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Introduction

Linear methods of least-squares regression, partial least 
squares (PLS)1 being the dominant method, are often used 
for chemometric modelling of near infrared (NIR) spectro-
scopic data. While PLS can be used to derive a satisfactory 
solution in most cases, in some situations a non-linear model 
is clearly required. Furthermore, experience has shown that 
even though a linear model may be adequate, the perform-
ance of some calibrations may be signifi cantly improved 
with the use of a non-linear model.2

When faced with the task of creating a non-linear model, 
chemometricians basically have three options:
1) Transform the independent or dependent variables to 

linearise the problem, or fi t a polynomial to the data.1,2

2) Develop local linear approximations to the solution,3-8 
or implement some other type of non-parametric strat-
egy.9,10

3) Derive a global parametric model using a method of uni-
versal approximation, such as artifi cial neural networks 
(ANN).7,8,11

Although there are many useful methods within this set 
of options, an algorithm with the power of local and ANN 
methods, which retains the rationality of PLS is still being 
sought.

Support vector machines (SVM),12–14 a semi-parametric, 
non-linear modelling technique, is rapidly gaining applica-
tion in a number of fi elds. Only recently have SVM been 
applied to chemometrics15,16 as a non-linear classifi cation 
scheme. Support vector machine theory has been extend-
ed beyond classifi cation tasks into the realm of multivari-
ate function estimation, or non-linear regression. Little is 
known about the practical application of SVM regression 
to chemometrics; SVM methodology has generally been 
presented in ways quite foreign to most chemometricians. 
Furthermore, with a lack of comparative studies to illus-
trate its capabilities, there has been little motivation for 
experimentation with support vector machines within the 
NIR community.

The intent of this paper is to present SVM regression in 
a way that is more familiar to the fi elds of chemometrics 
and NIR spectroscopy. In doing so, wherever possible, the 
traditional terminology of support vector machines has been 
modifi ed to better agree with the terminology of chemomet-
rics. More esoteric details of SVM theory will be purpose-
fully avoided in an effort to facilitate general understanding 
of the basic concepts. For a more detailed explanation of 
SVM theory, those interested should consult some of the 
many references available on kernel methods14,17 and support 
vector machines.
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Theory
Kernel regression

In the linear least-squares model, a vector of prediction 
coeffi cients (b), is derived to describe the relationship be-
tween a matrix of independent variables (X), and a vector 
dependent variables (y), with the minimum of squared pre-
diction error (e2). Thus, the objective, or primal, function of 
least squares regression is simply:

 min(e2) = min[Σ(y – ŷ)2] (1)

The solution to this problem, the ordinary least squares 
equation, follows directly from calculus:

 b = (XTX)–1XTy (2)

This formula is more commonly referred to as multiple 
linear regression (MLR).1 For the case of NIR spectroscopy, 
X would be a [m × n] matrix of spectral responses (spectra), 
with m samples and n measured responses (wavelengths) per 
sample:
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Thus, predictions (ŷ) would be derived from a new [1 × n] 
spectrum (xt) by taking the inner (dot) product of the new 
spectrum, and the [n × 1] vector of coeffi cients:

 ŷ = xtb (3)

For NIR spectroscopy, the applicability of MLR is often 
limited by the co-linearity and rank defi ciency within the 
calibration matrix, X. The problems were overcome with the 
addition of latent variable projection methods like principal 
components regression (PCR)1 or PLS.

