 0.3632 0.0324 0.0003

21 1.2029 0.4555 0.1409

22 0.4636 0.0655 0.0028

23 1.1784 0.4125 0.1588

24 1.0055 0.3098 0.0997

25 2.0149 1.3352 0.3811

26 0.7494 0.1641 0.0527

27 2.0023 1.5525 0.1420

28 0.9712 0.2945 0.0859

29 3.0118 3.0048 0.8593

30 3.2614 3.4384 1.0966

31 0.5894 0.1107 0.0144

32 2.0817 1.4403 0.3933

33 1.7985 1.2731 0.0895

34 2.4105 1.8880 0.5787

35 2.8813 2.6475 0.8868

36 1.5200 0.7401 0.2264

37 1.1678 0.4050 0.1557

38 2.2922 1.5646 0.6637

critical

value:

0.6015

critical

value:

0.1905

critical

value:

0.0115
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a way that it first determines automatically whether

there is an outlier and then displays the score plots on

which the outlier can be seen.

In Table 2, the results for the other methods are

shown. For the Mahalanobis distance method,

RMSSR method and SHV method boldfaced values

indicate values exceeding the critical value, which are

therefore detected as outliers. Working with 4 degrees

of freedom and a = 0.95, the critical value is 9.49.

Outliers for the methods of total residual standard

Fig. 5. (a) PC2 vs. PC1 plot for the convex hull method for data set 2. (.): Calibration samples, (*): prediction samples. Prediction samples

outside the boundaries (numbered samples) are considered as outliers. (b) PC1 vs. PC2 vs. PC3 plot for the convex hull method for data set 2.

(.): Calibration samples, (*): prediction samples. Prediction samples outside the boundary (numbered samples) are considered as outliers.
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deviation (TRSD) method, RHM and the potential

functions are indicated with ‘yes’ when an outlier is

detected.

The leverage value is closely related to the Maha-

lanobis distance, which explains that subset 1 is

detected more easily with the Mahalanobis distance

than with the RMSSR. In subset 2, methods based in

the residuals (the total residual standard deviation and

the RMSSR method) detect clearly all points as out-

liers, which is into a much smaller extent the case for

the Mahalanobis distance. The inliers of subset 3 are

well detected with the potential function method and

semi-inliers in subset 4 are well detected by the use of

X-residual methods.

The SHV method performs more or less equally

well as the Mahalanobis and the RMSSR method

for subsets 1 and 2, but better for the semi-inliers

of subset 4. In the RHM method, suspect outliers

are defined by ‘yes’ when these points appear one

or more times in the upper 5% of vector lengths.

The use of RHM improves the results for subsets 2

and 4 but does not perform very well for subsets 1

and 3.

As a first conclusion, one can say that when the

proposed techniques of the uncertainty method and

the convex hull method are applied, all outlier points

are detected, while inliers have to be detected by the

use of the potential function method.

Tables 3–5 show the results for the 38 prediction

objects in the more complex data set 2. Fig. 5a is the

PC1–PC2 score plot and Fig. 5b the PC1–PC2–

PC3 score plot. Only the exterior convex hull is

shown. None of the first 20 good objects are falsely

detected to be outliers. Of the 18 last probably

outlying objects, 8 are detected in the two-dimen-

sional PC1–PC2 plot and 14 in the three-dimen-

sional one. Objects 22, 26, 28 and 31 remain

undetected. As we will see later, it is doubtful that

these non-detected objects are indeed outliers. A

study of all possible combinations of pairs of PCs

allowed by the model complexity leads to conclude

that objects 22, 26, 28 and 31 are not detected in any

case.

High Ûyi,pred
-values are obtained for all the

expected outliers, except objects 22, 26 and 31 (the

objects not detected by the convex hull method as

outliers), and none of the good points is considered an

outlier. The leverage values and the relationship

Vxi,pred
/Vxtot,val

for samples 22, 26 and 31 are also very

small.

Table 5 shows the results for the other methods.

