
Analytica Chimica Acta 488 (2003) 1–14

Delaunay triangulation method for multivariate calibration
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Abstract

The Delaunay triangulation (DT) method is proposed as a new local multivariate calibration method. DT was developed
within computational geometry, and it is shown that it has potential for applications in analytical chemistry, such as multivariate
calibration. The study compares the performance of the DT method with the global methods principal component regression
(PCR) and partial least squares (PLS) and the local methods locally weighted regression (LWR) and the law of mixtures (LM)
method. For the datasets studied the DT method gives similar results when the root mean square error for prediction (RMSEP)
value is compared. However, the DT method requires fewer components than PCR and PLS.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In multivariate calibration, one can distinguish lo-
cal and global methods. The latter use all calibration
samples to construct one model, often using linear
methods such as partial least squares (PLS), principal
component regression (PCR) or multiple regression.
The former use only the samples in the neighbour-
hood of the sample whose characteristics have to be
predicted. It can eliminate the risk of using a wrong
model, e.g. a linear model when, in fact, the relation-
ship is non-linear.

There are essentially two types of local methods.
The first consists of methods that apply PLS or PCR
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but use only calibration samples in the neighbourhood
of the sample to be predicted. There are several such
methods[1–4]. A second category consists of methods
in which the property values, e.g. concentrations, of
samples that are close to the unknown in the variable
space (neighbouring samples) are averaged in some
way. Such methods are sometimes called topological
methods. The method we present here belongs to the
second category.

The oldest and simplest topological method is the
k-nearest neighbours (kNN) method, which is best
known for classification, but is also used in quanti-
tative prediction[5]. The patented TOPNIR method,
which is used with near infrared spectroscopy in the
oil industry, is based on this approach[6]. A crucial
question is how to select the nearest neighbours. The
most local method is obtained when the number of
points selected is only one more than the number ofx
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variables, i.e. fork variables,k+1 nearest neighbours.
Those should be selected in such a way that they sur-
round the unknown sample. This means that calibra-
tion samples that form a so-called simplex should be
selected in which the unknown sample is inscribed (a
simplex is a geometrical figure ink dimensions with
k + 1 vertices, e.g. in two dimensions a triangle). The
property of the prediction samples falling inside a cer-
tain simplex is then predicted using the property of
the calibration samples forming that simplex. This was
proposed in a method called the multi-dimensional
simplex interpolation (MSI)[7]. In the MSI method,
enclosing simplexes are generated for each unknown
sample. It is shown that to obtain the best predic-
tions, the distance between the unknown sample and
the simplex points should be kept as small as possi-
ble. Several simplexes can be obtained and the MSI
selects the simplex for which the distance is indeed
smallest.

More recently we proposed a method that we call
the law of mixtures (LM) method[8]. The basic princi-
ple of the method is to connect the calibration samples
such that they form a predefined mesh of simplexes,
while in the MSI method simplexes are selected each
time an unknown sample must be predicted. In all
cases studied, the LM method gave at least similar re-
sults as PCR or PLS, but the algorithm to form the
mesh was very time consuming and the simplexes
formed were not the best that could be imagined. A
method to achieve simplexes, which is well known in
some application areas such as in geometry, is the De-
launay triangulation (DT)[9–13]. Moreover Matlab
version 6.1[14] contains an efficient algorithm, mak-
ing the method available to many users. DT has some
important properties (seeSection 2) that ensure that
these simplexes are “good” simplexes.

The idea of the DT method originates from the study
of structures in computational geometry. It is one of the
most popular methods for generation of unstructured
meshes. For a given set of points in two dimensions,
it constructs a triangle’s mesh using all the points as
vertices. It is applied in several fields of science such
as in metallurgy for examination of alloys, in cartogra-
phy for town planning, in crystallography to simulate
the growth for crystals, in mesh generation of finite el-
ements methods, etc.[15,16]. As far as we know there
are, however, no applications in chemometrics or even
in analytical chemistry. The aim of this article is to

introduce the DT method for multivariate calibration.
The resulting method is extremely simple. It consists
of four steps: (1) the number of variables is reduced
by obtaining PC scores for the calibration dataset and
using these as new variables; (2) the DT mesh is con-
structed; (3) the simplex in which the unknown sam-
ple is situated in the PC-space is determined; (4) the
result for the unknown sample is the (weighted) aver-
age of the property values of the calibration samples
that constitute the simplex. The same mesh is used for
all unknown samples.