The traditional implementation of ordinary least squares 
regression is variable-centric; the solution is obtained by 
evaluating the distribution of data for each variable (wave-
length). An equivalent solution could be obtained by taking 
a sample-centric view, where the relationship between every 
sample is characterised, and a hyperspace is defi ned using 
kernel substitution.17–20 The sample–sample relationship is 
characterised (e.g. distance) by applying a kernel function. 
Thus, during ordinary least squares derivation [Equation (1)], 
the [m × n] matrix of spectral responses, X, is substituted by 
a [m × m] kernel matrix, K, where the i,jth element of the ma-
trix is the kernel function between samples i and j:
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A natural choice of kernel to model a linear relationship 
would then be the inner (dot) product, since it is computa-
tionally effi cient and scales linearly with distance:

 k
i,j
 = x

i
 · x

j’ (4)

For nearly every case, though, Equation (1) cannot be 
solved after the substitution of K for X, since the substitu-
tion will result in an over-determined solution and (KTK)–1 
will be nearly singular. Just as in the case of any other ill-
conditioned regression problem, however, PLS (or some 
other regularisation technique) can be used to successfully 
derive the solution, which takes the form of a [m × 1] vector 
of coeffi cients.

Predictions would be derived from a test [1 × n] spectrum 
(xt) by fi rst calculating the kernel vector for the new spec-
trum (kt) as the kernel function between the test spectrum 
and the spectrum of each calibration sample, resulting in a 
new [1 × m] vector. The predicted value is the inner product 
of the kernel vector and the [m × 1] vector of coeffi cients:

 ŷ = ktb (5)

While this may be an interesting exercise, nonetheless, 
the solution derived would be the same as if PLS regression 
were simply performed on the original matrix of spectra, 
X. Indeed, the ideal number of latent variables is the same 
whether X or K is used, and it would appear as if nothing is 
to be gained by using kernel substitution. This is generally 
true when a linear (inner product) kernel is used, but the 
technique becomes quite useful when the linear kernel is re-
placed with a non-linear function. Depending on the choice 
of kernel function, it is possible to model non-linear proc-
esses, while retaining the benefi ts of linear least-squares re-
gression. The form of the non-linearity that can be modelled 
depends on the shape of the kernel function. The Gaussian 
radial basis function (RBF) is an ideal kernel choice since it 
can be used to model functions of arbitrary nonlinearity:19
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While the inner product kernel is a linear measure of 
similarity between two vectors, the RBF kernel is conceptu-
ally a non-linear measure of similarity. The adjustment of 
the variance parameter (σ2) changes the width of the kernel, 
and the degree of non-linearity that can be modelled. Vectors 
that are very similar produce an RBF output near 1, and 
as the vectors become progressively dissimilar, the RBF 
output  asymptotically approaches zero (Figure 1). As σ2 
is increased, the kernel becomes wider, forcing the model 
towards a linear solution. Walczak and Massart20 coupled 
PLS regression with RBF kernel substitution to successfully 
model non-linear processes using NIR spectroscopy.

Support vector machine regression
When they initially began to develop support vector ma-

chines, Vapnik and Chervonenkis focused their work on 
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creating a robust algorithm for classifi cation and discrimina-
tion.12 It was not until 1997 that Vapnik extended the theory 
to non-linear regression using the SVM framework.13 While 
the basics of SVM regression are shared with kernel re-
gression, as described above, SVM theory proposes some 
changes in the method of optimising the coeffi cient vector b 
(Lagrangian multipliers in the case of SVM and LS-SVM). 
There are basically two major differences between kernel 
regression and the Vapnik–Chervonenkis SVM.

First, rather than seeking to minimise prediction error 
only, the SVM objective function has been augmented with 
terms to minimise the rms magnitude of the coeffi cient vec-
tor, b, referred to as model complexity. The proportional 
infl uence of prediction error and model complexity on the 
objective function optimisation is controlled by a regularisa-
tion constant (γ). With these changes, the original objective 
function [Equation (1)] is replaced by the primal-dual form:

 min[2–1Σ(y – ŷ)2] + γΣ(2–1bTb)] (7)

Thus, as γ is increased, more emphasis is placed on reduc-
ing the rms magnitude of the model coeffi cients. In this case, 
b indicates the vector of model coeffi cients in the variable-
centric space. Following Lagrangian substitution (during 
SVM training), the b-coeffi cients will be in the sample-cen-
tric space. This is characteristically similar to the concept 
of regularisation in ridge regression and neural network 
training.8,11

