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Abstract

A study of the homogeneity of the data should be performed in order to guarantee the detection of outliers and inliers in

prediction with a PLS model. For this reason, we decided to develop an automatic methodology, with a possibility for visual

checking, to detect these objects. This methodology consists of three steps. First, the objects are mapped from an n-

dimensional space to a 2-dimensional space using Sammon’s mapping. Then, clusters in the calibration space are detected

using a density-based method, and finally, the convex hull method is applied to each cluster in order to detect outliers/inliers

in new samples. Several case studies were carried out with this methodology. The results obtained show that the combination

of these three different techniques makes the detection of outliers and inliers for prediction easier and more accurate than

classical methods.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction the new object. With this method, an estimation of the
The detection of prediction outliers is an important

step in multivariate calibration with PLS or any other

such method [1]. A large quantity of methods exists in

the literature to detect outliers in the prediction data set.

Most of the methods are based on the study of the

residuals [2] and the use of leverage values [3]. In a

previous paper [4], we proposed what we called the

uncertainty method and the convex hull method. The

uncertainty method [5–7] is based on the expression

proposed by Martens for the UnscramblerR software

package (CAMO) [8]. This expression depends mainly

on the X-residual variance and on the leverage value for
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prediction uncertainty for each new object is obtained

when PLS is used as the calibration method. This

estimation can be used to detect probable outliers

because a high estimation for the uncertainty means

that the object is not well predicted and can be consid-

ered as an outlier in prediction.

The convex hull [9,10] is a visual method in which

a boundary is built around the whole calibration data

set. With this method, prediction points that are

outside the boundary are considered as outliers. One

disadvantage is that too many points could be con-

sidered as outliers. In order to avoid this, a second

boundary is constructed around the first one. The

prediction uncertainty of each point in the first

convex hull is estimated and used in order to con-

struct this second boundary. In such a way, prediction

objects outside the second convex hull are considered
d.
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as outliers in prediction and objects between both

boundaries are stragglers, i.e. objects that are outliers

for the first convex hull but are inside the uncertainty

limits. These kinds of objects are not considered

outliers if no objective reason is found to make this

conclusion.

Very often, the data set presents clustering ten-

dency, i.e. the data set contains clusters or subgroups

of similar objects inside the given population. In

these cases, no accepted methodology exists in order

to detect the points situated between the clusters,

which are called inliers. Potential functions [11] and

the convex hull method are able to detect this kind

of objects. The convex hull was shown to be a good

alternative to detect these objects in the case where

the presence of clusters is previously known. In

order to guarantee the detection of both outliers

and inliers, we decided to develop an automatic

methodology, with a possibility for visual checking.

This methodology consists of three steps. The first

step is to define the space of work. This is often

done in the principal component space because this

gives a good representation of the data, but in PCA,

the information about clusters may not be present in

the PC1–PC2 space, but in higher PCs. For this

reason, we apply in this context the Sammon’s

mapping [12] to the calibration data. This technique

is based on mapping objects from the n-dimensional

space to a 2-dimensional space such that the inher-

ent data structure is approximately preserved. For

visual checking, this is more useful than PCA

because the information about clustering will be

shown in this 2-dimensional space. As second step,

a quantitative and qualitative study of the clusters is

performed. Different techniques for cluster detection

exist in the literature like the Hopkins statistic

[13,14]. Here we decided to use the Natural Patterns

(NP) approach [15] applied in the 2-dimensional

Sammon’s space. This clustering technique is pre-

ferred because it allows finding clusters of any

shape, in contrast with most other techniques that

yield round clusters. With this approach the number

of clusters is obtained. Finally, as a third step of the

methodology, the convex hull method can be applied

to each of the clusters and to the complete data set.

Once the methodology is applied to the calibration

data set, it can be used to detect outliers/inliers in

prediction. To do that, the Sammon’s variables for
the prediction samples are projected into the figure

determined by the calibration set. Outliers will be

the prediction samples situated outside the second

boundary determined by the whole calibration data

set, and inliers will be the prediction samples

situated in the space delimited for the second

boundary of each cluster.
2. Theory

2.1. Sammon’s mapping [12]

The main idea of Sammon’s mapping is to map

objects from an n-dimensional space (input space)

onto a 2-dimensional plane (output space). The algo-

rithm preserves the inherent structure of the data

under the mapping, i.e. the distances between the

objects in the 2-dimensional space resemble the dis-

tances in the n-dimensional space. More formally, the

Sammon’s mapping maps N data points in a 2-

dimensional output space by minimizing the distance

difference between data points in the input and output

space:

E ¼

XN
i<j

dij*� dij
� �2

=dij*

X
i<j

dij*

where dij* and dij are the distances between points i and

j in the input space and output space, respectively.

