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Abstract

The prediction uncertainty is studied when using a multivariate partial least squares regression (PLSR) model constructed

with reference values that contain a sizeable measurement error. Several approximate expressions for calculating a sample-

specific standard error of prediction have been proposed in the literature. In addition, Monte Carlo simulation methods such as

the bootstrap and the noise addition method can give an estimate of this uncertainty. In this paper, two approximate expressions

are compared with the simulation methods for three near-infrared data sets.
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1. Introduction

The primary goal of using a partial least squares

regression (PLSR) model in multivariate calibration is

to predict the value of a property of interest, the so-

called predictand, and its uncertainty [1,2]. The uncer-

tainty of a calculated value is defined as a parameter,

associated with the result of a measurement, that

characterizes the dispersion of the values that could

reasonably be attributed to the measurand [3]. The

analysis of the uncertainty consists in the study of the

‘output’ uncertainty, i.e. the uncertainty present in the

outputs of the model. When the model is constructed,

the uncertainty of a predicted value for unknown

samples depends on this output uncertainty. In most

of the cases, this uncertainty is calculated as a function

of the different sources of uncertainty present in the

model.

In the univariate context, prediction uncertainty is

quantified by a sample-specific standard error of

prediction. For the calculation of these univariate

quantities, one can rely on standard expressions taken

from basic statistics. Unfortunately, multivariate mod-

els are inherently much more complex than their

univariate analogues. As a result, theoretical advances

with respect to the corresponding error analysis are

relatively slow. Developing approximate expressions
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for sample-specific standard error of prediction when

applying a PLSR model has received considerable

attention in the Chemometrics-related literature [4–

23]. We found only few examples dealing with alter-

native methods such as principal component regres-

sion (PCR) [13,24,25] and artificial neural networks

(ANNs) [26]. In addition, Monte Carlo simulation

methods such as the bootstrap [27] and the noise

addition method [28,29] can give an estimate of this

uncertainty.

The latest contributions with respect to approxi-

mate expressions converge on two proposals; hence,

these will constitute the focus of this paper. The first

proposal is the correction made by De Vries and Ter

Braak [8] on the expression derived by Martens [15]

and used in the UnscramblerR software package

(CAMO) [30]. The second proposal is the simplifica-

tion of Faber and Bro [21] of an expression derived

earlier under the errors-in-variables (EIV) model

[9,13]; its validity was verified using extensive Monte

Carlo simulations. Promising results have been

reported for practical application of the ‘old’ EIV

expression [14,31]. However, these examples treated

models that where constructed using accurately

known references values. It is well known that accu-

rately known references values are the exception in

typical Chemometrics work such as the prediction of

octane number or quality parameters of agricultural

products. The purpose of this study is to compare the

two proposals (Unscrambler and ‘new’ EIV) on near-

infrared (NIR) data sets for which the reference values

carry a sizeable measurement error. Their performance

is assessed from the results obtained using bootstrap-

ping and noise addition.

2. Theory

2.1. Notation and conventions

Standard notation is used to denote scalars (upper-

case and lowercase italic), vectors (lowercase bold) and

matrices (uppercase bold). The symbols X and y are

used to represent the true predictor matrix and predic-

tand, respectively. The predictors constitute, for exam-

ple, NIR spectra while the predictand is the property of

interest, for example, analyte concentration. The true

quantities are unobservable. The measured and there-

fore observed values for the predictor matrix and

predictand vector are denoted by X̃ and ỹ, respectively.

A ‘hat’ added to the symbol of the true value indicates

that a quantity is estimated, fitted or predicted.

The term sample is used in two distinct meanings,

namely to denote a chemical sample or a statistical

one. A chemical sample is an object for which a

property of interest is to be determined, whereas a

statistical sample is a random draw from a population.

Since the difference is substantial, the meaning should

be clear from the context.

2.2. Approximate expressions for sample-specific

standard error of prediction

The different steps that one must follow in order to

determine the uncertainty are presented in Refs.

[32,33]. Initially, the relationship between all the input

quantities has to be defined. This step enables one to

list the potential sources of uncertainty. The next step

is to quantify every uncertainty component associated

with the listed sources. Finally, the various contribu-

tions to the overall uncertainty have to be combined.

Two proposed combinations are studied here, namely

the Unscrambler expression [8,15] and the ‘new’ EIV

expression [21]. Since the derivations leading to these

expressions are detailed elsewhere, only the main

results are given here.