The second major difference is in the form of error func-
tion. In an effort to increase the robustness of training, the 
least-squares error criterion [Equation (1)] is replaced with 
the so-called e-insensitive error of generalisation:

The objective function now becomes:

 min[2–1Σ(ξ) + γΣ(2–1bTb)] (9)

The e-insensitive error function has some important con-
sequences for model training. Primarily, during model train-
ing, any residual error of magnitude less than ε is ignored 
as zero (Figure 2). More simply, e-insensitive error implies 
that calibration error cannot be signifi cantly better than the 
error in the training data, and that any solution with lower 
error has likely over-fi t the training data. Also, for residual 
errors larger than ε, its absolute value is summed, rather than 
its square, which tends to limit the infl uence of outliers on 
training. Finally, because of the inequality constraints im-
posed on the optimisation, calibration samples with residual 
error less than ε will be given a coeffi cient (b) of zero, which 
means it has no infl uence on prediction, and can be omitted 
from the calibration. The samples whose b-coeffi cients are 
non-zero are referred to as support vectors. This process is 
conceptually analogous to thresholding the coeffi cients of a 
PLS model for automatic variable selection.

Though the use of e-insensitive loss (and the inequality 
constraints it imposes) precludes deriving b by solving a 
linear system, the model can be optimised in the space of 
Lagrangian multipliers by using quadratic programming. 
While optimisation by quadratic programming is slower 
than least squares methods, it is still a convex, determinis-
tic process, guaranteed to converge to a global minimum. 
Unlike ANN training, which generally uses error backpropa-
gation, for example, there is no danger of training terminat-
ing in a local minimum, and the same solution will always 
be achieved.

Least-squares support vector machine regression
To simplify SVM regression, Suykens et al. proposed 

an alternate formulation of the SVM strategy called the 
least-squares support vector machine (LS-SVM).14,21 While 
the primal-dual form of the objective function was retained 
[Equations (7 and 9)], a squared loss function replaced the e-
insensitive loss function, from which equality constraints fol-
low (instead of inequality constraints). While foregoing the 
benefi ts of automatic sparseness (all LS-SVM b- coeffi cients 
will be non-zero), and perhaps some insensitivity to outliers, 
the LS-SVM can be trained much more effi ciently. After 
constructing the Lagrangian, setting equality constraints, 
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Figure 1. Graphical illustration of the relationship between 
Euclidean distance and RBF kernel output. As the Euclidean dis-
tance between vectors decreases, RBF similarity approaches unity. 
Increasing the variance (σ2) is roughly analogous to increasing the 
neighbourhood size during kNN calculation.
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Figure 2. Visual comparison of least-squares loss function (solid 
line) and the e-insensitive loss function (dashed line, ε = 0.4).
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and simplifying, a linear Karush–Kuhn–Tucker (KKT) sys-
tem results:
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Where, I refers to an [m × m] identity matrix, γ is the regu-
larisation constant, 1

m
 is a [m × 1] vector of ones, y is the vec-

tor of reference values, b is the vector of model coeffi cients, 
b

0
 is the model bias term and K is the [m × m] kernel matrix.
Following transformation into a positive defi nite form, 

the LS-SVM KKT system can subsequently be solved using 
many methods for solving large sets of linear equations,22 
such as conjugate gradient descent. The LS-SVM solution, 
b, follows from the solution of a system based on K, since 
K can be thought of as a sample–sample correlation ma-
trix. Furthermore, along the same lines, the matrix quantity 
(K + I / γ) bears striking resemblance to the defi ning opera-
tion of linear ridge regression.23 Indeed, one might loosely 
consider LS-SVM regression as ridge regression in the sam-
ple space (as opposed to variable space). Also, the relation-
ship between LS-SVM/SVM and local methods such as 
LOCAL,3–5 LWR,6–8 kNN9 and CARNAC,10 should be noted. 
When considering the case of deriving predictions for a new 
sample, by taking the inner product of the test sample’s 
kernel vector and the regression vector, a sort of non-linearly-
weighted average of the reference values is performed. Thus, 
support vector machine methodology can be seen as formal-
ising the local relationship between data points and reference 
values by defi ning a set of global, fi xed coeffi cients.

