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Abstract

A crucial point of the PLS algorithm is the selection of the right number of factors or components (i.e., the determination of

the optimal complexity of the system to avoid overfitting). The leave-one-out cross-validation is usually used to determine the

optimal complexity of a PLS model, but in practice, it is found that often too many components are retained with this method. In

this study, the Monte Carlo Cross-Validation (MCCV) and the PoLiSh smoothed regression are used and compared with the

better known adjusted Wold’s R criterion.
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1. Introduction of prediction accuracy, called Predicted Residual Error
PLS regression [1–3] is widely used in spectros-

copy for calibration and prediction and can be applied

to several kinds of signals. The determination of the

number of components or factors to retain is one of

the most important steps in the building of a model.

This determination of the correct number of latent

variables (LVs) is crucial in order to avoid overfitting

and, therefore, to obtain robust predictive models.

Leave-one-out cross-validation is usually applied to

establish the number of components needed. One can

evaluate the predictive power of the model leaving out

one sample at a time by calculating a statistic for lack
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Sum of Squares (PRESS). This value is plotted

against the number of components, and the number

of components that gives a minimum PRESS is

considered to be the optimal number of components

to achieve the best prediction. In practice, it is found

that often too many components are retained in this

way. To avoid this, the Monte Carlo Cross-Validation

(MCCV) and the PoLiSh smoothed regression have

been proposed and are compared with the adjusted

Wold’s R criterion in this study.

The MCCV [4–6] is an asymptotically consistent

method, but is rarely used in chemometrics. It is

based on the same principle as the leave-one-out

cross-validation, but instead of leaving out only one

point (nv = 1), subsets of different sizes (nvz 2) are

left out during the calibration. These nv samples are

then used for the validation. MCCV is considered to
d.
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avoid overfitting if nv is more than 50% of the

dataset [4].

The PoLiSh procedure [7] is an alternative way to

decide the optimal complexity of a model. It is based

on two main ideas.

The first one is to use Savitsky–Golay smoothing

of the loadings weights vectors (w) obtained at each

iteration step of the NIPALS procedure in order to

progressively ‘‘displace’’ the random or quasi-random

variations from earlier (most important) to later (less

important) PLS latent variables. The second idea is to

measure the structure of the regression PLS vectors

(loadings and weights, b-coefficients, etc.) in order to

determine the number of components required and to

evaluate the optimal PLS model dimensionality. Two

criteria are used: the Durbin–Watson [7–9] method

and the comparison of the rotation angle between

adjacent b-coefficient vectors [7]. The adjusted

Wold’s R criterion [10] is a way of interpreting

leave-one-out cross-validation. With this criterion,

one does not look for the minimum of PRESS but

considers and compares two different values of

PRESS corresponding to two different numbers of

successive latent variables.
2. Theory

2.1. Leave-one-out cross-validation

Using a set of n calibration spectra, the PLS

algorithm is performed on (n� 1) calibration spectra

and, with this calibration, the quantitative variable

(concentration) of the sample left out during calibra-

tion is predicted. This procedure is repeated n times

until each sample has been left out once. The predic-

tion for each sample is then compared with the known

value of the reference sample. The sum of the squared

variable prediction errors for all calibration samples is

a measure of how well a particular PLS model fits the

quantitative variable:

PRESS ¼
X

ðypredicted � yrealÞ2 ð1Þ

PRESS is calculated in the same way each time a

new factor is added to the PLS model. The optimal

order (number of factors) of the PLS model is the one
that yields the minimum PRESS or Root Mean Square

Error of Cross-Validation (RMSECV):

RMSECV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRESS

n

r
ð2Þ

2.2. The PoLiSh procedure [7]

The PoLiSh procedure is a combination of three

independent procedures: the Savitsky–Golay smooth-

ing, the comparison of Durbin–Watson criteria, and

the comparison of the angles between b-coefficient

vectors.

The smoothing of the regression vectors within the

PLS calculations is useful in reducing the noise level

of the first latent variables and in transferring the noise

into the later latent variables. After the smoothing

step, the algorithm continues as in classical PLS and

the new PRESS is calculated. The difference between

the PRESS from the PoLiSh PLS and the PRESS from

the classical PLS is calculated and plotted as a

function of the number of latent variables.