2.2.1. The Unscrambler expression

Implemented in The UnscramblerR software pack-

age (CAMO) is an expression proposed by Martens

[15] and subsequently improved by De Vries and Ter

Braak [8]. This expression considers prediction via the

scores:

ŷ ¼ ȳ̃þ t̂
T
q̂ ð1Þ

where ŷ is the prediction, ȳ̃ is the average (measured)

predictand for the training set (I samples and K

variables), t̂ is the estimated score vector of the

prediction sample, the superscripted ‘T’ symbolizes

transposition and q̂ is the estimated y-loading vector

for the training set (F factors). Each term of this

equation has an associated uncertainty. The error on

the mean can be estimated using the residual variance

in a validation data set. The error in the product of

scores and loadings is more difficult to determine
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because both scores and loadings contain error and

depend on each other. It can be approximated by

making two assumptions: the first one is to assume

that the scores are without error but the loadings are

not, and the second one is to assume that the loadings

are without error and the scores are not. This approach

leads to two expressions that can be averaged to yield

the expression proposed by Martens and modified by

De Vries and Ter Braak:

rðPEÞc 1� F þ 1

I

� �
hRðyvalÞ|fflfflfflffl{zfflfflfflffl}

A

þ RðxÞRðyvalÞ
RðXvalÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

B

0
BB@

2
664

þ 2RðyvalÞ
I|fflfflfflffl{zfflfflfflffl}
C

1
CCA
3
775
1=2

ð2Þ

where r(�) is the standard deviation of the associated

quantity (square root of the variance), PE = ŷ� y is the

prediction error, R(�) is the mean squared residual

(MSR) of the associated quantity, yva1 contains the

predictands of the validation set, h is the leverage of

the prediction sample, which can be seen as the

distance of that sample to the mean of the training

set data [2], x contains the predictors of the prediction

sample, and Xva1 contains the predictors of the vali-

dation set. The symbol R(�) is used on the right-hand

side of Eq. (2) to emphasize that these quantities are

estimated directly from residuals. The term denoted as

A corresponds to the part of the equation when scores

are considered without error, B corresponds to the part

when loadings are considered without error and C

represents the error in the mean of Eq. (1). The main

characteristic of the Unscrambler expression is that no

independent noise estimates are required; all ingre-

dients are estimated directly from the data.

The Unscrambler expression attempts to account

for an unexpected interference by the term B, which

can be understood as follows. An unexpected inter-

ference may lead to a poor model fit of the predictors.

A poor model fit is recognized as large x-residuals (in

the numerator of B), in comparison with the validation

set (denominator of B). Hence, relatively large x-

residuals lead to a relatively large contribution of B

to the estimated prediction uncertainty. Unfortunately,

accounting for an unexpected interference is problem-

atic when having no additional information. Clearly,

the part of the unexpected interference that deterio-

rates prediction should be spanned by the factors that

are included in the model. In fact, this part should be

parallel to the regression vector, which is a special

(one-dimensional) direction within the factor space. In

the ‘worst’ case, the unexpected interference is

aligned with the regression vector, leading to normal

x-residuals. In the ‘best’ case, the unexpected inter-

ference is spanned by the factors excluded from the

model, leading to large x-residuals. In the first case,

the Unscrambler expression leads to a normal estimate

for prediction uncertainty, which is too optimistic.

Conversely, an overly pessimistic estimate is obtained

in the last case. It follows that the size of the residuals

does not relate to the detrimental effect of an unex-

pected interference in an obvious way. It is the

orientation with respect to the regression vector that

counts but this information is typically not available.

It is seen that in its original formulation, Eq. (2)

requires a separate validation set to be monitored for

calculating residuals. (At the same time, the validation

set can be used to optimize the model.) This implies

that the available data should be split into three

subsets, namely for training, validation and testing.

However, to save data for training and testing, we

have used cross-validation, i.e. internal validation,

instead of setting aside a validation set, see Ref.

[34] for more details.