The LS-SVM derivation has not been shown to exhibit 
any signifi cant loss in performance relative to the Vapnik–
Chervonenkis SVM,14 yet it is much more effi cient in opti-
misation. This is an important result since the time of opti-
misation for both the SVM, and LS-SVM increases with the 
square of the number of training samples, and linearly with 
the dimension of the training samples (number of wave-
lengths). To implement the Vapnik–Chervonenkis SVM al-
gorithm, after choosing suitable pre-processing, the user 
must specify three parameters: σ2, ε and γ; the user is only 
required to specify two parameters (σ2 and γ) to implement 
the LS-SVM algorithm.

Experimental
Despite the theoretical underpinnings and optimistic deri-

vations that accompany any new algorithm, the matters of 
defi ning the guidelines and scope of its application, and il-
lustrating that the algorithm works in practice always remain. 
While it is rarely feasible to prove the general validity, much 
less superiority, of a method; side-by-side comparisons (with 
other techniques) are often useful in allowing others to de-
cide for themselves whether or not the method warrants fur-
ther investigation with their own applications. The remaining 
portions of this paper are devoted to providing examples of 

SVM methodology in practice, with comparisons to other 
techniques.

Datasets
For the performance comparison, datasets of NIR spec-

tra and reference values were compiled for four, diverse 
products: apples, meat, corn and animal feed. Three of the 
datasets (apples, meat and corn) were used for regression 
analysis. Each consisted of spectra from a typical NIR ana-
lyser, and each had multiple analytes. The fourth dataset 
(animal feed) was a discriminant analysis problem with the 
objective of detecting meat and bone meal contamination in 
ruminant feed; the spectra for this dataset were collected us-
ing an imaging spectrometer.24

Each dataset consisted of calibration and test subsets. 
For the apple dataset, the subsets were randomly split from 
the same pool of samples. For the meat dataset, a portion of 
the dataset was randomly selected for parameter optimisa-
tion; then, after the optimal parameters were set for each 
algorithm, the entire dataset was broken into seven sub-
sets according to the year in which the sample was drawn. 
Predictions were derived for each subset by calibrating on 
the remaining subsets, using the previously-determined 
parameter settings. While the process is essentially cross-
validation, the results are reported as standard error of pre-
diction (SEP) since there is some degree of independence 
between each subset. The corn test set was drawn from 
independent sources, including a different harvest and a dif-
ferent analyser. For the feed analysis dataset, the test set was 
drawn from separate batches and data collection sessions. 
For all datasets, no predictions were drawn from the test set 
until model optimisation was complete; model performance 
was compared on the basis of SEP. In all, 12 comparisons 
would be performed. Details for each dataset are shown in 
Table 1.

Software
Four regression methods were tested during the com-

parison: MPLS, LOCAL and ANN (ISI II v1.50, Infrasoft 
International, LLC, Port Matilda, PA, USA), and the LS-
SVM14 toolbox for MATLAB. The LS-SVM calculations 
were carried out in MATLAB 6.5 (The Mathworks, Inc., 
Natick, MA, USA). While it would be desirable to include 
the Vapnik–Chervonenkis SVM, freely-available regression 
software had not been found with suitable speed to be feasi-
ble for inclusion in the comparison. Moreover, informal tests 
with the SVM regression code that was available did not 
suggest any advantage over LS-SVM.

Calibration optimisation
The optimisation of MPLS, LOCAL and ANN calibra-

tions were carried out by Dr Pierre Dardenne at CRAGx, 
Gembloux, Belgium. Selection of pre-processing, removal 
of training outliers and parameter optimisation were com-
pleted for each algorithm and dataset. Depending on the 
capabilities of the individual algorithms, optimisation was 
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performed with cross-validation, or by splitting the calibra-
tion into a training and validation set.