2.2.1. The Savitsky–Golay smoothing [11–13]

In order to eliminate uninformative local spectral

variations, it may be useful to smooth the data. The

simplest way to smooth the data is by a moving

average. In this method, a finite-size window is

selected and the average of all points inside it is

calculated. This average replaces the central point in

the window:

xsmooth;i ¼
1

ð2pþ 1Þ
Xj¼iþp

j¼i�p

xj ð3Þ

where i is the index of the data points, p is the number

of variables on each side of the actual variable, and

(2p + 1) is the size of the window.

In the PoLiSh procedure, the smoothing using the

Savitsky–Golay filters (also called digital smoothing

polynomial filters or least squares smoothing filters) is

used. It is also a moving window averaging method

but now the central point in the window is replaced by

the value of a polynomial that fits the data inside the

window. In such a way, Savitsky–Golay filters are

optimal in the sense that they minimize the least

squares error in fitting a polynomial to each window

of noisy data.
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2.2.2. The Durbin–Watson criterion [8,9]

The second aspect of the PoLiSh procedure is the

use of the Durbin–Watson criterion [8,9]. The Dur-

bin–Watson test is usually used to investigate the

(non) randomness (i.e., autocorrelation) of regression

residuals. It examines the null hypothesis (H0) that

there is no correlation between the successive resid-

uals, versus the alternative hypothesis that the corre-

lation exists. The following statistic d is computed:

d ¼

Xn
i¼2

ðei � ei�1Þ2

Xn
i¼1

e2i

ð4Þ

where ei is the residual corresponding to the object i,

and ei� 1 is the residual of the preceding object (the

objects being ranked according to time).

The d value is compared to two (lower and upper)

critical values, dL and dU [8]. When d < dL, the null

hypothesis is rejected; when d>dU, it is considered

that there is no correlation between residuals. If

dL < d< dU, the test is inconclusive.

In the PoLiSh procedure, the Durbin–Watson test

is not applied to residuals but to the loadings (p),

weights (w), and vectors of b-coefficients (b). The

Durbin–Watson values are then plotted against each

number of latent variables and it is easy to detect the

inclusion of ‘‘unstructured’’ information (increasing

Durbin–Watson values).

2.2.3. Angles between b-coefficient vectors

The study of the rotation angles between adjacent

b-coefficient vectors is the third test used in the

PoLiSh procedure. If the angle between two consec-

utive b-vectors does not change significantly, this

means that they are strongly correlated and, therefore,

that the second one contains no new information. On

the plot of angles between b-vectors as a function of

number of latent variables, the first angle that is low is

considered as the optimal complexity of the model.

2.3. The Monte Carlo Cross-Validation [4–6]

The cross-validation method consists of splitting

the data (n points) that are available for building the

model into two parts. The first part (nc points) is used
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to fit the model (calibration). The second part (nv
points) is left out and kept to validate the model and to

assess its predictive ability. Cross-validation selects

the model with the best average predictive ability,

calculated and based on different values of nc and nv.

The cross-validation criterion is the RMSECV:

RMSECVnv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRESS

n

r
ð5Þ

with PRESS ¼
X

ðypredicted � yrealÞ2 ð6Þ

This RMSECV is calculated for every kth compo-

nent added to the model. The optimal complexity (i.e.,

the optimal number of components that should be

included in the model) is determined by k, which

gives the minimum RMSECV. The simplest way to

carry out cross-validation (with nv = 1 or leave-one-

out cross-validation) is shown to be asymptotically

incorrect (inconsistent) [4,5]. It tends to include an

excessive number of components in the model and

consequently brings overfitting. The Monte Carlo

Cross-Validation keeps a large number of points (nv)

for the validation. It has been proven by Shao [5] that,

under these conditions and when n!l and nv/

n! 1, the probability for cross-validation to choose

the correct model tends to 1. The MCCV method

consists of repeating the procedure of CV nv N times

(in general, N = n2 is enough in order to make MCCV

nv perform as well as CV nv [4]).

The MCCV criterion is then:

MCCVnvðkÞ ¼
1

N
RMSECVnv ð7Þ

2.4. The adjusted Wold’s R criterion [10]

This criterion compares two successive values of

PRESS obtained with the leave-one-out cross-valida-

tion:

R ¼ PRESShþ1

PRESSh
ð8Þ

where PRESSh is calculated from the leave-one-out

cross-validation (see Section 2.1) for the latent vari-

able h.