The algorithm starts by initializing with random

coordinates (two dimensions), then the relative error

of each data point pair between spaces is calculated.

The points in the Sammon’s mapping are moved

according to a gradient, which shows the direction

to minimize the error.

2.2. The Natural Patterns (NP) approach [15]

The homogeneity/inhomogeneity of the data in the

Sammon’s space has to be demonstrated in as auto-

matic a way as possible. A method is needed which

finds clusters if such clusters exist, without having to

input the number of expected clusters. These clusters

should be allowed to take any form. Moreover, the
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method must allow to find outliers if there is only one

cluster and outliers/inliers if there are at least two

clusters. The NP approach fulfills these criteria. It is

based on the Density-Based Spatial Clustering for

Applications with Noise (DBSCAN) method [16].

The main idea is that for each object belonging to a

cluster, there should be within a given radius around

the object (the neighborhood) at least a predefined

minimal number of objects. The results of the NP

method depend on two parameters, which should be

optimized: the minimal number of objects and the

radius of a neighborhood. As a standard setting for

discovering clusters, the minimal number of objects

h is 2 when the number of objects is 50, 4 for 100

objects,. . .. In order to optimize the radius r, a

comparison of the structure of the experimental data

set with a data set with the same number of objects as

the experimental data set in the same range but

uniformly distributed is performed. In this new data

set, the Euclidean distances between objects are

calculated and the hth minimal distance for each

object is selected. These values are ranked and the

r-value selected is the value that is exceeded by 5% of

the objects.

Applying these h and r to the whole experimental

data set, one can detect objects situated in a region with
Fig. 1. Building of the first convex
relatively high density of points, i.e. objects belonging

to the same cluster.

2.3. The convex hull method [4]

With this method, one convex hull is constructed

through the extreme calibration objects around the

whole calibration data set or around clusters in the

Sammon’s plot using the algorithms proposed by

Wahl [17]. In two dimensions, this convex hull is

constructed by computing the most distant object

from the centroid for both dimensions. The first face

for the convex hull is defined by the line that joins

this object with another object, chosen such that the

rest of the points are located on the same side of the

line as the gravity centre. This is repeated for all the

extreme objects till the closing of the boundary (Fig.

1). Objects outside the hull are candidate outliers/

inliers. Working in this way, points very close to this

limit would be also rejected. That is why we take into

account the uncertainty around this limit and con-

struct a second boundary around the first one. To do

this in two dimensions, one has to calculate the

uncertainty for each point i (si1, si2) belonging to

the first convex hull. A predicted ŷ for each point i

can be calculated by performing cross-validation
hull in the Sammon’s space.
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(CV) in a PLS model. A small quantity ( q1) can then

be added from si1 in the direction of the increasing X

values in the first dimension. A new point is gener-

ated this way (with coordinates (si1 + q1, si2)) and a y

value ( ytemp) can be calculated for it (Fig. 2). The

quantity q1 is added until the difference between ytemp

and ŷ reaches the double of the uncertainty of i, U(i),

following a normal distribution, i.e.:

absðytempðsi1 þ q1; si2Þ � ŷðsi1; si2ÞÞ < 2UðiÞ

where i = each point in the first convex hull.

In order to estimate the uncertainty of the points

belonging to the first convex hull, the data was ran-

domly split into calibration and validation sets. Points

in the convex hull are used as prediction set using the

equation proposed by De Vries et al. [5]:

UðiÞ ¼ Vy;val 1� Aþ 1

I

� �
hi;i þ

Vxi;i

Vxtot;val
þ 2

I

� �

where U(i) is the estimated uncertainty of the pre-

dicted ŷi value, I is the number of objects in the

calibration data set, Vxi,i is the x-residual variance of

prediction object i, Vy,val is the y-residual variance in

the validation data set, Vxtot,val is the average x-

residual variance in the validation set and hi,i is the

leverage of the prediction object i with respect to the

A PLS factors.
Fig. 2. Generation of a new point from the first c
For the direction of the decreasing X values, a point

(si1� q1, si2) is obtained and now the condition will be:

absðytempðsi1 � q1; si2Þ � ŷðsi1; si2ÞÞ < 2UðiÞ

where i = each point in the first convex hull.