To reduce the likelihood of experimental bias, the op-
timisation of LS-SVM was carried out independently by 
R.P. Cogdill, using the same datasets. Because the LS-SVM 
toolbox was not designed with chemometrics in mind, and 
because little was understood about applying LS-SVM at 
the beginning of this study, the selection of pre-processing, 
spectral window (Table 1) and removal of training outliers 
was performed using PLS regression and the PLS_Toolbox 
3.0 (Eigenvector Research, Inc., Manson, WA, USA). Thus, 
the performance of LS-SVM may have been limited, since 
it isn’t known if the algorithm is affected by pre-processing 
in the same manner as PLS. Once the pre-processing had 
been applied, and the calibration set was prepared, the LS-
SVM γ and σ2 parameters were optimised using cross-vali-
dation. The LS-SVM cross-validation was performed using 
MATLAB functions custom-written for this paper, since 
the cross-validation procedure supplied with the LS-SVM 
toolbox often suggested overly optimistic γ and σ2 settings, 
leading to over-fi tting of the training data.

Results and discussion
The apples dataset was the fi rst to be analysed using LS-

SVM. Though the spectra had been truncated, training with 
many hundred wavelengths and data points was prohibitively 
slow for feasible parameter optimisation. As was stated ear-
lier, it was found that training time increases with the square 
of the number of training samples, and linearly with the 
number of independent variables (Figure 3), when γ and σ2 

are held constant. With this in mind, the decision was made 
to replace the spectra with (an excess of) PLS factors when 
there were too many wavelengths to feasibly include the 
entire spectrum. PLS factors were used with the apples and 
meat datasets (Table 2); for the corn dataset, whose spectra 
consisted of only 100 variables, using the entire spectrum 
was feasible. 

Indeed, using the complete spectrum was superior to PLS 
compression during both optimisation and testing of the corn 
LS-SVM calibration models. This result was not surprising 
since the application of the RBF kernel [Equation (6)] is not 

Samples (n) Instrument description Wavelength range

Dataset Product Cal. Test Make Model MIN (nm) MAX (nm) inc (nm) 

Apples

Sucrose 601 139

NIR Systems 6500

796 2416 2

pH 514 118 1104 2300 2

Acidity 519 120 800 2498 2

Firmness 506 114 800 1998 2

Meat†

Moisture 691

NIR Systems 5000 1300 2398 2
Protein 658

Fat 651

Collagen 472

Feed 3603 654 Spectral Dimensions MatrixNIR 1200 1700 10

Corn

Moisture 891 429

Foss-Tecator Infratec 1229, 1241 850 1048 2Protein 907 429

Oil 899 429
†Meat dataset was tested using group-vs-group cross-validation

Table 1. Product and constituent datasets used for performance comparison.
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Figure 3. Graphical illustration of the importance of dataset size, 
and number of variables, in determining the time required to cal-
culate the LS-SVM solution. Training time increases with the 
square of dataset size, and linearly with the number of variables 
(note: time has been scaled to fi t the interval [0 1]).
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unlike a basis function which consolidates the multivari-
ate relationship between two vectors into a single scalar, k. 
Though extraneous information may be carried along, the 
signal-to-noise ratio (SNR) of k is likely to remain quite 
high. Since the LS-SVM function, as implemented, included 
no means of explicitly weighting variables, using latent vari-
able compression may actually reduce the SNR of the kernel 
substitution. Equal weight is applied to higher factors, which 
may contain little relevant information. Moreover, latent var-
iable compression may constrain the data to a subspace that 
is less effectively modelled by kernel substitution. Perhaps 
a better solution would be to use stepwise variable selection, 
or some method of weighting individual variables during 
kernel substitution, known as automatic relevance determi-
nation (ARD) among practitioners of kernel methods.14

