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Determination of total antioxidant capacity in green tea by
near-infrared spectroscopy and multivariate calibration
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Abstract

A principal component regression (PCR) model is built for prediction of total antioxidant capacity in green tea using near-infrared (NIR)
spectroscopy. The modelling procedures are systematically studied with the focus on outlier detection. Different outlier detection methods are
used and compared. The root mean square error of prediction (RMSEP) of the final model is comparable to the precision of the reference method.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Green tea is of great interest due to its beneficial medici-
nal properties[1]. Many studies have suggested that these
properties are related to the antioxidant activity com-
ing from tea polyphenols[2,3]. Tea polyphenols account
for 30–42% of the dry weight of green tea leaves[4].
The main polyphenols in green tea are epicatechin (EC),
epicatechin-3-gallate (ECG), epigallocatechin (EGC) and
epigallocatechin-3-gallate (EGCG), with the latter playing
the most important role in the total antioxidant capacity of
green tea. To quantitatively control the antioxidant capacity
in green tea, there are three main classical methods. One is to
determine individual polyphenols using high-performance
liquid chromatography (HPLC) or capillary electrophoresis
(CE) [5]. Another is to estimate the total phenolics content
by a colorimetric method such as the Folin–Ciocalteu assay
[6]. The third one is to analyze the total antioxidant capac-
ity based on the reducing activity of polyphenols, such as
the oxygen radical absorbance capacity (ORAC) assay and
the trolox equivalent antioxidant capacity (TEAC) assay
[7]. All these methods are time consuming and difficult to
handle due to unstability of polyphenols and their unknown
interactions.
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Near-infrared (NIR) spectroscopy is a fast, accurate,
easy and non-destructive technique that can be a candi-
date as a replacement of classical chemical analysis. The
prerequisite of NIR application for quantitative purpose is
building a reliable calibration model. Recently, Luypaert
et al. investigated the feasibility for prediction of total
antioxidant capacity in green tea using NIR[8] with a
small calibration set. We collected a new data set com-
prising more varieties of green tea samples and used an
improved method proposed by Re et al.[9] as the reference
method.

We systematically studied the different steps that have
to be gone through in multivariate calibration. The focus
of this article is on outlier detection since it is the most
important and difficult step for modelling. Outliers are ob-
servations that either are irrelevant, incorrect or abnormal
in some other way when compared to the majority of the
data. They often strongly influence the modelling. Outliers
may occur due to avoidable and unavoidable mistakes in the
analytical process or the presence of irrelevant sources of
variance (bad outliers). Observations may behave as outliers
because of their highest or lowest analyte levels. They then
merely are extreme values and are in fact good “outliers”.
Bad outliers often reflect errors of some sort. If this is the
case, they should be eliminated. In some cases it is due to
the inclusion of a sample which behaves differently. In that
case it means that the model should be extended by the
inclusion of additional samples of that type. Good outliers
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are often very valuable because they expand the calibration
range and should be retained.

2. Experimental

2.1. Samples

One hundred twenty-three batches of tea were purchased
in China, Belgium and Spain. Of the 99 batches bought in
China, the origin is known. Thirty-five of them are fromZhe-
jiang, 31 fromHunan, 7 fromAnhui, 6 fromShanxi, 6 from
Fujian, 5 from Jiangsu, 1 from Jianxi and 1 fromSichuan,
respectively. Most of them are green tea of different grades
and kinds, which includeLongjing, Maojian, Biluochun, etc.
Eight of them are yellow tea, which is slightly fermented
green tea. Of the other 24 samples, it is only known that they
are imported from China. Most of them areGunpowder and
some areChun Mee.

2.2. Reagents and standards

2,2′-Azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid
(ABTS) diammonium salt) and potassium persulfate were
purchased from Sigma–Aldrich Chemie GmbH (Steinheim,
Germany). Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-
2-carbonsaeure; Aldrich, Gillingham, Dorset, UK) was used
as the antioxidant standard.

2.3. Apparatus

NIR spectra of samples were recorded by BRAN+
LUEBBE InfraAlyzer 500 (Bran+ Luebbe GmbH, Norder-
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Fig. 1. NIR spectra of green tea leaves (n = 123).

stedt, Germany) using the diffuse reflectance mode. An
UV-Vis scanning spectrophotometer (SHIMADZU, Japan)
was used to monitor the time course of the antioxidative
reaction.

2.4. Procedures

2.4.1. NIR spectra
NIR spectra were obtained by packing original sam-

ple leaves into a BRAN+ LUEBBE standard closed cup
and measuring the samples every 2 nm between 1100 and
2500 nm at room temperature. Each batch was measured
three times in different days. Each day three samples from
the same batch were measured three times with a rota-
tion of 120◦, respectively. As a result, each batch was
scanned 27 times (9 times× 3 days). A replicate in our
study refers to the mean of the nine spectra of the same
batch measured the same day. Therefore each batch has
three replicates and the mean of the replicates forms the
matrix X.