2.2.2. The EIV expression

This approach starts from the so-called EIV regres-

sion model:

y ¼ Xbþ e ð3Þ

ỹ ¼ yþ Dy ð4Þ

X̃ ¼ Xþ DX ð5Þ

where y is the predictand vector, X is the predictor

matrix, b is the regression vector, e is the difference

between y and its expectation, and Dy and DX are the

unobservable measurement errors in y and X, respec-

tively. Eq. (3) describes the relationship between the

true predictor and predictand variables, while Eqs. (4)

and (5) summarize that the true predictor and predic-

tand variables are unobservable owing to measure-
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ment errors. For this model, Faber and Kowalski [13]

derived formulas for PLSR and PCR that account for

heteroscedastic as well as correlated noise.

A first simplification is obtained by neglecting

terms that tend to vanish when the models explains a

substantial part of the variance of X. Further assuming

similar independently and identically distributed (iid)

noise for training and prediction data [9] yields

rðPEÞc ðhþ 1=IÞ
�
V ðeÞ þ V ðDy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Þ þNbN2

V ðDXÞ
�
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2
64

þ V ðeÞ þ NbN2
V ðDX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Þ

B

3
5
1=2

ð6Þ

where N�N symbolizes the Euclidean vector norm and

V(�) represents the variance of the associated quantity.

The first term (A) corresponds to the model contribu-

tion from the calibration step, while the second term

(B) accounts for the unknown sample contribution

from the prediction step. The first term (A) depends

explicitly on the estimation method, whereas the

second term (B) is, in principle, method-independent.

When it is evaluated, however, the true values for b

have to be replaced by their respective estimates so that

the practical value of B is method-dependent. Faber

and Bro [21] have further simplified Eq. (6) to:

rðPEÞc½ð1þ hþ 1=IÞMSEC� V ðDyÞ�1=2 ð7Þ

where MSEC denotes the mean squared error of

calibration estimated as

MSEC ¼

XI

i¼1

ðỹi � ŷiÞ2

I � df
ð8Þ

in which ỹi is the observed predictand for the i-th

training sample, ŷi is the associated fit and df denotes

the degrees of freedom consumed by the model

parameters.

The following comments seem to be in order:

(1) The model contribution in Eq. (6) depends on the

leverage (h). This makes sense because the

leverage determines the distance of the prediction

sample from the center of the training set data,

where the model is relatively precise.

(2) In Eqs. (6) and (7), there is no provision for

prediction error due to an unexpected interference.

An unexpected interference may lead to large x-

residuals (see discussion following the Unscram-

bler expression). Hence, these expressions should

not be used for unknown samples with abnor-

mally large x-residuals.

(3) Eq. (8) requires inserting an appropriate number

of degrees of freedom. For ordinary least squares

(OLS), each parameter takes away a degree of

freedom from the data, likewise a potential

intercept. Similarly, PCR consumes a single

degree of freedom for each factor because these

factors are entirely determined by the original

predictor variables. By contrast, the appropriate

number of degrees of freedom for PLSR is not

such a trivial matter, since the construction of the

factors includes the predictand vector. The

rigorous study of Van der Voet [35] has clearly

established that the conventional number, i.e. a

single degree of freedom for each factor, is not

correct. A sound alternative can be calculated

using the results of leave-one-out cross-validation,

see Eq. (26) in Ref. [35].

(4) Eq. (7) is very similar to the early proposal of

Höskuldsson [5]. The difference lies in the

subtraction of V(Dy), which will always lead to

smaller values. Interestingly, Höskuldsson’s ex-

pression is identical to the one discussed by Næs

and Martens for PCR [24]. It has been adopted by

the American Society for Testing and Materials

(ASTM) [36] and implemented in certain com-

mercial software [37]. Successful generalization

to nonlinear variations of PLSR has been recently

reported [22].

(5) Inserting a pessimistic estimate for V(Dy) may

lead to overoptimistic estimates for the standard

error of prediction. In absence of a dependable

estimate for V(Dy), it is safe to assume V(Dy)

equal to zero and Eq. (7) simply reduces to

Höskuldsson’s expression. V(Dy) is considered as

a constant value; if this value is concentration-

dependent, i.e. V(Dy), Eq. (7) should be changed

accordingly by inserting V(Dy) = f(ŷ) where ŷ is

the associated prediction.

(6) MSEC is assumed to adequately account for the

measurement noise in X. The validity of this

assumption has been confirmed by Monte Carlo
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simulations [21]. For this reason, Eq. (7) requires

only a single independent noise estimate, namely

the error variance of the reference method, V(Dy).

Note that the Unscrambler expression requires no

noise estimates at all.

