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The Law of Mixtures method for multivariate calibration
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Abstract

The Law of Mixtures (LM) method is a new so-called topological method for multivariate calibration. It is shown to be a
very good method to predict the response for new objects that are inside the convex hull determined by the calibration data
set. A method is also proposed for those that are outside the convex hull.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Principle

The proposed Law of Mixtures (LM) method can
be considered as a Nearest Neighbors method[1] or
as what is sometimes called a topological model[2].
In this method, originally proposed by theInstitut
Français du Pétrole (IFP), the unknown sample (M)
is first surrounded in the calibration data set space by
a selection ofk neighbors. In a second step,M is con-
sidered as a mixture of thesek samples in order to
calculate the value of its associated property using the
Law of Mixtures.

In the example ofFig. 1, two explained variables,x1
andx2, describe the set of samples and three samples
define a mixture. In that way all the samples in the
triangle [M1 M2 M3] can be expressed as a mixture
of samples M1, M2 and M3.

∗ Corresponding author. Tel.:+32-2-477-4734;
fax: +32-2-477-4735.
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In Fig. 1, if M is a sample with an unknown re-
sponse, one can write:

x1M = αM1x1M1 + αM2x1M2 + αM3x1M3 (1)

x2M = αM1x2M1 + αM2x2M2 + αM3x2M3 (2)

whereαM1, αM2 andαM3, are the contribution of com-
ponents M1, M2 and M3, respectively in the mixture
andx1i andx2i are the coordinates of each sample in
the explained variables. Theα-values have to satisfy:

αM1, αM2, αM3 > 0 and αM1 + αM2 + αM3 = 1 (3)

In the case we work with petroleum data for ex-
ample, properties like aromatic carbon, hydrogen and
aromatics show a linear Law of Mixtures. IfyM, yM1,
yM2, andyM3 are the values of the property for sam-
ples M, M1, M2 and M3, respectively:

yM = αM1yM1 + αM2yM2 + αM3yM3. (4)

The generalisation to more dimensions is immedi-
ate.
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Fig. 1. x1 and x2 describe the set of samples. Sample M is
considered a mixture of samples M1, M2 and M3.

For other properties, it is sometimes possible to ap-
ply a transformation in order to find a linear rela-
tionship. For example, in the case of the density in
petroleum products the inverse of the density follows
a linear law:

1

d
=

I∑
i=1

αi

1

di

(5)

Sometimes the calculation of the mixture is not based
on analytical expressions as in the case of the distilla-
tion.

2. Methodology

The LM method requires two steps. In the first step,
a lattice is built in the PC space in order to be able
to locate an unknown sample. With this aim an algo-
rithm is developed which is explained below with an
example in two dimensions. Then, in the second step,
the prediction of the unknown sample is performed.

2.1. First step: building the lattice

In a classicalk-Nearest Neighbours method one usu-
ally starts by choosing the numberk of neighbours to
predict or to classify an unknown sample M. In the
LM method, this numberk is equal to the number of
dimensions (n) + 1 and the points are chosen such
that the sample M is surrounded with thek selected

Fig. 2. In two dimensions several triangles can contain the sample
M.

points. This means that if(Mi )i=1,k are the selected
points, it is possible to findk coefficients(αi)i=1,k be-
tween 0 and 1 in such a way that M= ∑

i=1,kαiMi

and
∑

i=1,kαi = 1.
In one dimension, two points are needed to surround

an unknown sample. In two dimensions, at least three
points, and inn dimensions,n + 1 points are needed.

In a given set of points, several groups of points can
satisfy the previous criteria as is shown inFig. 2, which
shows an example in a two-dimensional space with
mixtures of three components. Of course, mixtures of
four components or more can also be considered.

Instead of calculating each time all the possible mix-
tures, it is more natural to fix from the beginning all
the mixtures by building a lattice. In fact, there are
Cr

n = n!/(n−r)!r! mixtures withr elements to test in
a data set withn samples and it becomes impossible
to test all of them. Apart from the computational ad-
vantage, the geometry of the lattice yields predictions
that are unique.

