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This study concerns the development of a new system to detect meat and bone meal (MBM) in

compound feeds, which will be used to enforce legislation concerning feedstuffs enacted after the

Europeanmad cow crisis. Focal plane array near-infrared (NIR) imaging spectroscopy, which collects

thousands of spatially resolved spectra in a massively parallel fashion, has been suggested as a more

efficient alternative to the current methods, which are tedious and require significant expert human

analysis. Chemometric classification strategies have been applied to automate the method and

reduce the need for constant expert analysis of the data. In this work the performance of a new

method for multivariate classification, support vector machines (SVM), was compared with that of

two classical chemometric methods, partial least squares (PLS) and artificial neural networks (ANN),

in classifying feed particles as either MBM or vegetal using the spectra from NIR images. While all

three methods were able to effectively model the data, SVM was found to perform substantially

better than PLS and ANN, exhibiting a much lower rate of false positive detection. Copyright# 2004

John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the emergence of the mad cow crisis in Europe, and all

its socio-economic consequences, European Union (EU) re-

gulatory agencies have undertaken many legal measures to

assure the safety and quality of feedstuffs. One of the most

important decisions has been to ‘totally ban processed

animal proteins (meat and bone meal (MBM)) in feedstuffs

destined to farm animals which are kept, fattened, or bred

for the production of food’ [1,2]. In order to combat fraud

and accidental contamination, the effective enforcement of

this regulation requires accurate and efficient analytical

methods capable of analysing thousands of samples per year.

Classical microscopy [3,4] was the first method available for

the detection of meat and bone meal (MBM) in feedstuffs;

this technique is reliable but tedious, since it requires visual

observation and interpretation by an experienced analyst.

Alternative techniques, mainly based on molecular bio-

logy (PCR and ELISA), chromatography (HPLC) and near-

infrared spectroscopy (NIRS) [5], have been evaluated to

help improve speed and reduce costs.

Near-infrared microscopy (NIRM) [6,7] was proposed as

an alternative method; NIRM has an advantage in that each

particle is evaluated based on its chemical properties rather

than appearance, thus reducing human subjectivity. This

technique was shown to perform well in discriminating the

different ingredients found in compound feeds, including

MBM. Whereas this method allows simultaneous detection

of a larger number of ingredients in a single analysis, it is

no faster than classical microscopy, since the spectra are

collected in a serial (particle-by-particle) manner.

Recent developments in NIR focal plane array (FPA)

technology offer a solution to this problem in the form of

imaging spectroscopy, which combines the advantages of

spectroscopic and microscopic methods along with much

faster sample analysis, since the spectral data are acquired in

parallel. An imaging spectrometer gathers spectral and

spatial data simultaneously by recording sequential images

of a predefined sample; each image plane is collected at a

single wavelength band [8]. In the present study, reflectance

images were collected in the 900–1700 nm window, with an
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increment of 10 nm. The image planes are stacked to form a

three-sided matrix, where the first two axes (x and y) define

the image plane (field of view (FOV)) and the third axis (z)

corresponds to the spectrum at each pixel location in the

FOV. The imaging spectrometer utilizes an InGaAs FPA with

240� 320 pixels (76 800 spectra per scan), along with a liquid

crystal tuneable filter (LCTF) for wavelength selection. The

effective FOV covers approximately 5 cm2, allowing simul-

taneous analysis of 300–400 particles. Where applicable,

spectral images are background corrected and converted to

absorbance units prior to further analysis [8].

In order to locate features and extract and analyse the

information from spectral image data, a combination of

image processing and chemometric techniques may be ap-

plied [9]. Classical chemometric methods such as partial

least squares (PLS) [10] and artificial neural networks

(ANN) [11] are well-known, proven techniques for both

classification and regression analysis of multivariate data

such as NIR spectra. In this work a more recent technique,

support vector machines (SVM) [12–26], was compared

with traditional chemometric methods of classification and

evaluated for future predictive performance in analysing

compound feeds for MBM [27,28].

The choice of SVM as classification method is justified by

the results obtained in References [14,18], where the great

performance of SVM becomes evident. This performance

can be partially explained by the uniqueness of the SVM

solution [13] for the problems of pattern recognition and

regression estimation.