2. Theory

2.1. The Delaunay triangulation (DT) method
[9–13]

The DT (in two dimensions) is defined by the empty
circle condition; i.e. one triangle is a valid triangle
only if its circumcircle encloses no other points of the
dataset. The circumcircle of a Delaunay triangle (or
Delaunay circle) is the circle that can be drawn through
all the vertices of that triangle. Generally, the Delaunay
triangulation of a set of points is unique[9,13]. The
steps to construct the DT in two dimensions are as
follows.

(1) Two points are selected randomly (e.g. points 1
and 2 inFig. 1). They are connected by a line12̄.
The rest of the points are connected with these
two points. A triangle is determined when there
is no other point inside the Delaunay circle. Two
triangles can be built in this case (triangle A and
B in Fig. 1a). If on one side of line12̄ there are no
points, only one triangle on the other side can be
constructed. Both triangles fulfill the empty circle
condition and are retained.

(2) Triangle A is selected to continue building the
mesh. One of the sides of the triangle that is not
connected with B is selected, for instance, line
13̄ in Fig. 1b. This line now plays the same role
as line12̄ in the previous step. A new triangle is
determined when there is no other point inside the
Delaunay circle. InFig. 1b, the Delaunay circle
determined by the triangle C′ contains points 5
and 9 and therefore triangle C′ is not accepted.
The points inside (points 5 and 9) are used in order



L. Jin et al. / Analytica Chimica Acta 488 (2003) 1–14 3

Fig. 1. (a–d) Steps to construct the Delaunay triangles.

to build new candidate triangles. Point 9 leads to
triangle C (Fig. 1c) and it is accepted because no
more points are inside its circumcircle.

(3) Step 2 is repeated for the other side of triangle A
and triangle D is constructed inFig. 1d.

(4) Steps 2 and 3 are now repeated for the retained
triangles (B, C, D,. . . ) until all points are con-
nected as shown inFig. 1d.

The previous steps are performed in the PC-space.
In this way the dimensionality of the DT space is re-
duced dramatically as compared to the original vari-
able space. Two possibilities were considered, namely,
to use the first PCs ranked according to the variance
they express or to use the PCs selected according to

their correlation to the property (y) in principal com-
ponent regression (PCR). The second approach has
the advantage that it reduces the dimensionality even
more since PCs with large variance that are not related
to y are not considered. On the other hand, it is not
evident that using global correlation withy is a good
criterion to select local models. Both approaches are
compared inSection 3.

The LM method[8] is based on the same idea as
DT. The main difference between these two methods
is the way that the mesh is built. DT uses the natural
neighbours of each calibration data point to construct
the simplexes, while LM uses the nearest point to the
centre of the calibration data to construct the initial
simplexes with the boundary points, then the rest of
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the points are connected depending on their situation
with respect to the previous simplexes. The way that
DT selects the simplexes is much more logical and
elegant.

A question which arises is of course whether the
simplexes generated by the DT method are “good”, i.e.
allow good prediction. Danielsson and Malmquist[7]
showed for their MSI method that simplexes should
be as small as possible. Another criterion is that the
simplex points should surround the point to be pre-
dicted as well as possible. The DT has the property that
the circumcircle of every triangle contains no other
data points, thereby ensuring that simplexes are indeed
small. The DT maximises the smallest interior angle
of each triangle. This means that the minimum angle
of any triangle is as large as possible, so that DT tends
to triangles with more equidistant points than other
triangulations. This property makes that the simplex
surrounds the point to be predicted well and that it
avoids co-linearity or ill-conditioning. It may be con-
cluded that the DT generates simplexes with desirable
properties.

2.2. Prediction

Once the mesh is constructed, it is used for the pre-
diction of new samples. The new samples are pro-
jected into the PC-space where the mesh is built. If
a new sample M falls within a simplex defined byk
neighbours (k is equal to the number of PCs+ 1), it is
considered as a mixture of these samples in order to
calculate the value of its associated property.

In two dimensions the following equations are used
to obtain the position of the new sample with respect
to its k = 3 neighbours (M1, M2, M3) that are sur-
rounding the new sample M[8]. They can easily be
generalised to more dimensions.