To build the lattice, we developed an algorithm in
order to automatically cover then-dimensional space
with possible mixtures ofn+1 samples. The tests that
we performed give very good results. The obtained
mixtures aren + 1 polyhedra withn + 1 vertices,
where n is the number of independent variables,n
represents the dimensionality of the calibration sample
space. To build the lattice, one proceeds in the way
illustrated byFig. 3a–dfor the case of two dimensions.
The dimensions are selected as the most important PCs
according to their correlation toy.
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Fig. 3. (a–c) Steps to construct the lattice in two dimensions in the calibration set. (d) A new point M can be considered as a mixture of
samples C, E and G.

(a) First a convex hull is constructed that envelops the
data points[3,4].1

(b) One point is arbitrarily selected as an initial point.
This point is linked to all the points in the convex
hull, in such a way that a first lattice is built. Em-

1 http://www.cse.unsw.edu.au/∼lambert/java/3d/giftwrap.html.

pirical tests show that good results are obtained
when the selected point is the closest point to the
gravity center (point A).

(c) An iterative procedure is carried out. Consider it-
erationi. Pointi is found not to be a vertex of the
n-polyhedron (point D in figure). To incorporate
it in the lattice, one has to link it to all the ver-

http://www.cse.unsw.edu.au/~lambert/java/3d/giftwrap.html
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tices of then-polyhedron (triangle) that contains
it.

Step (c) is repeated for all the objects inside the
convex hull. A possible alternative (which in our
case does not produce better results) is to repeat
the steps (b) and (c) for each mesh in the lattice
until there is no point left, that is not part of the
lattice.

The difficulty of step (a) is to construct the convex
hull. Step (b) is evident. In step (c) it is necessary to
find the polyhedron which contains the new pointi.

Several refinements are possible:

• A different initial point can be selected.
• The points in step (c) can be selected in a different

way. For instance, for eachn-polyhedron the gravity
centre can be determined and step (b) is iterated for
the whole data set. The tests that we performed did
not show improved results and the algorithms are
more complex.

2.2. Second step: prediction of new samples

For a new point M, the polyhedron (triangle
for two dimensions) that contains it is found. This
point M is considered as a mixture of the samples
corresponding to the vertices of that polyhe-
dron. The LM method is applied in order to de-
termine the coefficientsα of the mixture. From
Eqs. (1)–(3), the α-values in two dimensions are
defined as:

αM1 = (x2M − x2M2)(x1M3 − x1M2) + (x1M − x1M2)(x2M2 − x2M3)

(x2M1 − x2M2)(x1M3 − x1M2) + (x1M1 − x1M2)(x2M2 − x2M3)
(6)

αM2 = (x2M − x2M1)(x1M3 − x1M1) + (x1M − x1M1)(x2M1 − x2M3)

(x2M2 − x2M1)(x1M3 − x1M1) + (x1M2 − x1M1)(x2M1 − x2M3)
(7)

αM3 = (x2M − x2M2)(x1M1 − x1M2) + (x1M − x1M2)(x2M2 − x2M1)

(x2M3 − x2M2)(x1M1 − x1M2) + (x1M3 − x1M2)(x2M2 − x2M1)
(8)

For instance, in the case ofFig. 3d, these three
equations are applied using point C as M1, point E
as M2 and point G as M3. These three points are the
vertices of the polyhedron containing M and the value
of the property for a new sample M can be obtained
usingEq. (4).

The method of the Law of Mixtures is essentially
an approximation method of the unknown functionf

Fig. 4. Interpolation in one dimension using several consecutive
linear functions.

that connects the property under study. In one dimen-
sion, the method works as an interpolation method of
a function using several consecutive linear functions,
as is shown inFig. 4.

It is possible to evaluate the approximation per-
formed in each point. Suppose that a point M to be pre-
dicted is surrounded in then-dimensional space with
a polyhedron withn + 1 vertices M1, M2, . . . , Mn+1.
(xi

j )j=1,n are the co-ordinates of point Mi , (xj )j=1,n

the co-ordinates of point M, and(αi)i=1,n+1 are the
coefficients of the mixture.