(7) MSEC may contain a bias term, see Denham [17]

for more details. The reason for this is that the

number of factors is selected as a compromise

between bias (too few factors) and variance (too

many factors). Consequently, Eq. (7) results in a

sample-specific root mean squared error of

prediction (RMSEP), rather than a standard error

of prediction. The importance of prediction bias

should, however, not be overrated, since a

successful bias-variance trade-off implies bias to

be relatively unimportant.

(8) As argued by Faber and Bro [21], Eq. (7) applies

to all calibration methods that amount to the two-

step procedure of constructing scores, followed by

the OLS regression of these scores onto the

predictand. Consequently, Eq. (7) should be valid

for, among others, PLSR and PCR.

2.3. Bootstrapping residuals

The bootstrap is a computer simulation procedure

in which resampling data replaces experimental rep-

lication [27]. It can be inferred from the tutorial by

Wehrens et al. [38] that bootstrapping samples is the

preferred mode in Chemometrics. Here we decided to

use bootstrapping residuals because it allows us to

directly work on the noise. A recent comparison of

resampling methods has shown this method to work

better for estimation of the uncertainty in multivariate

regression coefficients [39]. Fig. 1 presents a flow

chart for the bootstrapping algorithm that is applied in

this study. After centering the training data, X̃ and ỹ, a

PLSR model with F factors is built. Then, the fit

residuals e (I	 1) between ŷ and ỹ are calculated as:

e ¼ ŷ� ỹ ð9Þ

The next step is to generate B bootstrap samples e1*,

e2*,. . ., eB*. Each bootstrap sample eb*=(eb1* , eb2* ,. . .,
ebI*) is obtained by randomly sampling with replace-

ment I times from the original fit residuals e1, e2,. . .,
eI. Sampling with replacement implies that the same

residual may be included several times in a particular

sample eb*. For instance, with I = 6 one might obtain

e1*=(e4, e5, e1, e1, e3, e4), e2*=(e2, e2, e5, e1, e2, e3),

etc. Adding a bootstrap sample eb* to the fitted ŷ

generates a new predictand vector, yb*:

yb* ¼ ŷþ eb* ð10Þ

Then, a PLSR model is constructed using the centered

X̃ and yb* to obtain the regression coefficients, b̂b.

Finally, the b-th prediction for a single sample is

calculated as:

ŷb ¼ x̃Tb̂b ð11Þ

Having repeated the calculation B times, an estimate

of sample-specific standard error of prediction is

obtained as the standard deviation of the B predic-

tions. The number of repetitions, B, should be large

enough in order to ensure the accuracy of the estima-

tion of the uncertainty value for the entire data set.

2.4. Noise addition

The procedure for the noise addition method is

very similar to the bootstrapping method (see Fig. 2):

(1) A PLSR model is constructed for the centered

training data,

 

 

    

Fig. 1. Flow chart of the bootstrapping method. The symbols are

explained in the text.
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(2) the variance of the noise is estimated from the

residual vector e,

(3) normally distributed noise is added to the pre-

dictands of the training set (ỹ) to obtain a new

predictand vector (yn*),

(4) PLSR is performed using yn* in order to determine

the regression coefficients, b̂n, and

(5) the predictions (ŷn) for new samples are obtained

using these coefficients.

Steps 2–5 are repeated N times and the sample-

specific standard error of prediction is estimated as

the standard deviation of the N predictions.

3. Experimental

3.1. Data sets

Three NIR data sets, which are characterized by a

rather imprecise reference method, are used in this

study. The first one consists of 99 samples of green tea

[40] measured between 1100–2500 nm (each 2 nm).

The property of interest is caffeine content determined

by RP-HPLC. For this data set the reference method

has an estimated measurement standard deviation

(reproducibility) r(Dy) =V(Dy)1/2 = 0.15 g/100 g dry

leaves. The data were split into two subsets by using

the duplex algorithm [41]. This method starts by

selecting the two points furthest from each other and

puts them both in a first set (training). Then the next

two points furthest from each other are put in a second

set (testing), and the procedure is continued by alter-

natively placing pairs of points in the first or second

set. As a result, 57 samples were used for training and

42 samples for testing. The second data set [42]

consists of 84 polyether polyol samples measured

between 1100–2158 nm (each 2 nm). The property

of interest is the hydroxyl number measured on a

Pacific Scientific 6250 scanning spectrometer (NIR-

System, Silver Spring, MD). The reference method

has an estimated measurement standard deviation

r(Dy) =V(Dy)1/2 = 0.7 mg KOH/g. As for the previous

data set, the samples were divided using the duplex

algorithm into 60 samples for training and 24 samples

for testing. The third data set [43] consists of 239 gas

oil samples measured between 4900–9000 cm� 1

(each 2 cm� 1). The property of interest is the percent

of hydrogen determined by RMN. For this data set,

the estimated measurement standard deviation of the

reference method is r(Dy) =V(Dy)1/2 = 0.025 g/100 g.