Optimisation of the LS-SVM γ and σ2 parameters was 
a manageable task, similar to the process of selecting the 
number of factors for a PLS model, but was complicated by 
the two-dimensional nature of the problem. An example op-
timisation surface is shown in Figure 4. While it may seem 
that automatic optimisation is possible, by way of response-
surface methodology, the chemometrician must understand 
the relationship infl uence of γ and σ2 on model accuracy and 
robustness. Conceptually, an increase in γ is analogous to an 
increase in the number of factors in a PLS model. Just as the 
rms magnitude of PLS b-coeffi cients, as well as the likeli-
hood of over-fi tting the training data, increase with added 
latent variables, the rms magnitude of LS-SVM model coef-
fi cients, and risk of over-fi t, increase along with γ (Figure 5). 
Adjustment of σ2, on the other hand, is similar to adjusting 
the neighbourhood size of a local/kNN model. As σ2 is in-
creased, the resulting LS-SVM becomes confi ned to a linear 
model; as σ2 is decreased, differences between similar train-
ing samples are increasingly resolved, resulting in a tighter 

fi t of the training data. Practically, the optimum level of γ 
seems to be related to the density of the available training 
data, while σ2 seems to be related to the SNR and non-linear-
ity of the calibration problem at hand. During optimisation 
with cross-validation, any increase in γ or decrease in σ2 
should be weighed cautiously against the signifi cance of any 
improvement in perceived performance.

Even though RBF-PLS was not included in the compara-
tive study for this paper, some tests were done in preliminary 
phases of the work to compare its performance to LS-SVM. 
Though it was simpler and more familiar to set the complexi-
ty of the RBF-PLS model, which entailed selecting a reason-
able number of PLS factors, rather than tuning a γ parameter; 

SEP LS-SVM parameters

Dataset Product MPLS LOCAL ANN LS-SVM Input γ σ
2

Apples Sucrose 0.37 0.34 0.33 0.32 19 lv 3000 3000

pH 0.12 0.11 0.13 0.10 20 lv 8000 4000

Acidity 1.47 1.47 1.36 1.28 20 lv 4000 3000

Firmness 1.00 1.03 1.02 0.87 20 lv 6250 4500

Meat Moisture 0.62 0.85 0.61 0.69 15 lv 5000 1000

Protein 0.88 1.00 1.05 0.81 20 lv 3500 7000

Fat 0.52 0.56 0.91 0.47 10 lv 4000 1000

Collagen 0.87 1.94 1.08 0.71 16 lv 6500 4500

Corn Moisture 0.73 0.75 0.59 0.57 100 λ 5000 2000

Protein 0.41 0.45 0.43 0.36 100 λ 3000 3000

Oil 0.41 0.40 0.47 0.40 100 3000 4000

Table 2. Performance comparison results and LS-SVM training parameters.
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Figure 4. Example parameter optimisation response surface. This 
fi gure would be analogous to a plot of SECV, or SEP versus factors 
during PLS optimisation.
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the process of selecting σ2 was the same for both algorithms. 
The performance of RBF-PLS was generally on-par with, or 
better than PLS regression, which is in line with what was 
found by Walczak and Massart.20 However, LS-SVM always 
performed better than RBF-PLS in prediction with inde-
pendent samples. While both algorithms use the same basic 
model formulation, the LS-SVM b-coeffi cients were orders 
of magnitude less than the same coeffi cients derived using 
RBF-PLS. It can be surmised that the LS-SVM solution is 
more able to generalise to future datasets.

The results of the regression tests (apples, meat and corn) 
are shown in Table 2. While LS-SVM was superior to MPLS, 
LOCAL and ANN, in all but two tests, it is more surprising 
that LS-SVM performed best even for calibrations that are 
generally considered to be linear, such as protein in corn. For 
the ruminant feed discriminant analysis problem, LS-SVM 
misclassifi ed 6 out of 654 samples, while MPLS and ANN 
misclassifi ed 9 and 15 samples, respectively; LOCAL was 
not found to be applicable to the problem. For the discrimi-
nant analysis problem, LS-SVM was trained using 12 PLS 
factors, with γ and σ2 levels of 6000 and 1000, respectively.