We know fromEq. (4)that ŷ = ∑
i=1,n+1αiyi and

we will replace in this equation eachy by its value

from the Taylor series.

yi = y +
∑
j

(xi
j − xj )

∂y

∂xj

+1

2

∑
j

(xi
j − xj )

2 ∂2y

∂xj
2

+ · · · (9)
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By substitution into the equation for̂y, we obtain:

ŷ = y
(∑

αi

)
+
∑
j

∂y

∂xj

(∑
i

αi(x
i
j − xj )

)

+1

2

∑
j

∂2y

∂x2
j

(∑
i

αi(x
i
j − xj )

2

)
+ · · ·

Bearing in mind the equations of the mixture
(Eqs. (1)–(3), the coefficient in terms ofy is 1, the term
with the first derivatives becomes zero and finally:

ŷ − y = 1

2

∑
j

∂2y

∂xj
2

(∑
i

αi(x
i
j − xj )

2

)
+ · · · (10)

This expression explicitly shows that the approx-
imation performed depends on the second derivates
(more exactly on the Hessian matrix). It is, therefore,
of the second order, while if the propertyy were mod-
elised by a linear function, it would be of the first or-
der. This quality of the approximation justifies the use
of the LM method.

2.3. Predicting the response for the outliers

Outliers in prediction are samples that are inconsis-
tent with the calibration data[5,6]. In LM, the predic-
tion outliers are samples that are outside the convex
hull determined by the calibration data. When outliers
are present, the LM method as described in the pre-
ceding sections is not able to predict the response of
these objects.

In order to estimate the response values for the ob-
jects that are outside the convex hull, the following
steps are proposed. They are explained for the case of
two dimensions, but can easily be generalised.

(a) For each outlier, one must find the two nearest
neighbour objects belonging to the boundary of
the calibration data set (Fig. 5). Together with the
outlier they define a simplex (triangle)[7].

(b) Then, the outlier is reflected (mirrored) inside the
convex hull through the centroid defined by the
other two objects of the simplex on the face of
the convex hull (Fig. 6). A new simplex inside the
convex hull is obtained containing the reflected
object.

Fig. 5. Finding the two nearest objects on the boundary of the cal-
ibration data set. They defined together with the outlier a simplex.

(c) By means of the LM method the responses (y) for
the centroid and for the reflected object can be
calculated.

(d) In order to determine the response for the outlier,
the difference between the response value for the
centroid and the reflected object is computed and
applied from the centroid to the outlier. The value
for the outlier is determined by using the following
expression:

yreflected object− ycentroid= ycentroid− youtlier (11)

wherey represents the response value.

In the case of, e.g. three dimensions similar steps
are necessary. However, the three nearest objects are
used instead of the three nearest objects on the con-
vex hull. The simplex is then defined also by objects
not belonging to the boundary. The same expression
as in the two-dimensional case is used to calculate the

Fig. 6. Reflection of the outlier inside the convex hull.
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Fig. 7. Reflection of the outlier outside the convex hull. Half of the distance between the centroid and the reflected point is used to find a
simplex.

response value. Sometimes the reflection of the pre-
diction outlier is also outside the convex hull, e.g. as
in Fig. 7. In that case the reflection,yhalf, is at half the
distance between the centroid and the reflected object.
In the case where taking half of the distance no sim-
plex inside the convex hull is found, the procedure is
repeated (using 1/3, 1/4,. . . of the distance) until it
does.

In order to obtain the response value, the following
expression has to be used:

N(yhalf − ycentroid) = ycentroid− youtlier (12)

whereN is 2 if 1/2 of the distance is used, 3 if 1/3, 4
if 1/4, . . . Another possible situation is that where the
reflection of the outlier is outside the convex hull and

Fig. 8. Reflection outside the convex hull and no simplex between
the centroid and the reflected points are found.

there is no simplex between this point and the centroid,
i.e. all reflected points are always outside the lattice
as is shown inFig. 8. In these cases, the process is
repeated with the first and the third neighbour objects
in the boundary (in the case of two dimensions).

3. Results and discussion

Three NIR data sets were used. The first data set
was received from the IFP and is called the Hydrogen
data. It consists of 239 samples measured at 2128
wavelengths to determine the percentage of hydrogen
in Gasoil. The second data set is called the Alfalfa
data, received from theLaboratori Agroalimentari
de Cabrils [8] (of the autonomous government of
Cataluña, Spain). It consists of 305 samples of for-
ages measured between 1108 and 2492 nm each 8 nm
to determine the protein content.