2. THEORY

2.1. Support Vector Machines (SVM) for
classification [12–26]
The objective of an SVM classifier is to derive a function f(x)

that describes the decision boundary or hyperplane which

optimally separates two classes of points (Figure 1). For a

linearly separable data set containing n NIR spectra

X ¼ fðx1; y1Þ; . . . ; ðxn; ynÞg with xi 2 Rn; yi 2 f�1;þ1g; i ¼
1; . . . ; n, the hyperplanes are of the type w � xh i þ b ¼ 0,

corresponding to decision functions

fðxÞ ¼ sign w � xh i þ bð Þ ¼ þ1; w � xh i þ b > 0

�1; w � xh i þ b � 0

�
ð1Þ

where b and w are the hyperplane parameters (offset and

weight vector respectively) and hw � xi represents the inner

product of w and x.

During optimization, the SVM classifier locates the deci-

sion boundary with maximal margin among all possible

hyperplanes. Margin is the distance d from the hyperplane

to the closest point for both classes of points [12]:

M ¼ min1�i�n dðxi; fðw; bÞÞ ¼ 2= wk k. In order to maximize

the margin, one has to minimize wk k subject to some con-

straints:

max
w;b

min
1�i�n

dðxi; fðw; bÞÞ ¼
min 1

2 wk k2

8i; yi w � xih i þ bð Þ � 1

(
ð2Þ

This is a constrained quadratic optimization problem that can

be solved by using the method of Lagrange multipliers [13]:

Lðw; b; �Þ ¼ 1
2 wk k2�

Pn
i¼1 �i yi w � xih i þ bð Þ � 1½ �

8i; �i � 1

(
ð3Þ

where the �i are non-negative parameters learned from

the data (Lagrange multipliers). This is a major advantage

of the SVM framework over back-propagation ANN, since

optimization is a determinate operation where there is only

one minimum solution [26] (no problems with local minima).

This equation can be transformed to its dual problem under

the Karush–Kuhn–Tucker conditions [12,29]:

max�

Pn
i¼1 �i � 1

2

Pn
i¼1

Pn
j¼1 �i�jyiyj xi � xj

� �
8i; �i � 0Pn

i¼1 �iyi ¼ 0

8><
>: ð4Þ

The solution of this dual formulation reduces to

w ¼
Xn
i¼1

�iyixi ð5Þ

Each point xi is described by a Lagrange multiplier. Those

points with �i½yið w � xih i þ bÞ � 1� ¼ 0 will have non-zero

Lagrange multipliers (�i> 0) and are referred to as the

‘support vectors’. All other samples may simply be omitted

when the model is applied to new data, since they will bear

no influence on prediction, which reduces the computational

overhead. Thus the optimal decision function can be

described as

fðxÞ ¼ sign
Xnsv

i¼1

�iyi xsv
i � x

� �
þ b

 !
ð6Þ

where nsv represents the number of support vectors.

In the case of non-linearly separable data it is impossible to

find a linear decision boundary that will perfectly classify all

the training samples. Thus a trade-off must be made between

maximizing the margin while minimizing the number of

misclassified training samples. This is accomplished by

adding a user-selected regularization parameter C [14]:

min 1
2 wk k2þC

Pn
i¼1 �i

� �
8i; yi w0 � xih i þ bð Þ � 1 � �i

(
ð7Þ

where �i ¼ 1 � yifðxiÞj j is a non-negative slack variable which

estimates classification error (relative to the decision func-

tion) at point (xi, yi). Errors are found when �i> 1.

Figure 1. Various two-class, two-dimensional decision

boundaries.
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The first term applies a penalty to the magnitude of weight

vector, which seeks to limit complexity (and error of gene-

ralization) and maximize the margin; the second term forces

the optimization towards minimal error. Thus the regulari-

zation parameter C allows the user to adjust the trade-off

between error minimization and maximal margin estima-

tion. As before, Equation (7) is solved by using the method of

Lagrange multipliers, arriving at the same solution as in the

case of linearly separable data (Equation (2)), but with an

additional constraint 0 � �i � C.