Fig. 1. RMSECV of the PLS model for dataset 1a (humidity).
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When this ratio is in excess of unity, it is consid-

ered that the optimal number of latent variables is h,

and this is called the Wold’s R criterion. This criterion

leads to the minimum of PRESS, which has been

shown to have poor statistical properties. Instead of

comparing this ratio to unity, it was then proposed to

include the sampling variability in the limit, and to fix

it at 0.90 or 0.95. This is called ‘‘the adjusted Wold’s

criterion.’’ To decide on the optimal complexity of the

model using this criterion, it is considered that if R is

larger than 0.90 (or 0.95) for the following latent

vectors, the latent variable h + 1 does not bring

significantly new information to the model and should

not be included. This criterion will be denoted R in

the following sections and the limit will be fixed at

0.90.
3. Data and pretreatment

Dataset 1 consists of 305 samples of forages and

174 wavelengths measured in the range 1108–2492

nm [14]. Two properties are modelled: the humidity at

103 jC and the raw protein. The dataset was split into

two subsets: the first one (subset 1), consisting of 205

samples, was used to build the model; the second one

(subset 2), consisting of 100 samples, was used to

validate it. The data were mean-centered in the two

cases.

Dataset 2 is based on a dataset first published by

Kalivas [15]. It can be obtained from the database of

the Chemometrics and Intelligent Laboratory Sys-

tems. It consists of two clusters and, in this work,

only the first cluster is considered. The dataset is then

reduced to 40 wheat samples and 701 variables

(between 1100 and 2500 nm, each 2 nm) for the

determination of moisture.
4. Results

4.1. Dataset 1 a: response variable: humidity

The standard PLS model was first built using

subset 1. Leave-one-out cross-validation was used to

compute RMSECV values to assess model perfor-

mance. The optimal model, with the minimum

RMSECV, requires 17 latent variables (Fig. 1).
A randomisation test [16] is used to compare the

quality of prediction of two different complexities. In

this case, it was concluded that the complexity can be

reduced to 13 latent variables. The PoLiSh procedure

was then applied to this set of data. On Fig. 2, one can

observe the difference between the PoLiSh PRESS

values and the PLS PRESS values (using internal

cross-validation leave-one-out procedure).

In this figure, it is possible to see that for three

latent variables, the difference of PRESS values is

negative, meaning that the PRESS of PoLiSh is lower

than the PRESS of PLS. This is explained by the fact

that the smoothing in the PoLiSh procedure is useful

in reducing the noise level in the first latent variables

and in transferring the noise into the later latent

variables. Despite the fact that the PRESS values do

not decrease significantly for this number of latent

variables (when compared to PLS), this comparison

can highlight some model features. The important

characteristic of this plot is the low PRESS values

for PoLiSh for the third LV and the increase (i.e., the

transition) between the third and the fourth LVs. Fig. 3

shows the Durbin–Watson profiles of the regression

vectors (p, w, and b).

As can be seen from the dwP (Durbin–Watson

values for the vector p) and dwW (Durbin–Watson

values for the vector w) profiles, the vector shows

structure up to the third LV (low dw values) and then

these values start to increase, indicating the inclusion

of ‘‘unstructured’’ information. This behaviour is not

well reflected in the dwB (Durbin–Watson values for



Fig. 4. Angles between adjacent b-coefficient vectors for dataset 1a

(humidity).

Fig. 2. Difference of PRESS values between PoLiSh and PLS

models for dataset 1a (humidity).
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the vector of b-coefficients) profiles, but using the two

previous criteria (mainly dwP), one can have a better

insight into the signal structure. From the previous

discussion, one can assume that only the first three

latent variables are important to build a stable PLS

calibration model. These results give an indication of

the model dimensionality [e.g., three or four latent

variables—compared to 17 (or 13) latent variables

given by leave-one-out cross-validation (or random-

isation test)].

In Fig. 4, the plot of the angle between adjacent b-

coefficient vectors in the PLS regression is given.
Fig. 3. Durbin–Watson profiles for the loadings p ( –o– ), weights

w (–5–), and b-coefficient vectors (–*– ) of the PLS model for

dataset 1a (humidity).
A first minimum is obtained in the transition

between the third and the fourth LV, which means

that they point almost in the same direction. The angle

between the fourth and the fifth LV clearly increases,

suggesting that the model starts to introduce noise.

From all these results, it can be concluded that the

optimal complexity of the PLS model is 3.

In the Monte Carlo Cross-Validation, different

values of nv are tested to visualise the effect of the

size of nv on the cross-validation. For this dataset, nv
is successively equal to 1 (leave-one-out cross-vali-

dation), 150, and 175.