With the duplex method the data set was split into 84

samples for training and 155 samples for testing.

3.2. Software

All computations were executed using Matlab

5.2.0 (1998) from the Mathworks, as support. Boot-

strapping and noise addition use 1000 repetitions

each.

4. Results and discussion

Various data pretreatments are considered, i.e. first

and second derivatives and the standard normal var-

iate (SNV) transformation. The optimum complexity

of the model is determined by two methods, namely

leave-one-out cross-validation to calculate the mini-

mum root mean squared error of cross-validation

(RMSECV) and the randomization test proposed by

 

    

Fig. 2. Flow chart of the noise addition method. The symbols are

explained in the text.
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Van der Voet [44]. Faber and Bro [21] have claimed

Eq. (7) to be valid for PCR; this conjecture is tested

here too. For considerations of space, only a selection

of the results is presented.

4.1. Green tea data

Recall that the ‘old’ EIV expression [9,13] has

already given promising results for NIR data sets for

which the reference values are relatively precise

[14,31]. Thus, the purpose of this study was to

compare the Unscrambler and the ‘new’ or simplified

EIV expression on NIR data sets for which the

reference values are not very precise. The relative

importance of this source of uncertainty is determined

as follows. The variance of the reference method is

V(Dy) = 0.152 g2/(100 g dry leaves)2. Adding exces-

sive noise to the spectra, as suggested in [14], has little

effect on the predictive ability of the resulting PLSR

and PCR models, measured as RMSEP. This implies

that the effect of the original spectral noise is

negligible. With negligible spectral noise, MSEC=

V(e) +V(Dy), see, e.g. Ref. [9]. In this way, one

obtains the value V(e) = 0.122 g2/(100 g dry leaves)2

for the first model in Table 1, which shows that the

uncertainty of the reference method is sizable indeed

(V(Dy)>V(e)).

The best models are obtained without pretreating

the spectra or after applying the SNV transformation.

For all models summarized in Table 1, factor selec-

tion is based on the randomization test. The values

for root mean squared error of calibration (RMSEC)

and RMSECV are very similar. The reason for this

similarity is that RMSEC is calculated using Van der

Voet’s degrees of freedom [35], which are directly

related to cross-validation, see third comment follow-

ing Eq. (8). The RMSEP values exceed the

RMSECV values in all cases, which is in agreement

with the often-reported observation that cross-vali-

dation is slightly optimistic. Bootstrapping and noise

addition lead to almost identical estimates for sam-

ple-specific standard error of prediction. For exam-

ple, for the first model in Table 1, an average ratio of

0.97 is obtained between bootstrapping and noise

addition results (correlation coefficient is 0.99). This

excellent agreement is expected because of the close

relationship between them: they both directly work

with the noise in the data. In the remainder of this

paper, we will restrict ourselves to the noise addition

method to avoid duplication of material. For the first

model in Table 1, the Unscrambler results often

differ considerably from the noise addition results:

the deviations range between underestimation and

overestimation by a factor of two, see Fig. 3. In

contrast, the simplified EIV expression seems to

work very well for this data set. The largest differ-

ence between the EIV and noise addition results is

observed for test sample 14: 0.16 g/100 g dry leaves

for noise addition versus 0.13 g/100 g dry leaves for

the EIV expression. Considering that an uncertainty

estimate is reported in at most two decimal digits

leads to the impression that the discrepancies are of

little practical significance. The PCR and PLSR

results for the EIV approach are equally satisfactory.