The method was also applied to a much larger data
set provided for the Agricultural Research Centre in
Gembloux, Belgium. This data set, called here the
Corn data, is used to determine the protein content in
corn and consists of 1997 samples measured at 700
wavelengths.

3.1. Hydrogen data

This data set was split into a calibration set and a
test set by using the duplex algorithm[9]. This method
starts by selecting the two points furthest from each
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other and puts them both in a first set. Then the next
two points furthest from each other are put in a second
set, and the procedure is continued by alternatively
placing pairs of points in the first or second set. In such
a way 199 objects were used to build the model and
40 set aside for prediction. The calibration data were
mean-centered. After pre-treatment, the mean of the
calibration data was stored in order to center the 40
samples that must be predicted, using the same values.

PCR, PLS and the LM method are used as calibra-
tion methods. In order to select the number of compo-
nents in PLS different techniques were applied. The
first one is the cross-validation method leaving out one
sample at a time. The RMSECV values were com-
puted and plotted in function of the number of factors.
In this data set, we obtained the minimal RMSECV
when eight components were used. The randomisa-
tion test proposed by van der Voet[10] was also used.
After comparing the predictive accuracy of the model
using this test, five was found to be the optimal com-
plexity. In the case of PCR, complexities of 10 and
5 are found with the minimal RMSECV and the ran-
domisation test, respectively.

Another technique to determine the complexity
of the model consists in applying the Monte-Carlo
cross-validation (MCCV) method[11–14]. The
MCCV method is an asymptotically consistent method

Fig. 9. Hydrogen data: MCCV error vs. number of PLS variables.

to determine the number of components in calibration.
It is based on the same principle as the leave-one-out
cross-validation, but instead of leaving only one point
out (nv = 1), subsets of different sizes (nv	 2)
are left out during the calibration. These nv samples
are then used for the validation. This procedure is
repeatedF times (F usually equals twice the number
of objects in the calibration data). It is applied with
1, 2, 3,. . . components kept in the PLS method and
the RMSE is calculated each time. The number of
components corresponding to the minimum of RMSE
is selected. This procedure shows that the optimal
number of factors when 150 samples are left out
(F = 2 × 199) for this data set is five as is shown in
Fig. 9.

In this data set, the first five important PCs selected
according to their correlation toy are 1st, 3rd, 4th, 6th
and 2nd PC. In the LM method, when more dimen-
sions are added more objects are detected as outliers.
For this data set, five outliers are detected in the pre-
diction set when working in two dimensions which
represents 12.5% of the prediction objects (Fig. 10),
16 outliers in three dimensions (40%), 20 in four di-
mensions (50%) and 27 outliers in five dimensions
(67.5% of the objects).

Another possibility is to split the data randomly.
The duplex splitting we applied is preferred for
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Fig. 10. Hydrogen data: PC1–PC3 (five outliers are detected) where� are the calibration objects, are the prediction objects and are
the objects detected as outliers.

calibration with regression methods, because it yields
a representative data set biased towards extreme sam-
ples, i.e. it includes relatively more extreme samples
in the smallest data set, here the validation set. By
random splitting some of the extreme points are in-
cluded in the calibration data set and the number
of outliers indeed decreases. The number of outliers
working in two dimensions is then 1 (2.5%), 4 in
three dimensions (10%), 10 in four dimension (25%)
and 14 in five dimensions (35%).

The results applying the different calibration tech-
niques in 2–5 dimensions are shown inTable 1after
removal of the outliers detected in the LM method
(using the duplex method) also when performing PCR
and PLS. This means that for instance the results for
five dimensions are obtained using only 32.5% of the

Table 1
Hydrogen data: results using different dimensions when outliers were removed

Dimensions Number of outliers removed Value PCR PLS LM

2 5 (12.5) RMSECV, RMSEP 0.1077, 0.1479 0.0987, 0.1339 0.085, 0.1122
3 16 (40) RMSECV, RMSEP 0.0706, 0.0647 0.0893, 0.0939 0.0628, 0.0724
4 20 (50) RMSECV, RMSEP 0.0543, 0.0663 0.0621, 0.062 0.0412, 0.0501
5 27 (67.5) RMSECV, RMSEP 0.0519, 0.0751 0.0487, 0.0694 0.0368, 0.0549

Values in parentheses are in percentage.

prediction objects. In that table, RMSECV represents
the cross-validation error, and RMSEP describes the
models predictive ability.