The results are shown in Fig. 5.

For nv = 1 and 150, the minimum of MCCV is 17

latent variables, even if a local minimum is reached

for three latent variables. For nv = 175, the minimum

is 3.

The adjusted R criterion gives also the same

number of latent variables to build the model. Table

1 shows the values of R for the first latent variables.

R of step 3 (ratio of PRESS for four latent variables

and PRESS for three latent variables) is larger than the

limit 0.90 and leads to the conclusion that only three

latent variables are enough to build the model. One

can notice that this result is also valid with the limit of

0.95.

This criterion is in agreement with the results

obtained with the PoLiSh procedure and MCCV,

and shows that the model should be built with three

components.



Fig. 5. MCCV plots: leave-nv-out for dataset 1a (humidity).
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This could be confirmed by validation using subset

2. The Root Mean Square Error of Prediction

(RMSEP) for a model with 17 components is 0.65,

with 13 components is 0.64, and with 3 components

as suggested with the PoLiSh procedure or the MCCV

is 0.80. These values are not so different, especially

according to the range of y used for validation

(between 3.12 and 145.1), and show that more robust

models can be found with the methods presented here

without affecting the quality of prediction.

4.2. Dataset 1 b: response variable: raw protein

For subset 1, the standard PLS regression (with

leave-one-out cross-validation) shows a minimum of

RMSECV for 18 latent variables (Fig. 6).
Table 1

Values of adjusted Wold’s R criterion for the dataset 1a

Number of latent variables Adjusted Wold’s R criterion

1 0.704

2 0.132

3 0.954
By applying the randomisation test [16], it is

possible to reduce the number of components to 16

latent variables.

The PoLiSh procedure gives interesting results, in

the sense that there is a minimum of the difference of

PRESS values for PoLiSh and for classical PLS for
Fig. 6. RMSECV of the PLS model for dataset 1b (raw protein).



Fig. 8. Durbin–Watson profiles for the loadings p ( –o– ), weights

w ( –5– ), and b-coefficient vectors (–*– ) of the PLS model for

dataset 1b (raw protein).
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five latent variables (Fig. 7). It is then possible to

reduce the complexity of the model from 18 (or 16) to

5 latent variables.

The Durbin–Watson profiles for the p vectors,

w vectors, and b-coefficient vectors increase from

the fifth latent variable (Fig. 8).

The calculation of the rotation angles between b-

coefficient vectors shows that the transition between

the fourth and the fifth latent variable produces a low

angle. It means that these vectors point almost in the

same direction and that only four components are

enough to build the model (Fig. 9).

The PoLiSh procedure therefore indicates that it is

possible to reduce the number of latent variables to

five or even four latent variables but shows that there

is no big difference between four and five.

The MCCV confirms these results. Once again,

different sizes of nv are tested (nv = 1, 100, 175, 180,

185, and 190). Results are shown in Fig. 10.

These plots indicate clearly (especially for nv = 190)

that only five latent variables are necessary to build the

PLS model. From nv = 1 to nv = 190, one can see the

minimum of MCCV moving from 18 to 5.

Values of R for this dataset are shown in Table 2.

With the limit that was predefined (0.90), the

number of latent variables that should be kept to build

the model is 4. It is important to notice that the choice

of the number of latent variables is given by the fact

that the R criterion should be larger than 0.90 for the

following latent variables, and leads here to 4 instead
Fig. 7. Difference of PRESS values between PoLiSh and PLS

models for dataset 1b (raw protein).
of one. A second remark concerns the comparison

with previous methods (PoLiSh and MCCV) because

the result is not exactly the same.

In this case, the PoLiSh method, the MCCV, and

the R show that the PLS regression computed with the

leave-one-out cross-validation includes too many

components. It is preferable to reduce this number

of components from 18 (or 16) variables to five or

four variables to build a more robust model.

Validation using subset 2 shows that the RMSEP

increases from 0.73 (for a model with 16 or 18

components) to 1.3 (for a model with four or five
Fig. 9. Angles between adjacent b-coefficient vectors for dataset 1b

(raw protein).



Fig. 10. MCCV plots: leave-nv-out for dataset 1b (raw protein).
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components). These values show that the prediction is

not so much affected (even if the difference is more

remarkable than in the case of the humidity) when
Table 2

Values of adjusted Wold’s R criterion for the dataset 1b

Number of latent variables Adjusted Wold’s R criterion

1 0.969

2 0.393

3 0.702

4 0.916
decreasing considerably the number of components of

the PLS model. The low number of components

included in the model contributes to have a robust

model.