This observation corroborates the conjecture of Faber

and Bro [21] that Eq. (7) should be valid for both

methods. It is important to note that the performance

of the EIV approach does not depend on the cur-

Table 1

Results for the green tea data

Method Pretreatment Factorsa RMSEC RMSECV RMSEP Unscrambler expressionb EIV expressionb

(g/100 g

dry leaves)

(g/100 g

dry leaves)

(g/100 g

dry leaves)
Ratio Correlation Ratio Correlation

PLSR No 4 0.19 0.20 0.28 0.89 0.81 0.98 0.81

SNV 5 0.16 0.17 0.23 1.61 0.78 0.93 0.79

SNV 4 0.18 0.19 0.23 1.05 0.45 0.98 0.82

PCR No 5 0.19 0.20 0.27 – – 1.05 0.57

SNV 5 0.16 0.17 0.25 – – 0.95 0.81

a Determined using the randomization test.
b Compared with the result of 1000 noise additions.
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rently tested spectral pretreatment methods. If, how-

ever, the pretreatment amounts to removing a sub-

space from the predictor matrix, then the leverage in

Eq. (7) should be modified as explained by Olivieri

[23].

With imprecisely measured reference values,

predictive measures such as RMSEP are biased

high because this measurement error is confounded

with the true prediction error. This has been very

well explained by DiFoggio [45] who coined the

terms apparent and actual RMSEP. The apparent

RMSEP is calculated using imprecise reference

values whereas the actual RMSEP is based on

the true values. DiFoggio proposed the following

correction:

corrected RMSEP ¼ ½apparent MSEP� V ðDy Þ�1=2

ð12Þ

where MSEP stands for mean squared error of

prediction. Eq. (12) has been successfully applied

by Sørensen [46] to a number of NIR applications.

Comparing Eqs. (12) and (7) reveals that the term

(1 + h + 1/I) MSEC has the interpretation of an

apparent sample-specific MSEP. In other words,

Eq. (7) performs the correction for each individual

sample, while Eq. (12) operates on the set level.

Consequently, sample-specific standard errors of

prediction obtained using Eq. (7) tend to be

smaller than the apparent RMSEP. This holds for

the entire test set, see Fig. 3. Finally, the preceding

discussion implies that the apparent RMSEP is

consistent with Höskuldsson’s early proposal [5],

see fourth comment following Eq. (8).

4.2. Polyether polyol data

Using the procedure explained in the previous sec-

tion, one obtains the variance estimate V(e) = 1.32 (mg

KOH)2/g2 for the first model in Table 2. Comparing

this value with V(Dy) = 0.72 (mg KOH)2/g2 shows that

the relative importance of the measurement noise

in the reference values is smaller than for the

previous case (V(Dy) <V(e)). Spectral pretreatment

does not improve the predictive ability. The mini-

mum RMSECV leads to different model complexities

Table 2

Results for the polyether polyol data

Method Pretreatment Factors RMSEC RMSECV RMSEP Unscrambler expressiona EIV expressiona

(mg KOH/g) (mg KOH/g) (mg KOH/g)
Ratio Correlation Ratio Correlation

PLSR No 7b 1.44 1.76 1.75 0.46 0.77 0.98 0.81

No 5c 2.23 2.55 2.47 0.32 0.94 0.98 0.79

PCR No 7b 2.01 1.76 2.77 – – 1.03 0.57

No 5c 2.88 2.55 4.85 – – 0.97 0.81

a Compared with the result of 1000 noise additions.
b Determined using the minimum RMSECV.
c Determined using the randomization test.

Fig. 3. Estimated sample-specific standard error of prediction (g/100

g dry leaves) for the four-dimensional PLSR model of the green tea

data (no data pretreatment): noise addition (o), EIV (*) and

Unscrambler (4). The apparent RMSEP (- - -) is added as guide to

the eye.
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than the randomization test. Bootstrap and noise addi-

tion yield very similar results: for the first model in

Table 2, the average ratio is 0.99 (correlation coeffi-

cient is 0.99). For this model, the Unscrambler results

are persistently too small, sometimes by more than a

factor of three (Fig. 4). A factor of three is even the

average underestimation for the second model in Table

2. By contrast, the EIV results closely follow the noise

addition results. The largest difference is observed for

test sample 4: when using noise addition, one would

report an error value of 2.3 instead of 2.2 mg KOH/g

when relying on the EIV expression. Finally, it is

observed that the EIV expression maintains its excel-

lent performance for models with relatively high

RMSEP. Stated differently, the validity of this ap-

proach is not limited to the ‘best’ model.