As a first conclusion one can say that LM gives good
predictions for those objects that are inside the limits
of the calibration samples, but too many outliers are
out of those limits (although, it should be remembered
that is due to the way we split the data with duplex
method). In order to solve the problem, the proposed
methodology to estimate the response values for the
outliers is applied.Tables 2 and 3show the responses
of the outliers using two and three dimensions (5 and
16 outliers), respectively. Most of these responses are
calculated usingEq. (11)but sometimes the reflected
point is outside the boundary. In these casesEq. (12)
is applied.
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Table 2
Hydrogen data: response of the outliers using the simplex method
and the LM method in two dimensionsa

Outliers
(index)

Yref y (centroid) y (reflection) y (outlier)

1 10.92 10.85 10.80 10.90
2 14.37 14.25 14.19 14.31
4 12.44 12.38 12.17 12.59

21 14.21 14.19 14.27 14.11
38 14.4 14.19 14.12 14.26

a Yref are the values obtained with the reference method for
each outlier,y (centroid) the responses of the centroid defined by
the two nearest boundary objects,y (reflection) the responses of
the reflected objects andy (outlier) are the estimated values.

FromTable 2one can see that the estimation of the
response of the outliers is a good approximation to the
real value (Yref). When all objects, outliers and points
within the convex hull, are considered the RMSEP
becomes 0.1115, almost the same as when only the
points inside the lattice are used.

Also in three dimensions most of the outliers are
well predicted and therefore the RMSEP (0.0888) is
close to the value obtained when only the points inside
the convex hull are included.

Table 3
Hydrogen data: response of the outliers using the simplex method
and the LM method in three dimensionsa

Outliers
(index)

Yref y (centroid) y (reflection) y (outlier)

1 10.92 10.97 11.00 10.93
2 14.37 14.25 14.17 14.34
3 12.71 12.72 12.67 12.77
4 12.44 12.63 12.83 12.44

11 11.04 11.26 11.25 11.35
13 11.9 12.11 12.18 12.00
17 13.86 13.74 13.71 13.81
19 11.6 12.00 12.27 11.73
20 13.28 13.06 12.72 13.39
21 14.21 13.94 13.74 14.14
27 12.16 12.33 12.51 12.15
30 12.19 12.01 11.96 12.10
32 12.92 12.92 12.97 12.87
34 13.36 13.38 13.62 13.15
37 14.08 13.91 13.68 14.13
38 14.4 14.13 14.01 14.26

a Yref are the values obtained with the reference method for
each outlier,y (centroid) the responses of the centroid defined by
the two nearest objects,y (reflection) the responses of the reflected
objects andy (outlier) are the estimated values.

Table 4
Hydrogen data: comparison of the RMSEP value using the LM
method with the value from PCR and PLS in 2–5 dimensions for
all objects (outliers+ points within the convex hull)

Dimensions PLS PCR LM

2 0.1397 0.1541 0.1115
3 0.1174 0.0855 0.0888
4 0.0748 0.0728 0.0836
5 0.0635 0.0680 0.0915

The same study is also performed in four and five
dimensions and using all these results, a new compar-
ison with PLS and PCR this time for the whole pre-
diction set was performed. The results are shown in
Table 4.

From Table 4, it is obvious that the error obtained
using LM is better than the one obtained using PCR
and PLS working in two dimensions. In the case of
three dimensions, the results obtained using LM are
better than the result from PLS and similar to that from
PCR. In four and five dimensions, the results are also
shown in the table. In these two cases some outliers are
not well predicted using LM, mainly the objects that
are very far away from the boundary, but the RMSEP
value is still reasonable.

3.2. Alfalfa data

This data set was split by the providers of the data
into two independent data sets, a calibration set (205
samples) and a test set (100 samples). All the data
were mean-centered.