4.3. Dataset 2

The spectra used in this case are corrected with an

offset correction in order to remove the baseline

drift. The standard PLS with a leave-one-out cross-

validation was first performed and the minimum of



Fig. 11. RMSECV of the PLS model for dataset 2 (Kalivas data).

Fig. 13. Durbin–Watson profiles for the loadings p ( –o– ), weights

w ( –5– ), and b-coefficient vectors (–*– ) of the PLS model for

dataset 2 (Kalivas data).
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RMSECV is obtained for eight latent variables (Fig.

11).

A randomisation test [16] was applied and shows

that including four latent variables in the model gives

the same performance as the model with eight latent

variables.

Fig. 12 shows clearly that the Durbin–Watson

values start to increase after the fourth value, indicat-

ing the inclusion of unstructured information with the

fifth latent variable.

The plot of the difference of PRESS between

PoLiSh and PLS is not as clear as the previous ones

(Fig. 13). There is nevertheless a minimum for four
Fig. 12. Difference of PRESS values between PoLiSh and PLS

models for dataset 2 (Kalivas data).
latent variables, even if for two or six variables, there

are also local minima.

The angle between three and four components is

low and this means that three or four latent variables

are enough to build the model (Fig. 14).

The MCCV gives again the same results as the

PoLiSh PLS regression. Once again, different sizes of

nv are tested (nv = 1, 5, 10, 15, and 20). Results are

shown in Fig. 15.

These plots indicate clearly that only four latent

variables are requested to build the PLS model. Again,
Fig. 14. Angles between adjacent b-coefficient vectors for dataset 2

(Kalivas data).



Fig. 15. MCCV plots: leave-nv-out for dataset 2 (Kalivas data).

Table 3

Values of adjusted Wold’s R criterion for the dataset 2

Number of latent variables Adjusted Wold’s R criterion

1 0.846

2 0.514

3 0.699

4 0.963
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it should be added that it is may not be necessary to

leave out 25 samples and that, for 20, a minimum is

already visible.

Table 3 shows the values of R for the first latent

variables.

R of step 4 (ratio of PRESS for five latent variables

and PRESS for four latent variables) is larger than the

limit 0.90 and leads to the conclusion that only three

latent variables are enough to build the model. It can

be noticed that this result is also valid with the limit of

0.95.
This criterion confirms again the results obtained

with the PoLiSh procedure and MCCV, and shows

that the optimal complexity is four.
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External validation was not performed in this case

since there were no subsets available. Due to the

particular structure of the original dataset (two clus-

ters), the calibration dataset constituted of samples

coming from one cluster and was not divided in two

parts.
5. Discussion

For the three datasets that are studied in this paper,

the PoLiSh PLS regression, the Monte Carlo Cross-

Validation, and the adjusted Wold’s R criterion are

shown to be useful tools to determine the complexity

of a PLS model. The three different ways of choosing

the complexity of a PLS model were compared to the

leave-one-out cross-validation method, which is very

common and widely used. It can be seen that the

number of PLS components to be used is considerably

reduced with the PoLiSh smoothed regression, the

Monte Carlo Cross-Validation, and the adjusted

Wold’s R criterion. This reduction of the number of

variables may avoid overfitting and lead to a more

robust model. It is, however, not evident that the

increase in robustness will lead to better precision in

estimation. To ascertain this, it would really require

more complete studies in which validation would be

performed with a completely independent prediction

set for several cases and with different structures and

qualities of data.

Another point of discussion concerns the Monte

Carlo Cross-Validation. It is explained in the Results

section that the best results of the cross-validation are

obtained by leaving out a large number of samples. In

the studied cases, 85.4%, 92.7%, and 50% of the

whole calibration set, respectively, are left out during

the calibration. One might wonder if making a cali-

bration model with so few samples is representative of

the structure of the data and enough to build a correct
model. However, one can see that the results of

MCCV are comparable to the results of the PoLiSh

regression and the adjusted Wold’s R criterion, and

that the same complexity is obtained. Nevertheless,

the maximal ratio of objects in the calibration set to

objects in the validation set is a point that should still

be clarified and studied to better understand and

interpret results of MCCV. A possibility might be an

intermediate solution with 50% in calibration and

validation set and application of the adjusted Wold’s

R criterion to the result.
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