One might argue that the poor results obtained

using the Unscrambler expression are caused by

inserting severely optimistic results from cross-val-

idation in Eq. (2), instead of using external valida-

tion as suggested in the original work. However, it

can be inferred from the ratio between RMSECV

and RMSEP (larger than unity!) that the often-

observed optimism is absent for the first two models

in Table 2.

4.3. Gas oil data

Results are discussed only for the PLSR and PCR

models for which the number of factors is determined

using the randomization test (no spectral pretreat-

ment). The optimum selected PLSR model is based

on five factors, while PCR requires six factors. For

these models, one obtains the variance estimates

V(e) = 0.0522 g2/(100 g)2 and V(e) = 0.0582 g2/(100

g)2, respectively. As for the previous data sets, the

EIV results are in excellent agreement with the noise

addition results (ratio is 0.99 and 1.17 for PLSR and

PCR models respectively), whereas the Unscrambler

results are unsatisfactory (not shown).

In comparison with the previous data sets, the

current one has a large number of test samples (155).

Such a large test set enables one to further scrutinize

the adequacy of the approximate expressions (2) and

(7) by monitoring studentized prediction residuals,

z ¼ ŷ� ỹ

rðŷ� ỹÞ ð13Þ

with obvious notation. The reference values for the

test set contain a measurement error with variance

V(Dy); hence, the denominator of Eq. (13) follows

as

rðŷ� ỹÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðPEÞ2 þ V ðDy

q
Þ ð14Þ

where r(PE) is the result of Eq. (2) or Eq. (7). Eq.

(14) has the simple interpretation that it is easier to

predict an error-free reference value than one that

contains a measurement error. The distributions of

the studentized prediction residuals are presented in

Fig. 5. The number of training samples is large (84);

hence, the degrees of freedom are large and, ideally,

the distribution of the studentized residuals should

approach the normal distribution with standard devi-

ation unity. The Unscrambler expression yields a

standard deviation that is too large (1.41), which

must be caused by underestimating the standard

error of prediction—the denominator of Eq. (13).

In addition, the distribution is heavily skewed, which

violates the requirement that it can be characterized

using a single width parameter—the standard error

of prediction. By contrast, the standard deviation of

the studentized residuals is too small when the EIV

Fig. 4. Estimated sample-specific standard error of prediction (mg

KOH/g) for the seven-dimensional PLSR model of the polyether

polyol data (no data pretreatment): noise addition (o), EIV (*) and

Unscrambler (4). The apparent RMSEP (- - -) is added as guide to

the eye.

J.A. Fernández Pierna et al. / Chemometrics and Intelligent Laboratory Systems 65 (2003) 281–291 289



expression is used (0.757). This means that the

standard error of prediction is overestimated. The

reason for this becomes clear when investigating the

relevant summary statistics RMSEC, RMSECV and

RMSEP (Fig. 6). It turns out that the average fit

error (RMSEC), which is a major ingredient of Eq.

(7), is larger than the average prediction error

(RMSEP) by 19%. This is quite unusual, but can

be explained from the particular splitting of samples

in a training and test set: on average, the training

samples are further away from the model center than

the test samples. Splitting the samples in a random

fashion, rather than using the duplex algorithm, leads

to an RMSEP that is slightly larger than RMSEC

and a standard deviation of the studentized residuals

of 0.994, which is excellent. The distribution re-

mains symmetric around zero.

5. Conclusions

The Unscrambler expression [8,15] and the ‘new’

EIV expression [21] have been compared with Monte

Carlo simulation-based methods on NIR data sets with

imprecise reference values. A major plus of the

Unscrambler expression is that no independent noise

estimates are required; all values are obtained directly

from the data. Unfortunately, the extreme user-friend-

liness of the Unscrambler expression has limited value

owing to the relatively poor results. In contrast,

promising results are obtained using the ‘new’ EIV

expression. An important aspect of the resulting

sample-specific uncertainty estimates is that they can

be significantly smaller than the apparent RMSEP

when the reference values are relatively imprecise.

This can be seen as an added bonus, which, however,

is lost if the reference error variance is unknown. In

that case, the EIV expression reduces to Höskulds-

son’s early proposal [5], which has been adopted by

the ASTM [36].

Fig. 6. Root mean squared errors for gas oil data set: RMSEC (*),

RMSECV (o) and RMSEP (5).

Fig. 5. Studentized residuals for gas oil data set: (a) Unscrambler

expression and (b) EIV expression.
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