While it is impossible to completely separate non-linearly

separable classes with the linear hyperplanes described in

the previous equations, it is often possible to map the training

data to a higher-dimensional feature space �, where the data

�ðxÞ may be separated with a higher-dimensional linear

hyperplane [15]:

�: Rd ! RDðD � dÞ
x ! �ðxÞ

In that case the decision function becomes

fðxÞ ¼ sign
XnSV

i¼1

�iyi �ðxiÞ � �ðxÞh i þ b

 !
ð8Þ

0 � �i � C

The relationship between two vectors in the feature space

� is efficiently represented by defining a kernel function

k(xi, xj), where

kðxi; xjÞ ¼ �ðxiÞ � �ðxjÞ
� �

ð9Þ

It is only through the choice of a non-linear kernel function

that non-linear models can be formed within the SVM

framework. However, as long as some necessary conditions

are met (Mercer conditions) [16], any one of many available

kernel functions can be used, e.g. linear, Gaussian radial

basis function (RBF), polynomial, sigmoid, etc. As explained

by Chih-Wei et al. [17], RBF is the most reasonable choice

because of its simplicity and ability to model data of arbi-

trary complexity. They proved that the linear kernel is a

special case of RBF. Another reason for using RBF is the

number of hyperparameters, which influences the complex-

ity of model selection (polynomial kernel, for instance, has

more hyperparameters than RBF). They show that the RBF

kernel is computationally easier than, for instance, the poly-

nomial one, where the kernel value may go to infinity or zero

when the degree increases. As proved also by Vapnik [15],

the sigmoid kernel does not fulfil the necessary conditions

under some parameters. The equation of the RBF kernel is as

follows:

kðx; xiÞ ¼ exp � x� xik k2

2�2

 !
ð10Þ

where � defines the width of the Gaussian function and can

be used to adjust the degree of generalization. Thus the

separating hyperplane is constructed as

fðxÞ ¼ sign
XnSV

i¼1

�iyikðxi; xÞ þ b

 !
ð11Þ

0 � �i � C

Along with C, the implementation of Equation (11) with an

RBF kernel function requires the user to specify an addi-

tional parameter �. The correct selection of both parameters

is critical to SVM predictive performance. While a number of

optimization schemes have been proposed in the literature

[18], no consensus has been found. For this work the propo-

sal of Chih-Wei et al. [17] was adopted, employing a ‘grid

search’ on C and � where the parameter combination with

the best cross-validation accuracy is selected.

3. EXPERIMENTAL

3.1. Software
All computations, chemometric analyses and graphics

were executed with programs developed in Matlab v6.5

(The Mathworks, Inc., Natick, MA, USA). PLS calibrations

were derived using the SIMPLS algorithm [30] included in

the PLS Toolbox (Eigenvector Research, Inc., Manson, WA,

USA), and ANN calibrations were applied using the back-

propagation procedure [11]. Different algorithms have been

proposed in the literature to perform SVM for classification

[19–21]. Here the Lin’s Lib SVM v2.33 algorithm was

used [22].

3.2. Model construction
In all cases the chemometric algorithms tested were used to

construct models to classify the origin of feed particles as

either ‘animal’ or ‘vegetal’ in order to discriminate between

MBM particles (not allowed) and plant particles (allowed).

Training (calibration) spectra were drawn from two

groups: spectra coming from 26 pure animal meals as the

first group, and spectra coming from 59 pure vegetal meals

as the second group. Each spectrum corresponded to a pixel

occupied by a particle included in the FOV of the NIR

imaging spectrometer. The animal and vegetal materials

analysed were selected to span the diversity of materials

mainly used for the formulation of compound feeds. These

samples were selected from the sample bank existing at the

CRA-W [7] and from the European sample bank constructed

in the framework of the STRATFEED project [31]: ‘Devel-

opment and validation of methods for the detection and

quantification of mammalian tissues in feedingstuffs’.

In total, more than 267 000 spectra have been collected

from pure animal and vegetal meals; each spectrum spans

the 900–1700 nm range, in 10 nm increments. Owing to

limitations in storage space, memory and calculation capa-

city, and since each particle occupied multiple pixels in the

FOV during scanning, the mean spectrum was drawn from

each particle for calibration, which reduced the training set

to 5521 spectra, i.e. 2233 animal and 3288 vegetal particles.