As a result, the matrixX contains 123 objects and 701
variables (Fig. 1). It is divided into two subsets using the
DUPLEX method[10]: 100 objects in calibration set and
23 objects in test set. Objects are labelled according to the
orders that they are randomly arranged in calibration set
or test set. Each object has a fixed label. The test set is
only used for external validation. Unless otherwise stated,
only the calibration set is considered. Before calculation, the
calibration set is column centred.

2.4.2. Total antioxidant capacity
Total antioxidant capacity was measured according to

the method proposed by Re with slight modifications[9].
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First, the ABTS radical cation (ABTS•+) was generated by
reacting 7 mmol ABTS water solution with 2.45 mmol potas-
sium persulfate (final concentration). After standing the mix-
ture for 12–16 h, the ABTS•+ was diluted with water to an
absorbance of 0.70 (±0.02) at 734 nm. Then, 1 g of green
tea sample was infused with 200 ml boiling water for 40 min
in the dark. Finally 0.3 ml 200 times diluted infusion or
Trolox standard were added into 1.0 ml diluted ABTS•+
and the decrease of the absorbance was read exactly 1 min
after the mixing. The total antioxidant capacity value of
the samples was obtained from the Trolox standard calibra-
tion curve. Each batch was measured three times on dif-
ferent days. The mean of the measurements for each batch
forms the vectory. The standard deviation of each batchi,
determined as:

SDi =
√∑u

u=1yiu − ȳi

u − 1
(1)

whereu, the number of the measurement replicates, is an
indication of measurement precision of that sample, includ-
ing variance due to inhomogeneity of the sample. The mean
of all SD (pooled SD), calculated as:

SDpool =
√∑n

i=1SD2
i

n
(2)

where n, the total number of samples, is used as the fi-
nal value. The results showed that the total antioxidant ca-
pacity of 123 samples ranges from 14.53 to 35.79 (�mol
Trolox/25�g tea leaves) with an overall mean equalling
26.10 (Table 1). The pooled SD for 123 samples is 1.86 and
the overall standard deviation, which describes the disper-
sion within 123 samples, is 3.93.

2.5. Data analysis

Principal component regression (PCR) was used to model
the relation between the total antioxidant capacity and the
NIR spectra of green tea. The performance of the final PCR
model was evaluated in terms of bias (trueness), root mean
square error of cross-validation (RMSECV) (precision) and
square of multiple correlation coefficientR2 (percentage of
variation explained).

bias=
∑n

i=1(ŷi − yi)

n
(3)

Table 1
The constitution of the calibration set and the test set by the reference
method (unit:�mol Trolox/25�g tea leaves)

Data set n Antioxidant
capacity range

Mean Pooled
SD

Calibration set 100 19.61–35.73 26.44 1.86
Test set 23 14.53–35.79 24.64 1.83

RMSECV=
√∑n

i=1(ŷ\i − yi)
2

n − 1
(4)

R2 =
∑n

i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

(5)

where n is the number of the calibration samples,yi

the observed result for samplei, ŷi the estimated re-
sult for samplei, ŷ\i the estimated value for samplei
when the model is constructed with samplei removed
and ȳ the mean of the observed results for all calibration
samples.

2.6. Software

Data analysis was performed in Matlab® for Windows,
version 5.2 (The MathWorks Inc.) with the programs devel-
oped in our department.

3. Results and discussion

3.1. Data investigation

The data investigation includes three steps:

• Detection of outlying replicates.
• Investigation of clustering tendency. If clustering tendency

is found, it should be decided whether to build separate
models or not.

• Flagging of possible outliers. The PCR model is sensitive
to the existence of outliers, it is necessary to detect possi-
ble outliers and check whether they can affect the model or
not. Three kinds of outliers should be considered, namely
outliers in X, outliers iny and outliers towards model.
Before modelling, outlier detection inX andy are per-
formed to make sure the model will not be biased due to
the existence of outliers. A true model, which is not in-
fluenced by the presence of bad outliers, is the base for
correctly identifying outliers towards the model. Thus the
outlier detection before modelling is important. Since at
this stage the outlier detection is done separately inX or
y, it is quite possible that a sample with extreme value is
detected as an outlier but it is later found to follow the
model very well. Samples with extreme value always have
larger influence on the model than other samples. There-
fore it is necessary to be aware of them and discard them
only when they are really of no use or detrimental to the
model. Once the model is built, the presence of outliers
towards the model is investigated. Such outliers should be
eliminated.