Mahalanobis distance between each prediction object

and the mean of the calibration set is calculated in the

7 LV-space. The critical value computed from the v2

distribution (df: 7, a = 0.95) is 14.1. All the values

Table 5

Results for the other methods for the polyether polyol data

Objects Mahalanobis

distance

TRSD RMSSR SHV RHM Potential

function

1 3.0054 – 0.0157 4.3639 – –

2 2.2157 – 0.0162 3.0396 – –

3 3.5918 – 0.0189 4.8848 – –

4 1.7577 – 0.0220 3.5778 – –

5 0.8281 – 0.0117 1.3690 – –

6 0.8817 – 0.0077 0.5357 – –

7 2.3752 – 0.0099 3.2796 – yes

8 1.8943 – 0.0133 2.3811 – –

9 2.8470 – 0.0109 2.1903 – –

10 1.6004 – 0.0151 1.1836 – –

11 1.7475 – 0.0142 1.5640 – –

12 1.4878 – 0.0168 1.8953 – –

13 1.4845 – 0.0126 2.2086 – –

14 0.5718 – 0.0124 1.5800 – –

15 7.0206 – 0.0254 11.6550 – –

16 2.5307 – 0.0161 3.6051 – yes

17 7.1087 – 0.0191 8.9129 – yes

18 1.6841 – 0.0215 3.1024 – yes

19 1.0165 – 0.0132 1.7748 – –

20 2.6920 – 0.0082 1.7671 – –

21 37.8024 yes 0.1803 47.3487 yes yes

22 5.4357 – 0.0256 151.4148 yes –

23 34.2409 yes 0.1914 71.3045 yes –

24 25.7144 yes 0.1517 30.9317 – yes

25 110.8249 yes 0.2965 164.1301 yes yes

26 13.6243 yes 0.1103 14.9311 – –

27 128.8606 yes 0.1810 95.9198 yes yes

28 24.4458 yes 0.1408 26.1906 – –

29 249.4003 yes 0.4453 312.7329 yes yes

30 285.3879 yes 0.5030 377.6905 yes yes

31 9.1873 yes 0.0576 129.9752 yes –

32 119.5421 yes 0.3013 177.9224 yes yes

33 105.6662 yes 0.1437 77.7247 yes yes

34 156.7020 yes 0.3654 193.5966 yes yes

35 219.7451 yes 0.4523 265.5932 yes yes

36 61.4258 yes 0.2285 64.8958 – –

37 33.6152 yes 0.1895 36.5291 – –

38 129.8595 yes 0.3913 197.6620 yes yes

critical

value:

14.1

critical

value:

0.0423

critical

value:

14.1
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with distances larger than this critical value are

considered as outliers. In this case, 15 outliers are

detected (points 21, 23–25, 27–30, 32–38), that is,

here too objects 22, 26 and 31 are not detected.

Both residual-based methods, the total residual

standard deviation and the RMSSR detect all the

outliers except object 22. Objects 26 and 31 have

the smallest residual of these samples and are there-

fore marginal outliers.

The RHM method detects 13 samples appearing at

least one time in the upper 5% of vector lengths.

These samples are, thus, considered as potential out-

liers (points 21–23, 25, 27, 29–35, 38). The smallest

half-volume method (SHV) detects all suspect points;

for object 26, the obtained value is close to the

detection limit. For potential functions, in the 7 LV-

space, the optimal smoothing corresponds to the 3

nearest neighbour (NN) distance for the cluster 1 and

to the 1 NN distance for the cluster 2. With the

potential function method, almost the same points

are detected as outliers but also other points are

detected (points 7, 16, 17 and 18). These points are

inliers: points 7, 16 and 18 are points situated between

the two clusters and point 17 is a point situated within

a gap in the calibration set but still within the

calibration range limits. Here also, points 22, 26 and

31 remain undetected.

For this data set, using the convex hull method, the

uncertainty method and the potential function method

ensures that all the outliers and inliers are detected and

no good points are wrongly detected (this is the case

for points 22, 26 and 31). The rest of the methods are

useful to corroborate the results, or to better under-

stand the reason for being an outlier.

5. General conclusions

The proposed convex hull method is shown to be a

good visual aid to outlier detection. A bonus is that it

is immediately clear where the outlier is situated and

on which PCs it is an outlier. It often happens that

latent vectors express an underlying phenomenon and

the analytical chemist often knows what this phenom-

enon is. Seeing where the outlier is situated then is a

clue to why it is an outlier. The uncertainty method

seems to perform as well as the classical methods, but

has the advantage that it does not require the analyst

to look at specific additional diagnostics to be alarmed

to the fact that a possible outlier is present. A good

analyst will anyway determine uncertainty and, as a

bonus, he can derive from it to what extent a sample is

extreme. To make his final conclusion, he can then

consider either the parts which make up the uncer-

tainty or consult related diagnostics.

The uncertainty method and the convex hull

method together seem to be a practical alternative

for the analytical chemist to detect outliers. Of the

different other methods studied, some function

equally well, they do not yield additional information

compared to the combination described here. The only

method that yields useful additional information, is

the potential method, which can indicate that new

samples, although falling within the calibration

domain, are situated in a zone where there were no

samples yet. A disadvantage of the robust methods is

that a full model has to be constructed every time a

new sample is investigated.

Therefore, it is concluded that the use of the

convex hull method, the uncertainty and the potential

method together allows the analytical chemist to

answer in a practical way most questions he/she might

have about outliers and inliers.

Appendix A

The different terms in Eq. (1) are as follow [7].

Vy,val is the y-residual variance in a validation data set:

Vy,val ¼
1

ncv

Xncv
i¼1

f 2i,val

with ncv the number of objects used for cross-vali-

dation and fi,val
2 the y-residuals in the validation data

set using a PLS model with A components.

Vxi
,pred is the X-residual variance of prediction

object i:

Vxi,pred ¼
1

K � A

XK
k¼1

e2ik,pred

where K is the number of x-variables, A is the number

of PLS factors in the model and eik,pred are the X-

residuals for the prediction object i using a model with

A components.

J.A. Fernández Pierna et al. / Chemometrics and Intelligent Laboratory Systems 63 (2002) 27–3938



Vxtot,val
is the average X-residual variance in the

validation set:

Vxtot,val ¼
1

ncvðK � AÞ
Xncv
iþ1

XK
k¼1

e2ik,val

where eik,val are the X-residuals in the validation data

set.

hi,pred is the leverage of the prediction object i with

respect to the A PLS factors. It is defined as:

hi,pred ¼ ti,predV ðTcalV TcalÞ�1
ti,pred

where ti,pred are the scores for the prediction sample i

at the complexity fixed by the model and Tcal are the

scores for the calibration data set.
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