In PCR the minimum RMSECV is obtained using
11 components and the randomization test gives 10
components. For the PLS regression the minimal RM-
SECV is obtained when 18 components are used, the
randomization test gives 16 as the optimal complexity
and the MCCV method shows that one can consider
five latent variables.The first five important PCs are
the 5th, 1st, 8th, 14th and 10th and LM is applied in
the data space defined by these PCs.

As in the previous data set, the number of outliers
increases with the number of dimensions. In two di-
mensions, 12 objects are detected as outliers in the
test set (12% of the objects); in 3, 18 (18%); in 4, 29
(29%) and in 5, 39 (39%).

Table 5shows the RMSECV and RMSEP when the
different techniques are applied and the same outliers
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Table 5
Alfalfa data: results using different dimensions when outliers were removed

Dimensions Number of outliers removed Value PCR PLS LM

2 12 (12) RMSECV, RMSEP 1.1807, 1.2373 2.2005, 2.1559 1.2037, 1.1981
3 18 (18) RMSECV, RMSEP 1.0771, 1.0595 1.3798, 1.3898 1.1073, 0.9755
4 29 (29) RMSECV, RMSEP 1.0116, 1.0387 1.1561, 1.1552 0.9314, 0.8917
5 39 (39) RMSECV, RMSEP 0.9455, 0.8954 1.1067, 0.976 0.9133, 0.9696

Values in parentheses are in percentage.

are deleted from the test data set. For LM, the best
prediction is obtained when four dimensions are used;
the difference is not large between three and four com-
ponents, so that it was decided that indeed the 14th
and the 10th PCs should not be included.

Table 5shows that the results using PCR are al-
ways better than the results using PLS and that the
LM method performs at least as well as PCR.Table 6
shows the responses of the outliers using three dimen-
sions (18 outliers).

For two dimensions, the response values for most
of the outliers are well predicted.Table 7shows the

Table 6
Alfalfa data: response of the outliers using the simplex method
and the LM method in three dimensionsa

Outliers
(index)

Yref y (centroid) y (reflection) y (outlier)

32 27.51 23.86 18.86 28.86
48 18.19 17.06 16.68 17.80
69 27.16 23.44 20.92 25.95
82 19.79 17.51 17.18 18.17
84 19.7 19.10 19.20 18.18
86 14.43 18.17 18.24 17.43
87 19.84 19.10 19.05 19.68
89 12.9 19.103 20.20 8.18
90 18.74 16.231 16.03 16.64
91 15.69 16.231 17.23 14.24
92 16.58 16.204 16.27 16.08
93 16.93 16.231 15.99 16.47
94 16.97 16.231 16.24 16.86
95 15.61 19.331 24.77 8.45
96 10.78 17.782 24.65 10.91
98 18.4 19.296 19.88 18.13
99 20.06 16.231 15.99 18.65

100 20.67 19.103 18.77 19.76

a Yref are the values obtained with the reference method for
each outlier,y (centroid) the responses of the centroid defined by
the two nearest objects,y (reflection) the responses of the reflected
objects andy (outlier) are the estimated values.

Table 7
Alfalfa data: comparison of the RMSEP value using the LM
method with the value from PCR and PLS in 2–4 dimensions for
all objects (outliers+ points within the convex hull)

Dimensions PLS PCR LM

2 2.4346 1.4441 1.2932
3 1.6819 1.2321 1.3372
4 1.3645 1.3740 1.8534

comparison of the RMSEP value using the LM method
with the value from PCR and PLS in 2–4 dimensions
for all objects in prediction.

In two dimensions, the results from the LM method
are better than the results from the PLS and PCR meth-
ods. In the case of three dimensions, the results are
better than the values obtained using PLS and compa-
rable with the results using PCR. The best LM model
uses two components and it is of the same order as
the best PCR model (with three PCs) and the best PLS
model (with four components).

3.3. Corn data

This data set was split into two subsets by using
random selection: 1700 objects are used for calibra-
tion and 297 objects for prediction. All the data were
mean-centered.