αM1 =
(x2M − x2M2)(x1M3 − x1M2)

+(x1M − x1M2)(x2M2 − x2M3)

(x2M1 − x2M2)(x1M3 − x1M2)

+(x1M1 − x1M2)(x2M2 − x2M3)

(1)

αM2 =
(x2M − x2M1)(x1M3 − x1M1)

+(x1M − x1M1)(x2M1 − x2M3)

(x2M2 − x2M1)(x1M3 − x1M1)

+(x1M2 − x1M1)(x2M1 − x2M3)

(2)

αM3 =
(x2M − x2M2)(x1M1 − x1M2)

+(x1M − x1M2)(x2M2 − x2M1)

(x2M3 − x2M2)(x1M1 − x1M2)

+(x1M3 − x1M2)(x2M2 − x2M1)

(3)

wherex1i andx2i are the scores of the objects in the
PC-space,αM1, αM2 andαM3 are the contribution of
samples M1, M2 and M3, respectively, and the sum of
the coefficients is 1:

αM1 + αM2 + αM3 = 1 (4)

The property of an unknown sample M is obtained
by usingEq. (5):

yM = αM1yM1 + αM2yM2 + αM3yM3 (5)

whereyM, yM1, yM2 andyM3 are the property for sam-
ples M, M1, M2 and M3, respectively. Similar equa-
tions, but presented differently, were proposed in the
MSI method[7].

For sample M, all the coefficients of each triangle
are calculated. Only one triangle fulfils the condition:
0 ≤ αM1, αM2, αM3 ≤ 1 and it is the triangle that
contains M.

For the new samples falling into the mesh, there are
two special situations, i.e. a new sample falls on a line
(facet of the polyhedron in more than two dimensions)
or it falls on a calibration point. In the first case, one
of the coefficients is 0. In the second case, one of the
coefficients is 1, i.e. the property of the new sample
equals the property of the overlapped calibration point.

In most applications, e.g. in geography, the whole
map can be triangulated. However, in our application
some prediction objects are situated outside the mesh.
Some of these are real outliers and some are not real
outliers, but borderline objects. Real outliers in pre-
diction are the samples that are inconsistent with the
calibration data and they can be found by outlier detec-
tion methods[17–19]. The borderline objects are the
objects that are outside the mesh constructed by the
calibration set, but are not real outliers. The real out-
liers must be detected and eliminated, borderline ob-
jects should be predicted and the original DT method
does not allow it. This is the main difficulty in ap-
plying DT to calibration problems. In order to obtain
also results for the borderline objects, three different
approaches are proposed.
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Fig. 2. Finding the centre of each triangle in approach 1, where
(�) are the calibration objects; (�) are the centres of the triangles;
and ( ) (M) is the borderline object.

2.2.1. Approach 1
Due to the fact that the sum of the coefficients (

∑
α)

is 1 andα > 0 for the points inside the mesh (see
Eq. (4)), theα values are limited to the range [0, 1].
To predict the borderline objects we should allow the
coefficients of the mixture to be negative. The coef-
ficients are determined for the triangle closest to the
object. The following steps explain how to apply this
approach in two dimensions, but it can easily be gen-
eralised.

(1) The centres of all triangles in the mesh are deter-
mined (Fig. 2). Then the Euclidean distances be-
tween the prediction object and each of the centres
are calculated. The triangle with the smallest dis-
tance is selected. For instance, inFig. 2, for the
borderline object M, the triangle M1M2M3 is se-
lected.

(2) UsingEqs. (1)–(3), the coefficientsα1, α2, α3 are
obtained. Because M is outside the triangle M1
M2M3, at least one of the coefficients is negative.

(3) The property (yM) for the borderline object is ob-
tained by usingEq. (5).

2.2.2. Approach 2
In approach 1 we allowed the coefficients to be neg-

ative without any further constraint. In approach 2, the

range ofα values is limited to, e.g. [−1, 2], [−2, 3],
etc. When the point is outside the mesh, all triangles
whose coefficients are within a given limit are consid-
ered. In this way a subspace is constructed around the
triangle, defining the prediction limits of it. The limit
[−1, 2] is preferred because it allows constructing the
smallest subspace around the triangle, but in the case
that the points cannot be predicted using this limit,
the next one, e.g. [−2, 3] should be applied.Fig. 3
shows the prediction subspace of triangle M1M2M3
when the coefficient’s limit is [−1, 2], i.e. a new point
A inside the subspace surrounded by the dashed line
can be predicted using this triangle. In the example
of Fig. 3, if one borderline object (B) is outside the
subspace determined by the limit [−1, 2] for triangle
M1M2M3, it is verified if it belongs to the subspace
determined by the rest of the triangles with the same
limit. If this is not the case, the limits [−2, 3], [−3, 4],
. . . are used till object B belongs to at least one sub-
space. Because real outliers have been eliminated first,
most of the borderline objects are close to the convex
hull containing the calibration data and the subspace
with the coefficient limits [−1, 2] includes most of the
borderline objects to be predicted. One borderline ob-
ject can also belong to the subspace of two or more
triangles. In such cases the property of the borderline
object is the average value of the prediction results
obtained from all the possible triangles.