During preliminary testing, a number of different preproces-

sing methods were tested for their effect on accuracy, but no

real improvement was found in any case. Thus all spectra

were kept as raw absorbance units. A dummy variable was

attributed to represent each group (1 for animal and �1 for

vegetal) and was considered as reference value (y) during

the derivation of the PLS, ANN and SVM classifiers. Each

classification method was trained independently, with the

best model of each type selected for the comparison and

described below.
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3.2.1. PLS
The RMSE (root mean square error) was determined by leave-

one-out cross-validation. The optimal model complexity is

selected as the one with the minimum RMSE. The best PLS

model required 15 factors and achieved an RMSE of 0.397.

3.2.2. ANN
The training data set was split using the Kennard–Stone

method [32] into three subsets, (1) a calibration set, (2) a

monitoring set and (3) a test set, in order to determine the

optimal topology of the network. Separate monitoring and

test sets are required for ANN derivation to avoid overfitting

of the training data. The optimal topology was found to be

[15:8:1], i.e. 15 input nodes, a single hidden layer with eight

nodes (hyperbolic tangent transfer function), and one output

node (linear transfer function). This ANN model produced

an RMSE of 0.139.

3.2.3. SVM
Different kernels have been tested on these data, and the

results showed that the best choice, as concluded by Chih-

Wei et al. [17], is the RBF kernel. The SVM parameters were

optimized using the ‘grid search’ method [17] with a fixed

calibration and validation set, split from the training data

using the Kennard–Stone method. The optimal parameter

settings for C and � are then selected as the values that give

the minimum RMSE and the maximum correct classification

rate. During optimization of the SVM parameters, it was

observed that: (i) when C is increased, the second term of

Equation (7) dominates, forcing SVM towards a solution

with the least training error, which decreases the amount

of regularization, causing more background pixels (neither

animal nor vegetal) to be classified as animal; (ii) when C is

decreased, more emphasis is placed on reducing w, thus

maximizing the margin and emphasizing regularization.

Consequently, a larger number of calibration samples are

retained as support vectors, which increases the computa-

tion time of prediction. In the second case, animal particles

begin to be classified as vegetal, but no plant particles are

misclassified. This feature is very attractive, since the overall

objective of this study is to develop a method for use by

regulatory laboratories. While it is important that both MBM

and vegetal samples are classified correctly, more impor-

tance is given to the correct identification of vegetal particles

as free of MBM for the following reasons.

1. A false detection of MBM is unfair and can severely

damage the reputation of honest and scrupulous proces-

sors and manufacturers.

2. Since the testing of a single feed sample involves the

analysis of several hundred, perhaps thousands of in-

dividual particles, it is unlikely that all MBM particles in

a truly contaminated sample will be misclassified as

vegetal. Even a single MBM particle detection could signal

more exhaustive analysis of the feed sample in question.

3. Constant human intervention to verify false MBM detec-

tions would be very laborious and expensive, while the

simple threat of a credible feed testing system can influ-

ence the methods of would-be offending processors and

manufacturers.

The optimal parameter settings were found to be C¼ 100 and

�¼ 10; with these parameter settings, SVM performed with

an RMSE of 0.102.

3.3. Classification of a new data set
An independent validation data set was gathered (the ‘cross’

data set) for rigorous comparison of the predictive per-

formance of each chemometric algorithm tested. This ‘cross’

data set, which was created in the same manner as the

calibration samples, using the same imaging instrument,

consists of 76 800 spectra, which corresponds to 211 particles

placed on the sample presentation device. Figure 2 is an

image of the ‘cross’ data set at 1500 nm which shows the

distribution of the 211 particles within the FOV. As indicated

in the figure, the data consist of several pure animal (MBM)

particles (49) arranged in the middle of plant particles (162)

in the shape of a cross.

The prediction of the ‘cross’ data was handled in two

ways. In the first method the mean spectrum of each particle

was extracted (as was done for the calibration set) and

Figure 2. Image obtained with the imaging spectrometer at 1500 nm for the

‘cross’ data set. The animal particles are indicated in black.
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predictions were derived for the mean spectra. In the second

method the classification models were applied to all the

pixels in the FOV of the ‘cross’ data set image (76 800 spectra).