The same procedure is repeated in the second

dimension obtaining two new points with coordinates

(si1, si2 + q1) and (si1, si2� q1).

In such a way, an area around each point i can be

constructed describing the uncertainty of i. Now, all

the new points can be added to the calibration data in

order to construct the second convex hull as is shown

in Fig. 3. Here, the methodology is explained for a

data set without clusters but when clusters are pres-

ent, the same procedure can be applied for each

cluster.

Each prediction sample is projected into the figure

and using a simple mathematical expression, it can be

verified if it is outside both boundaries. In that case,

the sample is considered as outlier in prediction.

Stragglers can also be found. They are samples that

fall outside the first but not the second boundary.

These samples need more investigation but are not

considered outliers if no objective reason is found to

make this conclusion. They can be added in a later

stage to the calibration set because they will extend

the calibration space.
onvex hull to build the second convex hull.



Fig. 3. Building of the second convex hull.
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If clusters occur, the convex hull method is applied

for each cluster and for the whole calibration data. All

the points situated in the space between clusters are

considered as inliers for the prediction. This space is

determined using the second boundary of each clus-

ter. Stragglers in these situations are points between

the first and second convex hull for each of the

clusters.
3. Data

Three NIR data sets are used in this study. The first

one is called the Hydrogen data. It consists of 233

NIR samples of gas oil measured at 2128 wave-

lengths. It was split into two subsets by using the

duplex algorithm [18]; 193 objects were used to build

the model and 40 objects for prediction.

The second data set is the Forage data. It consists of

305 NIR samples measured between 1108 and 2492

nm each, with 8 nm used to determine the content of

humidity. The providers [19] split the data set into 205

objects for calibration and 100 objects for prediction.

The third data set is the Gas oil data set. It consists

of 165 NIR samples to measure the cloud point (in

jC). The data set was split using the Kennard–Stone

algorithm [20] before the application of Sammon’s
mapping, into 140 objects for calibration and 25

samples for test. Five samples were detected as clear

outliers in the calibration data set and were removed.

Thus, 135 objects are used to build the model and 25

for testing it.
4. Results

4.1. Hydrogen data

First, Sammon’s mapping is used to map all points

onto a 2-dimensional space. Fig. 4 shows the PC1–

PC2 plot. In this plot, two clusters are evident. When

Sammon’s mapping is applied (Fig. 5), the same

clusters are visually detected and one additional

cluster appears which can be found only at higher

PCs. But, in a second step, the Natural Patterns (NP)

approach is used; in fact, four groups with different

density (clusters) are detected as is shown in Fig. 5

where each number represents a cluster.

In the third step, the convex hull method is used to

construct a first boundary around each cluster and

another one around the whole calibration data. In

order to determine the uncertainty values of the points

on the boundary, a predicted ŷ for each point i

belonging to the calibration data set is calculated by



Fig. 4. Hydrogen data: PC1–PC2 plot.
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performing cross-validation (CV) in a PLS model. If,

as in this case, the data is clustered, one might prefer

to build local models for each cluster instead of a

global model [1]. However, some of the clusters have

very few objects, so that a local model would not

make much sense. Therefore, we decided to build a

global model.
Fig. 5. Hydrogen data: The Natural Patterns a
The complexity for the PLS model is determined

by the Monte Carlo Cross-Validation (MCCV) meth-

od [21–24]. The MCCV method is an asymptotically

consistent method to determine the number of com-

ponents in calibration. It is an iterative method based

on the same principle as the leave-one-out cross-

validation, but instead of leaving only one point out
pproach applied in the Sammon’s space.



Fig. 6. Hydrogen data: MCCV error vs. number of PLS variables.
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(nv = 1), subsets of different sizes (nv>2) are left out

during the calibration (leave-nv-out cross-validation).

Each time the nv value is fixed, the number of factors

can be determined. After several tests using different

sizes of nv, this procedure shows that the optimal

number of factors for this data set is 5, as is shown in

Fig. 6.
Fig. 7. Hydrogen data: Building
Then, the second convex hull is constructed around

the previous boundary when the new points from the

uncertainty values are considered (Fig. 7).

Finally, outliers, inliers and stragglers can be

detected after projecting new objects on the Sammon’s

mapping space containing the convex hull (Fig. 8).

The new objects located outside the second convex
of the second convex hull.