(1) For the borderline object M, the coefficientsα1,
α2, α3 for each triangle are determined using
Eqs. (1)–(3).

(2) The triangles for which the coefficients are be-
tween the given limits are retained. If, for instance,
there are two triangles, M1M2M3 and M4M5M6,
with coefficients between these limits, two predic-
tion results for object M are obtained:

yM (1) = αM1yM1 + αM2yM2 + αM3yM3 (6)

yM (2) = αM4yM4 + αM5yM5 + αM6yM6 (7)

(3) The property of M (̂yM) is the average value of
the prediction results from step 2.

2.2.3. Approach 3
Instead of choosing the simplex with the smallest

distance between the centre of the triangles and M as
in approach 1, the simplex can also be chosen with
as criterion that maxj(|αij |) should be smallest (inK
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Fig. 3. The prediction subspace of triangle M1M2M3 when the coefficient limits are [−1, 2].

dimensions,j = K + 1). The steps for this approach
(in two dimensions) are the following.

(1) The DT is constructed and the resulting mesh con-
sists ofN triangles.

(2) For each triangle,αi1, αi2, αi3 (i = 1, 2, . . . , N)
are obtained withEqs. (1)–(3). The triangle with
smallest maxj(|αij |) to the borderline object M that
has to be predicted is selected, i.e. for each trian-
gle the maximum coefficient value maxj(|αij |) is
selected first, then these values are ranked and the
smallest one is retained.

(3) Eq. (5) is used to obtain the property of M.

3. Experimental

Three NIR datasets are used in this study. They
consist of the following.

3.1. Dataset 1

Two hundred thirty-nine samples of gasoil measured
between 4900 and 9000 cm−1 (each 2 nm) to deter-
mine the percentage of hydrogen (y). The range of
property (y) is from 10.61 to 14.40.

3.2. Dataset 2

Three hundred five samples of alfalfa (forage)[20]
measured between 1108 and 2492 nm (each 8 nm) to
determine the protein content (y). The range of prop-
erty (y) is from 10.78 to 27.75.

3.3. Dataset 3

Eighty-seven samples of polyether polyols mea-
sured between 1100 and 2158 nm (each 2 nm) to
determine the hydroxyl number (in mg KOH g−1).
The range of property is from 10.90 to 133.60.

4. Results and discussion

4.1. Dataset 1

The dataset was split into two subsets by using the
Duplex algorithm[21]: 199 objects were used to build
the model and 40 objects were selected for prediction.

In order to determine the optimal number of com-
ponents in the model, leave-one-out cross-validation
and the randomisation test[22] were used. In PLS, the
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minimum root mean square error for cross-validation
(RMSECV) value was obtained when eight compo-
nents were used. After comparing the precision of the
model using the randomisation test, we decided on a
five components model. Another technique to deter-
mine the complexity of the model is the Monte-Carlo
cross-validation (MCCV) method[23–25]. The opti-
mal number of components is 5 when this method is
used[8]. This was also the case for PCR with selec-
tion.

Leave-one-out cross-validation is also used in the
DT method. When the left-out object is inside the
mesh constructed by the rest of the data, the property
of the object is obtained by using the DT method. If it
is outside, approach 2 is used. The optimal RMSECV
value was obtained for four dimensions when the ran-
domisation test was used. In this dataset, the first four
important PCs selected according to their correlation
to y are first, third, fourth and sixth PC and DT is ap-
plied in the data space defined by these PCs.

Fig. 4a and bshow the triangles obtained using
the DT method and the LM method, respectively,
in two dimensions. As was previously said, these
methods are different in the way of constructing the
mesh. FromFig. 4a and bone can see that DT gives,
as could be expected from theory (see discussion at
the end ofSection 2) a better mesh than the mesh
from LM.