This second method has two important consequences for the

aim of this study: first, it is important in order to obtain a

quantification of the possible contamination of the data set;

second, it will be useful in order to simplify the spreading

procedure by proving that in the future the particles can

be arranged on the holder in a thin layer rather than by

carefully placing each particle in a distinct position.

The results of the first test, where only the mean spectrum

of each particle is used, are shown in Figures 3–5 for PLS,

ANN and SVM respectively. For the sake of clarity, the true

perimeter of each particle has been traced in black using the

‘watershed’ segmentation method included in the Matlab

Image Processing Toolbox. The best results were obtained

working with PLS, but, as can be seen in the images, all three

techniques arrive at nearly the same prediction result when

mean particle spectra are used for prediction. In all cases,

most of the animal particles are well detected and no vegetal

particles are misclassified.

In the second test the same calibration models were

applied to derive predictions from all 76 800 spectra of the

‘cross’ data set. In this case the image contains pixels from

animal and vegetal particles as well as background pixels

from the sample presentation device, which were not in-

cluded in the training data set. Figures 6–8 illustrate results

for the PLS, ANN and SVM models respectively (pixels

classified as MBM are grey, while pixels classified as

vegetal are white). For the PLS model, although the models

generally classified MBM particles correctly, an abnormally

high percentage of background particles were classified

incorrectly as animal. This would suggest that the linear

decision boundary derived by PLS is unable to sufficiently

generalize during prediction of the background pixels,

which were not represented in the training data and may

Figure 3. Results of the PLS ‘animal versus vegetal’ model (15 LVs) for the

‘cross’ data set using the mean of each particle. Black dots are classified as

animal.

Figure 4. Results of the ANN ‘animal versus vegetal’ model (15:8:1) for the

‘cross’ data set using the mean of each particle. Black dots are classified as

animal.
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Figure 5. Results of the SVM model ‘animal versus plant’ (C¼ 100, �¼ 10)

for the ‘cross’ data set using the mean of each particle. Black dots are

classified as animal.

Figure 6. Results of the PLS model for the ‘cross’ data set using the whole

spectra (76 800 pixels). Black dots are classified as animal.

Figure 7. Results of the ANN model for the ‘cross’ data set using the whole

spectra (76 800 pixels). Black dots are classified as animal.
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not be linearly separable from the MBM or vegetal spectra.

For ANN and SVM the detected animal particles corre-

sponded better with the true MBM particles (see Figure 2),

and virtually no vegetal or background particles were mis-

classified. By utilizing the watershed mask, the number of

particles and their corresponding pixels can be quantified,

which allows estimation of the percentage of correctly clas-

sified pixels.

Table I contains the results (in pixels) for the PLS, ANN

and SVM ‘animal versus vegetal’ models. For PLS, 99.7% of

true MBM pixels were correctly classified as MBM; the ANN

and SVM models achieved 93.4% and 81.6% correct classifi-

cation respectively. At first glance the initial conclusion

would be that PLS produced better classification results

than the other techniques. However, neither the ANN nor

SVM model misclassified any of the vegetal pixels as MBM,

compared with 2.08% misclassified for PLS. Moreover, the

PLS results further deteriorate when the classification per-

formance of background pixels is considered (Table I and

Figure 7). More than 46% of the background pixels were

misclassified as MBM by the PLS model, while only 1.09%

and 0.35% were misclassified by the ANN and SVM models

respectively. Thus, for PLS, even if all the animal particles

were correctly detected, the reliability of detection would

still be low, since it is quite probable that any non-vegetal

pixels will be classified as MBM whether they are indeed

animal or not. This is an important point, because one of the

aims of our work is to be able to simplify the spreading

procedure in order to reduce the time of analysis. Till now

the particles were separated manually on the holder, and the

methodology of the mean spectra seems to be good enough

in that case. However, when the particles are not separated,

i.e. disposed in a thin layer, the creation of this mask

becomes impossible and so we are obliged to work with all

the pixels. Furthermore, since the origination and composi-

tion of compound feeds may vary drastically, it must be

assumed that periodically a new, non-mammalian, feed

compound (not included in the training data set) will be

encountered. Based on the observed results, there is little

confidence that a PLS model would correctly classify the

new compound. This would not likely be the case for ANN

and SVM, where, even if some MBM particles are not

Figure 8. Results of the SVM model for the ‘cross’ data set using the whole

spectra (76 800 pixels). Black dots are classified as animal.