For the PCR method, the minimum RMSECV is
obtained when 13 components are considered. Eleven
was found to be the optimal complexity after com-
paring the predictive accuracy of the model using the
randomization test between 13 and other complexities.
For the PLS method, a complexity of 15 is obtained
when the minimal RMSECV and the randomization
test are used. Because the first seven PCs explained
99.86% of the total variance, here we considered those
seven dimensions in the LM method.
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Table 8
Corn data: results using different dimensions when outliers were removed

Dimensions Number of outliers removed Value PCR PLS LM

2 0 (0) RMSECV, RMSEP 0.9219, 0.9176 1.1698, 1.1796 1.092, 1.1372
3 3 (1.01) RMSECV, RMSEP 0.8221, 0.8184 0.9781, 1.0125 1.0187, 1.0428
4 18 (6) RMSECV, RMSEP 0.7572, 0.7117 0.9079, 0.8972 0.7648, 0.7672
5 34 (11.45) RMSECV, RMSEP 0.6875, 0.6443 0.8255, 0.8179 0.6824, 0.6719
6 47 (15.82) RMSECV, RMSEP 0.6299, 0.5803 0.6983, 0.6960 0.6281, 0.6098
7 69 (23.23) RMSECV, RMSEP 0.5897, 0.5386 0.6090, 0.5827 0.5852, 0.5836

Values in parentheses are in percentage.

Table 9
Corn data: response of the outliers using the simplex method and
the LM method in three dimensionsa

Outliers (index) Yref y (outlier)

27 10.02 9.63
47 10.5 10.07

241 9.27 9.13

a Yref are the values obtained with the reference method for
each outlier andy (outlier) are the estimated values.

For the LM method, the important PCs are se-
lected as in PCR, and the first seven important PCs
are the 5th, 7th, 10th, 12th, 4th, 9th and 2nd PC. For
this data set, there are no outliers in two dimensions
but 3 (1.01% of the prediction objects), 18 (6%), 34
(11.45%), 47 (15.82%) and 69 (23.23%) outliers are
detected in 3–7 dimensions, respectively.

In order to compare the values, the outliers detected
in the LM method in different dimensions are removed
from the test set and then PCR and PLS are applied.
Table 8shows that the results from the LM method are
comparable with the results from the PCR and PLS
method when the outliers are removed in PCR and
PLS. As in the previous case, PCR with selection of
PCs gives better results than PLS.

Table 10
Corn data: comparison of the RMSEP value using the LM method
with the value from PCR and PLS in 3–7 dimensions for all
objects (outliers+ points within the convex hull)

Dimensions PLS PCR LM

3 1.0167 0.8152 1.0381
4 0.9315 0.7222 0.7999
5 0.8216 0.6552 0.6868
6 0.7227 0.6091 0.6462
7 0.6118 0.5697 0.6616

The response values for the outliers in these dimen-
sions are well predicted.Table 9shows the results for
three dimensions. As is shown in theTable 10the RM-
SEP for all objects is of the same order as the value
using only the points within the lattice. The results for
LM in the case of 4–6 dimensions are better than the
results for PLS and similar to those for PCR. The re-
sult in seven dimensions for LM is also comparable
with the results for PLS and PCR.

4. Conclusions

The Law of Mixtures method was presented here as
an alternative to PCR/PLS for multivariate calibration.
In all cases studied, the LM method gives at least sim-
ilar results as PCR or PLS. A drawback of the method
is the large number of outliers that is found when more
than two dimensions are used. This high number of
outliers is due to the small number of objects in mul-
tiple dimensions, and in part to the manner in which
the data was split. If the duplex method was used to
split the data, in some cases the number of outliers can
reach 50% of the objects (for instance, the hydrogen
data) when only four dimensions are applied. In the
case of the alfalfa data, 29% of the objects were de-
tected as prediction outliers. As in the case of the corn
data for the same number of dimensions, only 6% of
the objects were detected as prediction outliers. Here,
the corn data set was randomly split and the influence
of the amount of data on the number of outliers is clear.

With the three examples presented here it is shown
that LM is a very good method to predict the concen-
tration of the objects inside the lattice. It is shown also
that acceptable prediction is possible for the points
considered as outliers in prediction. However, other
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ways of treating such outliers can be imagined. It
seems necessary to separate true outliers from outliers
that are not true outliers, but merely objects situated
on the border of the data set that became outliers
through data splitting. Alternative methods for creat-
ing lattice, such as Delaunay triangulation will also
be investigated.
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