A large number of prediction points is found to be
outside the DT mesh. No real outliers are detected us-
ing the method from[19], which means that all the
points outside the mesh are borderline objects. In two
dimensions, 5 (12.5%) borderline objects are detected

Table 1
Dataset 1: RMSECV is obtained for all object in calibration set and RMSEP for the prediction of the prediction set from which the
borderline objects have been removed

Dimensions Number of borderline
objects detected (%)

PCR PLS LWR LM DT

2 5 (12.5) RMSECV 0.108 0.099 0.076 0.097 0.095
RMSEP 0.148 0.134 0.141 0.112 0.138

3 16 (40.0) RMSECV 0.071 0.089 0.065 0.084 0.068
RMSEP 0.065 0.094 0.085 0.072 0.047

4 20 (50.0) RMSECV 0.054 0.062 0.047 0.050 0.045
RMSEP 0.066 0.062 0.048 0.050 0.044

5 27 (67.5) RMSECV 0.052 0.049 0.043 0.049 0.042
RMSEP 0.075 0.069 0.056 0.055 0.045

in prediction. In three dimensions, 16 (40%) border-
line objects are detected. In four and five dimensions,
20 (50%) and 27 (67.5%) samples are detected as bor-
derline objects, respectively.

There are more samples situated on the border when
more dimensions are considered for the same calibra-
tion set. If the same population is considered in, e.g.
one, two and three dimensions, the number of border
samples in one dimension is two, in two dimensions
all samples on the convex two dimensional hull are on
the border. This is also true in three dimensions, but it
is easy to understand that there will be more samples
on the convex hull in three than in two dimensions.
Consider now a population consisting of the calibra-
tion set and one new prediction object. As the number
of dimensions grows the chance that this new object
will be borderline object, as defined by us, increases.
When it is borderline, it does belong to the population
(is not a real outlier), but it will be outside the mesh
of the calibration samples.

Table 1 shows the RMSECV values using
leave-one-out cross-validation for all objects in the
calibration dataset and the root mean square error
for prediction (RMSEP) values after removing the
borderline objects detected by DT. The RMSEP is
determined according to the following equation:

RMSEP=
√∑N

i=1(ŷi − yi)
2

N
(8)

where N is the number of objects in the prediction
set, ŷi andyi are the predicted and the experimental
property of theith object, respectively.
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Fig. 4. The triangles obtained in two dimensions with (a) the DT method and (b) the LM method, respectively.

When more than three dimensions are used, LWR,
LM and mainly DT become somewhat better than the
global techniques for predicting objects within the cal-
ibration set.

For the determination of the property of the bor-
derline objects, all three approaches are applied. In
approach 2, the limits [−1, 2], [−2, 3], [−3, 4] and
[−4, 5] are considered in order to compare them. For

this dataset, all the borderline objects can be predicted
when the limit [−1, 2] is used.Fig. 5 shows the RM-
SEP value of this dataset in different dimensions for
those limits. It is clear that the limit [−1, 2] gives the
minimum RMSEP in all cases except for two dimen-
sions.

The RMSEP values for the borderline objects in
prediction in different dimensions using the different
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Fig. 5. The RMSEP values for dataset 1 in different dimensions for different limits of the coefficients using approach 2, where A represents
the limit [−1, 2]; B represents the limit [−2, 3]; C represents the limit [−3, 4]; and D represents the limit [−4, 5].

Table 2
Dataset 1: RMSEP for the borderline objects using approaches 1–3

Dimensions Approach 1
(borderline
objects)

Approach 2
(borderline
objects)

Approach 3
(borderline
objects)

2 0.165 0.123 0.168
3 0.103 0.077 0.105
4 0.095 0.045 0.060
5 0.103 0.049 0.090

approaches are shown inTable 2. In four and five
dimensions, the results using approach 2 are clearly
better.

In order to compare the prediction ability of PLS,
PCR, LWR, LM and DT (with approach 2 for border-

Table 3
Dataset 1: comparison of the RMSEP obtained from the DT method (approach 2 for borderline objects) with that obtained from PCR,
PLS, LWR and LM for all objects (borderline objects+ points within the calibration set space)

Dimensions PCR PLS LWR LM DT (top-down PCs) DT (selection PCs)

2 0.154 0.140 0.137 0.112 0.263 0.136
3 0.086 0.117 0.101 0.089 0.133 0.061
4 0.072 0.075 0.061 0.084 0.057 0.045
5 0.068 0.064 0.055 0.092 0.065 0.048

line objects), the RMSEP values from these methods
for all the objects, i.e. now including the borderline
objects, are compared inTable 3. The DT was carried
out both in the space of PCs ranked according to the
variance (top-down PCs) and of PCs ranked accord-
ing to correlation withy (selection PCs). The results
with selected PCs appears to be better than the results
from top-down PCs in DT with different dimensions.
The optimal result (0.045) from DT with selection PCs
when four dimensions are used is better than the re-
sults from PCR (0.068), PLS (0.064) and LWR (0.055)
when five components are used and the result from
LM (0.084) and DT with top-down PCs (0.057) with
four dimensions. For this case, the DT (with selection
PCs and approach 2 for borderline objects) requires
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Table 4
Dataset 2: RMSECV is obtained for all object in calibration set and RMSEP for the prediction of the prediction set from which the
borderline objects have been removed