Table I. Results for the ‘cross’ data set using the PLS, ANN and SVM ‘animal versus vegetal’ models

Detected animal

Source n PLS ANN SVM

Animal 49 particles
(a) 1099 pixels 1096 pixels 1027 pixels 897 pixels

99.73% 93.45% 81.62%
Plant 162 particles
(b) 2643 pixels 55 pixels 0 pixels 0 pixels

2.08% 0.00% 0.00%
Holder
(c) 73 058 pixels 33 946 pixels 793 pixels 257 pixels

46.46% 1.09% 0.35%
Percentage of pixels 3.12% 56.43% 77.73%
correctly classified
as animal
(a/(aþ bþ c))
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detected, there is sufficient confidence in the rate of false

detection that the contaminated sample would be correctly

identified and ‘clean’ samples would more likely pass anal-

ysis with fewer false positive MBM detections, even if some

new feed ingredient were encountered. In order to see if

the differences between the performances of the methods

are significant, a McNemar test [33] with the continuity

correction was applied in order to calculate the two-tailed

P value. This test shows that SVM performs significantly

better than PLS and equally as well as ANN. In the case of

PLS the P value was less than 0.0001, so by conventional

criteria this difference is considered to be extremely statisti-

cally significant. In the case of ANN the P value was 1.000,

showing that the difference is not statistically significant.

The last row of Table I shows the percentage of pixels

correctly classified as animal by each of the techniques, i.e.

the ratio between the animal pixels classified as animal and

the total pixels (animal, plant and background) classified

also as animal. These results clearly show the advantage of

SVM over the other methods during prediction of indepen-

dent samples.

4. CONCLUSION

This work was carried out in an effort to improve the

enforcement of legislation banning the use of meat and

bone meal in compound animal feeds. The methodology

developed herein effectively combines imaging spectro-

scopy and chemometrics. The integrated system is able to

rapidly analyse many samples using either PLS, ANN or

SVM classification models.

While all three chemometric classification algorithms

tested performed admirably in analysing the training data,

and when analysing the data of spectral types which were

represented within the training data set (vegetal and MBM

particles), the ANN and SVM models showed superiority

over PLS in generalization ability when unmodelled data

were encountered (i.e. background pixels).

Even if the differences between the performances of SVM

and ANN are not significant, SVM is preferred to ANN for

two reasons. The first reason is that SVM gives fewer false

positive than ANN. This is crucial for the development of

methods aiming to support legislative decisions stipulating a

total ban (0%). The second reason is that, as explained by

Gunn [12], traditional neural network approaches have

suffered difficulties with generalization, producing models

that can overfit the data. This is due to the large number of

model parameters to be optimized. As with all other meth-

ods, ANN optimizes a quadratic (or other type of) criterion,

and the best model is obtained when this optimal value is

found. For ANN one has to train for a long time to find this,

and usually it gives less precise predictions than stopping

the training earlier. This is due to the large number of

regression parameters that need to be fitted. ANN does not

lead to one global (unique) solution owing to differences in

the initial weight set (neural networks have to be trained

with randomly chosen initial weight settings). SVM is trained

as a convex optimization problem resulting in a global solu-

tion (no local minima can occur), which in many cases yields

unique solutions, i.e. the solution is found in a deterministic

manner. Owing to this specific optimization procedure, it is

assured that overtraining is avoided and the SVM solution is

general. Additionally, the SVM decision function can be

easily evaluated owing to the reduced number of training

data that contribute to the solution (i.e. the support vectors).

With this study it was proved that the combination of NIR

imaging spectroscopy and certain non-linear chemometric

classification techniques should allow a regulatory labora-

tory to certify and quantify the presence of meal and bone

meal in common samples of processed animal feed.
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