Because of its large number of calibration samples, the 
ruminant feed dataset presented a difficult challenge for 
optimisation of the LS-SVM parameters. Even with the data 
compressed to 12 PLS factors, cross-validation with the en-
tire dataset was too slow to be feasible (given the available 
CPU time). Instead, the cross-validation was reversed such 
that, when the calibration data was broken up into subsets, 
models were built using only one subset, and predictions 
were made using the remaining subsets. After the parameter 
values were selected, using the reversed cross-validation, the 
fi nal calibration model was trained using the entire calibra-
tion set. Though the resulting model performance seems 
satisfactory, it is yet unknown whether more appropriate 
parameter settings could have been found using cross-vali-
dation in the conventional manner. This issue is likely more 
important for SVM methods, since the omission of training 
samples is equivalent to omitting an independent variable 
in the model. Cross-validation may not be relevant for LS-
SVM training; perhaps some other method of determining 
the correct parameter settings could be more effective.

While it is apparent that (without some method of re-
ducing training time) application of LS-SVM may not be 
feasible for extremely large-scale spectroscopic modelling 
problems, questions remain as to how much data is required 
for (comparatively) good performance, and is there limit to 
database size beyond which LS-SVM performance will fail 
to improve? While the latter question is part of a series of 
questions concerning the application of large-databases to 
chemometrics and NIR spectroscopy, the former question 
is more easily addressed. Using the corn protein dataset, a 
test was devised whereby progressively smaller subsets were 
randomly drawn from the original set of 920 samples. For 
each subset, PLS, LOCAL, ANN and LS-SVM calibrations 
were derived (with update of the parameter settings) and 
tested using the same set of 429 independent test samples.

The results are shown in Figure 6, with calibration data-
base size on the horizontal axis, and predictive performance 
on the vertical axis. Predictive performance is shown as a 
ratio, relative to the PLS results; a result above 1 indicates 
poorer predictive ability than PLS (using the same calibra-
tion set), and a result below 1 indicates better performance. 
Upper and lower confi dence limits are included for the PLS 
results. The performances of LOCAL and ANN, relative 
to PLS, were much as expected; both algorithms required 
somewhere between 250 and 500 samples before their per-
formance began to significantly improve on that of PLS. 
Surprisingly, regardless of the size of calibration dataset, LS-
SVM always performed better than LOCAL and ANN, and 
in only one case was not signifi cantly better than PLS.

Conclusions
Given the results of this work, some conclusions may be 

made regarding the application of least-squares support vec-
tor machines to chemometrics:
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• LS-SVM was generally superior to MPLS, LOCAL and 
ANN in predictive performance.

• A large sample database is not required for calibration 
development using LS-SVM regression.

• Since model training time increases rapidly with the ad-
dition of calibration data, without additional modifi ca-
tion, SVM methods may be precluded from extremely 
large-scale calibration problems.

• While the effect of various pre-processing methods on 
LS-SVM performance was not tested; latent variable 
compression was not always necessary during LS-SVM 
calibration. The form of the RBF kernel [Equation (6)] 
suggests that some form of scatter correction, or base-
line removal will usually be necessary for successful 
implementation of RBF methods using full spectra.

• The proper selection of tuning parameters (γ and σ2) is 
critical to avoid over-fi tting during LS-SVM training.

• The form of the LS-SVM model solution (b-coeffi cient 
vector) does not lend itself well to interpretation of the 
model. Further efforts will be needed to create useful 
methods of model interpretation and validation.

Though it is unlikely the optimism of these results will 
apply to every situation that may arise in the course of NIR 
calibration development, they certainly indicate that SVM 
methodology has a place in NIR spectroscopy and chemo-
metrics. Just as for any traditional chemometric technique, 
proper use of kernel methods, including LS-SVM, requires 
some understanding and experience; with the power to 
 model virtually any non-linear function, the ever-present 
danger of over-fi tting, and subsequent poor predictive per-
formance, places an even greater demand on the skills of the 
chemometrician.
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