Dimensions Number of borderline
objects detected (%)

PCR PLS LWR LM DT

2 3 (3.41) RMSECV 1.18 2.20 1.52 1.22 1.23
RMSEP 1.24 2.16 1.32 1.21 1.00

3 8 (9.09) RMSECV 1.08 1.38 1.30 1.11 1.04
RMSEP 1.05 1.40 1.24 0.98 0.81

4 18 (20.45) RMSECV 1.01 1.16 1.10 0.98 0.90
RMSEP 1.01 1.16 0.96 0.89 0.72

5 28 (31.82) RMSECV 0.95 1.11 0.88 0.93 0.85
RMSEP 0.90 0.94 0.70 0.92 0.73

fewer dimensions and yields a better RMSEP than the
other methods. The randomisation test showed that the
differences in RMSEP with PCR, PLS and LM were
significant.

4.2. Dataset 2

Dataset 2 was split into two independent datasets
by the providers of the data. It contains 205 samples
for calibration and 100 samples for prediction.

With PCR the minimum RMSECV is obtained us-
ing 11 components and the randomisation test gives
10 components. For PLS regression the minimal RM-
SECV is obtained when 18 components are used, the
randomisation test gives 16 and the MCCV method
shows that one can consider five latent variables. In
the DT method, five dimensions are considered. The
first five important PCs are the 5th, 1st, 8th, 14th and
10th PC.

This dataset was well studied in[19] and it was
concluded that 12 real prediction outliers are present.
The real outliers were removed, leaving 88 samples
in the test set. There are three borderline objects (i.e.
not real outliers) for two dimensions; 8, 18 and 28 for
three, four and five dimensions, respectively.

The results from PCR, PLS, LWR and LM are com-
pared with the results from DT. The RMSECV values
for all objects in the calibration dataset and the RM-
SEP values using PCR, PLS, LWR, LM and DT after
removing the borderline objects are shown inTable 4.
As in dataset 1 the results using DT are similar or a
little better than the rest of the methods. Again, it ap-

pears that DT gives good results for samples within
the calibration space.

The three approaches to obtain the property of the
borderline objects are also investigated. The results
are compared inTable 5. In approach 2, two objects
are outside the subspaces, which are created with the
limit [ −1, 2] in two dimensions. The limit [−2, 3] is
then used for these objects. The results from approach
2 are better than those from approaches 1 and 3.

Table 6shows the results from PLS, PCR, LWR,
LM and DT (with approach 2 for borderline object)
for all samples in prediction. For the same number of
dimensions the results from DT with selection of PCs
are better than those for PLS, PCR, LWR, LM and
DT with top-down PCs. When the DT method with
selection PCs in five dimensions is used, the RMSEP
is 0.82 which is similar to the result from LWR in five
dimensions (0.87) and comparable with the minimal
RMSEP values from PLS (0.72) and PCR (0.76) when
11 components are used and DT with top-down PCs
(0.75) when eight dimensions are used.

Table 5
Dataset 2: RMSEP for the borderline objects using approaches 1–3

Dimensions Approach 1
(borderline
objects)

Approach 2
(borderline
objects)

Approach 3
(borderline
objects)

2 1.88 1.82 1.88
3 2.57 1.44 2.37
4 2.58 1.68 2.25
5 1.76 1.01 1.28
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Table 6
Dataset 2: comparison of the RMSEP obtained from the DT method (approach 2 for borderline objects) with that obtained from PCR,
PLS, LWR and LM for all objects (borderline objects+ points within the calibration set space)

Dimensions PCR PLS LWR LM DT (top-down PCs) DT (selection PCs)

2 1.48 2.17 1.38 1.20 1.63 1.04
3 1.19 1.59 1.42 1.28 1.68 0.88
4 1.34 1.30 1.19 1.38 1.73 0.96
5 1.05 1.36 0.87 1.22 1.02 0.82

4.3. Dataset 3

This set was chosen because it was studied repeat-
edly using other methods[4,26,27]and because it has
a relatively small number of objects and a high com-
plexity. Then, the number of borderline objects should
be very high and this dataset should present a worst
case situation. Three real outliers were found by Cent-
ner and Massart[26], in that case 84 samples out of the
87 original ones were left. It was split into two subsets
by using random selection: 60 samples for calibration
and 24 samples for prediction.