Fig. 8. Hydrogen data: Results using the proposed methodology, where are the detected prediction outliers, � are the inliers, o are the

stragglers and * are the good prediction points.
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hull which is constructed by using all calibration

objects are considered outliers, inliers are the objects

located between clusters and stragglers are objects

between both boundaries for each cluster. In this data

set, if only the first convex hull is used, 6 objects are

considered as outliers and 12 as inliers. After adding

the uncertainty value for each sample in the first

convex hull, 3 outliers, 10 inliers and 5 stragglers are
Fig. 9. Forage data: The Natural Patterns ap
detected considering the whole calibration data set, as

is shown in Fig. 8. The number of outliers might seem

surprisingly high. This is due to the duplex method,

used to split the data. This method starts by selecting

objects on the boundary, which therefore are excluded

from the convex hull of the calibration set.

A prediction using the 5 PLS components model

was performed on the test data set. When the outliers
proach applied in the Sammon’s space.



Fig. 10. Forage data: MCCV error vs. number of PLS variables.
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are removed, the root mean squared error in prediction

(rmsep) is 0.058. In the case of the stragglers, there are

no reasons to reject them. Only in the cases where their

nature is known one can decide to consider these

objects as real outliers and therefore to remove them

from the data set.
Fig. 11. Forage data: Results using the proposed methodology, where ar

good prediction points. No inliers are detected.
4.2. Forage data

As in the previous data set, the Sammon’s mapping

preserves as well as possible the structure in the 2-

dimensional space and it requires 150 iterations. In this

case, the information is present also in PC1–PC2.
e the detected prediction outliers, o are the stragglers and * are the



Fig. 12. Gasoil data: Sammon’s mapping space and the Natural Patterns approach results.
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The Natural Patterns (NP) approach detects three

clusters (Fig. 9). The complexity of the model

obtained using the MCCV method with different sizes

of nv is 5, as is shown in Fig. 10.
Fig. 13. Gasoil data: Results using the proposed methodology, where are t

and * are the good prediction points.
The convex hulls are shown in Fig. 11 and there

are 100 objects for prediction in this data set. As in the

hydrogen data, after projecting the new objects on the

Sammon’s space, outliers and stragglers are detected.
he detected prediction outliers, � are the inliers, o are the stragglers
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There are 15 outliers and no inliers when only the first

convex hull is used. Twelve outliers and three strag-

glers are detected in prediction in this data set after

considering the second convex hull.

The rmsep when outliers are removed is 0.638. The

conclusions about stragglers for this data set are the

same as in the previous case. These objects are

therefore considered as good points for prediction.

4.3. Gas oil data

Fig. 12 shows the Sammon’s space after application

of the Natural Patterns approach. Three clusters are

detected. There are two large clusters denoted by 1 and

2, and a third cluster that contains only six samples

denoted by 3.

The convex hulls for each of the three clusters and

the global convex hull are shown in Fig. 13.

The second convex hull is constructed by means of

the uncertainty calculated for each of the objects in the

calibration data set using a complexity of 3 deter-

mined by the minimal RMSECV and the MCCV

method.

The 25 samples from the test set are projected

inside this figure. For this test data set, nine samples

are detected as outliers, five samples are detected as

stragglers and three samples are considered as inliers.

Again, this is due to the way of splitting the data. The

Kennard and Stone method selects first points on the

boundary, which are therefore excluded from the

convex hull.

The rmsep for the new objects when the nine

outliers are removed is reduced more than 24.3% in

relation to the value obtained when all objects are

considered.
5. Conclusions

In this paper, a methodology to automatically

detect both outliers and inliers in the prediction

set was developed. This methodology, combining

nonlinear mapping with a density-based clustering

method and the convex hull technique, makes the

automatic detection of outliers in the prediction data

set easier. The second boundary added using the

uncertainty of the data avoids that too many sam-

ples are considered as outliers. Samples situated
between both boundaries are now stragglers. The

way that the data is split has a big influence in the

number of outliers. The duplex and Kennard and

Stone methods select extreme points that are not

included in the convex hull described by the calibra-

tion model. The major advantage of this methodol-

ogy is that outliers and inliers can be simultaneously

detected. It is not proposed that outliers/inliers

should be systematically rejected. In fact, they are

interesting samples. If they are not due to measure-

ment or sampling errors, they should be considered

for updating the models.

In this article, it was supposed that one global

model would be preferred. Of course, when clusters

are detected and each of them contains enough sam-

ples, it may be decided to apply local models for each

cluster. Inliers to the global model then become out-

liers to the local models.
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