For the PLS regression, a complexity of 8 is ob-
tained according to the minimal RMSECV and 7 when
the randomisation test and MCCV method are used.
For PCR the minimum RMSECV is obtained using
10 components and the randomisation test and MCCV
give eight and nine components, respectively. For the
DT method, the RMSECV values for different dimen-

Table 7
Dataset 3: RMSECV is obtained for all object in calibration set and RMSEP for the prediction of the prediction set from which the
borderline objects have been removed

Dimensions Number of borderline
objects detected (%)

PCR PLS LWR LM DT

2 2 (8.33) RMSECV 5.29 5.09 4.36 4.45 4.73
RMSEP 4.94 4.71 4.17 4.15 4.56

3 7 (29.2) RMSECV 4.34 4.21 3.79 4.20 4.19
RMSEP 4.43 3.08 2.85 3.29 3.11

4 11 (45.8) RMSECV 3.61 3.41 3.15 3.48 3.31
RMSEP 2.75 2.41 2.16 2.35 2.09

5 14 (58.3) RMSECV 2.88 2.92 2.18 2.04 2.52
RMSEP 1.95 2.23 1.38 1.87 1.80

6 19 (79.2) RMSECV 2.57 2.38 1.64 2.06 2.01
RMSEP 2.82 1.33 1.48 2.82 2.75

7 24 (100) RMSECV 2.10 1.61 1.44 1.77 1.79
RMSEP – – – – –

sions are shown inTable 7. Seven dimensions are con-
sidered to be optimal. The first seven important PCs
according to their correlation toy are the second, first,
fifth, fourth, eighth, third and sixth PC.

In two dimensions, two borderline objects are de-
tected in the test set (8.33% of the objects), in three
to six dimensions, 7 (29.2%), 11 (45.8%), 14 (58.3%)
and 19 (79.2%) borderline objects are detected in pre-
diction, respectively. In seven dimensions, all predic-
tion objects are outside the mesh constructed by the
calibration data.

The RMSECV are shown inTable 7. It is clear that
the minimal values are obtained when seven compo-
nents are used. The RMSEP from PCR, PLS, LWR,
LM and DT are also shown after removing the border-
line objects. For seven dimensions, because no objects
in prediction are inside the mesh that is constructed
by the calibration data, a comparison is not possible
and approaches 1–3 are applied.



12 L. Jin et al. / Analytica Chimica Acta 488 (2003) 1–14

Table 8
Dataset 3: RMSEP for the borderline objects using approaches 1–3

Dimensions Approach 1
(borderline
objects)

Approach 2
(borderline
objects)

Approach 3
(borderline
objects)

2 9.31 14.8 11.9
3 3.37 2.01 2.50
4 3.71 2.12 3.84
5 2.89 1.71 2.04
6 3.68 1.28 1.44
7 2.65 1.47 1.52

The three proposed approaches for borderline ob-
jects are used as in the previous datasets in different
dimensions. For this dataset, in three to seven dimen-
sions, the best results are from approach 2 (Table 8).
As in dataset 1, all the borderline objects are predicted
using the limit [−1, 2] in approach 2. Normally the
prediction for objects inside the mesh is better than for
objects outside the mesh (borderline objects). How-
ever, it must be remembered that borderline objects
are not real outliers and are therefore quite close to
the calibration objects. They are therefore in general
predicted quite well and in some cases better than one
would expect. For instance, in six dimensions, the RM-
SEP value for the borderline objects is 1.28 (approach
2), which is better than the result for the objects inside
the mesh (2.75), and similar to the RMSEP obtained
for PLS and LWR. This shows that in this case it is
advantageous to use more objects for averaging out
errors in prediction.

In this dataset, the results (RMSEP) from different
techniques for all objects are compared inTable 9. The
results from DT in the space of selection PCs are bet-
ter than in the space of top-down PCs (with approach
2 for borderline objects). For PCR, PLS, LWR, LM

Table 9
Dataset 3: comparison of the RMSEP obtained from the DT method (approach 2 for borderline objects) with that obtained from PCR,
PLS, LWR and LM for all objects (borderline objects+ points within the calibration set space)

Dimensions PCR PLS LWR LM DT (top-down PCs) DT (selection PCs)

2 5.03 4.79 4.39 4.99 6.11 6.11
3 4.06 3.23 2.78 3.08 2.68 2.83
4 2.58 2.37 2.18 2.20 2.39 2.10
5 1.93 2.04 1.77 1.98 2.04 1.75
6 2.02 1.87 1.70 2.21 1.82 1.69
7 1.85 1.69 1.55 1.72 1.78 1.47

and DT with top-down PCs, the optimal RMSEP val-
ues are obtained when 9 (1.71), 7 (1.69), 7 (1.55), 7
(1.72) and 7 (1.78) components are considered, which
are somewhat higher than the result from DT with ap-
proach 2 and selection of PCs in seven dimensions
(1.47), but the randomisation test shows that the dif-
ferences are not significant.

5. Conclusions

The results using DT in all datasets presented here
are at least comparable with the results from PCR, PLS
and LWR. Because we have shown in an earlier arti-
cle [27] that PLS performs better than the simple kNN
topological methods, it follows that DT is also supe-
rior to these kNN methods. Because the DT method
uses the natural neighbourhood to construct the trian-
gulation, the results from DT are better than the re-
sults from the LM method. Another advantage of the
DT method is that fewer components are used for pre-
diction as compared to PCR and PLS. In dataset 2, 11
components are necessary in PCR and PLS to achieve
the minimal RMSEP, but DT requires only 5.

Borderline objects must be expected to occur very
often. How often depends on the number of objects
in the calibration set and the number of dimensions.
Therefore, special attention was given to this problem.
For the prediction of the borderline objects, we pro-
posed three approaches. The results from approach 2,
where all possible triangles with coefficients within a
given limit are used, are always better than approaches
1 and 3. This is probably caused by the fact that
more objects are used for prediction in approach 2 and
therefore errors are averaged out to a larger extent.
Approach 2 is therefore recommended to predict the



L. Jin et al. / Analytica Chimica Acta 488 (2003) 1–14 13

property of borderline objects. The DT method with
approach 2 applied in all these datasets gives similar
results to PCR, PLS and LWR and gives better results
than the recently proposed LM method. In order to
achieve even better results in approach 2, the limita-
tion of the coefficients will be further investigated. As
general conclusion one can say that the DT method not
only performs well for objects within the calibration
set, but also for borderline objects. It is noteworthy
that even for dataset 3 with seven components, where
all prediction objects are borderline objects (and thus
near to, but not within the limits of the calibration
set), the DT results are good. It should be noted here
that the MSI method does not consider the borderline
problem.

DT in the space of PCs ranked according to corre-
lation with y gave somewhat better results than in the
space with top-down PCs. However, more evidence is
needed to conclude this definitively.

The most evident advantage of topological local
methods compared to both global and local methods
based on PLS is that the method is very simple to
understand as it is simply based on taking averages,
while PLS remains difficult to understand for the non
initiated. Compared to global methods local methods
do not require attention to the possible presence of
non-linearity. One of the main difficulties in the con-
tinued use of regression based calibration methods is
that they are not simple to update, i.e. to include new
calibration samples. With topological methods this is
much simpler. It has been shown that new points can
be inserted in a DT mesh in a simple way without
having to compute the mesh all over again[28].

Updating the calibration must be still simpler with
the MSI method. However, using a predefined mesh
as in the DT method is much simpler than having to
rank simplexes as would be the case if MSI were used
for solving the borderline samples problem. Using the
latter method for borderline samples would mean con-
sidering simplexes for many possible combinations of
points. Moreover, predictions with DT are continu-
ous when the prediction point inside the mesh moves
around. This is not the case for MSI, because the sim-
plex on which the prediction is based may change.

This does not mean that the DT method is en-
tirely free from problems. For instance, if there is a
measurement error in the reference method of a cer-
tain calibration sample, this will affect to a larger ex-

tent prediction samples in that neighbourhood than it
would in PLS. A possible disadvantage of all topolog-
ical local methods is that they cannot be interpreted in
terms of regression coefficients, so that at first sight it
is less simple to decide which variables are important
and which ones are not.

We can conclude that the DT method is shown
to perform well for multivariate calibration. The DT
could serve as a valuable tool in multivariate calibra-
tion, certainly in cases where the more common global
techniques are less efficient. Local topological meth-
ods, such as the DT method and the MSI method, are
not very widespread and merit a larger acceptance as
they show a number of advantages. Further research
into such methods would therefore be useful.
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