3.2. Detection of outlying replicates

The Cochran test is used to detect outlying replicates[11].
No outlying replicate is detected.
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Table 2
Hopkins statistic for the calibration data (n = 100)

Number of
iterations

Population
size (%)

HSaverage HSmax HSmin HSrange

5 20 0.41 0.46 0.36 0.09
5 100 0.40 0.43 0.37 0.06

10 10 0.39 0.58 0.23 0.35
20 5 0.37 0.65 0.11 0.54

3.3. Investigation of clustering tendency
and inhomogeneity

3.3.1. Hopkins statistics
The Hopkins statistic (HS)[12], an index for clustering

tendency, is used to examine whether objects in a data set
are uniformly distributed in a multidimensional data space.
It first calculates the Euclidean distances between randomly
selected experimental objects and their nearest neighbours
(Edexp). Then it generates some artificial objects. The Eu-
clidean distances between artificially generated objects
and their nearest experimental neighbours (Edart) are also
calculated.

HS = Edart

Edart + Edexp
(6)

If HS > 0.75, the data set is considered to be significantly
clustered.

In our study, Forina’s modification is used to select suit-
able artificially generated objects[13]. Different combina-
tions of the population size and the number of iterations are
used to make sure each object can be chosen once (Table 2).
No clustering tendency is found.

3.3.2. PCA score plot
Plotting PCA scores in two or three dimensions provides

an easy way to observe the data distribution. In the PC1–PC2
plot, samples are unevenly distributed but no obvious cluster
can be found (Fig. 2a). Although no obvious cluster can be
observed visually, DBSCAN[14,15] shows there are three
clusters (Fig. 2b). The second cluster includes six objects
(objects 13, 92, 93, 94, 96 and 97), which are from the
same kind called “Gunpowder”. The third cluster consists
of five objects, objects 7, 33, 44, 73, 83. No explanation
can be found for this cluster. The five objects are from three
kinds and three provinces. Different combinations of PCA
score plots are investigated and no clear cluster is found.
The possible outliers in each PC are listed inTable 3.

Table 3
The possible outliers on the more important PCs

PC Describe variance (%) Number of the object

1 91.8719 None
2 7.0726 4, 9
3 0.9004 None
4 0.0931 58, 83, 97
5 0.0394 3, 42, 46, 91, 99

3.3.3. Sammon’s mapping
The PCA score plot requires pairwise plots of PC scores

(e.g. PC1–PC2, PC1–PC3, etc.). Sammon’s mapping sup-
plies a way to visualize higher dimensional data in a single
lower (normally 2) dimensional space while approximately
preserving the inherent data structure[16]. To obtain stable
results of the mapping, 200 iterations were used. The result
shown inFig. 3a indicates several unclear clusters. When
the DBSCAN is applied to this result, three clusters are
found (Fig. 3b). The formation of these clusters is similar
to the result obtained by DBSCAN using the first two PCs
(Fig. 2b). Three objects (objects 5, 9 and 98) are detected as
outliers.

We conclude that careful observation shows some evi-
dence of clustering. However, the clusters detected are not
very clear and also too small to allow the building of sepa-
rate models at this stage. If the method were to be applied
on a very large scale and many more calibration samples
were available, this might be reconsidered.

3.4. Detection of possible outliers in y

Two kinds of Grubbs’ tests[17] are used to detect the
potential outliers iny. In the single Grubbs’ test

G = yi − ȳ

s
(7)

where yi is the suspected outlier that has the smallest or
largest value,̄y is the mean of all samples including the
suspected sample ands is the standard deviation of all sam-
ples. If the absoluteG exceeds the critical value[17], the
suspected sample is considered an outlier.

The double Grubbs’ test is used for the detection of two
outliers.

G = SS1,2

SS0
or G = SSn−1,n

SS0
(8)

where SS0 is the sum of squared deviations from the mean
of the original samples and SS1,2 and the SSn−1,n are the
sum of squared deviations obtained after deletion of the two
smallest or largest values. IfG is smaller than the critical
value[17], the two samples are considered to be outliers.

The prerequisite for using the Grubbs’ test is that the data
set should have a normal distribution. As shown inFig. 4,
the distribution ofy for the 123 samples is close to normal.
The Kolmogorov–Smirnov test shows that the antioxidant
capacity values of the samples are normally distributed. The
kurtosis value is 0.24 and the skewness value is 0.00. None
of the outliers is detected by both Grubbs’ tests.

Since the Grubbs’ test concludes that there are no out-
liers in y, all samples are considered for further analysis. It
should be noted that in this case the DUPLEX method has
selected five samples (objects 105, 108, 109, 119 and 122)
for the test set that are not within they-range of the cali-
bration set. The DUPLEX method makes a selection based
on the spectral information and is chosen because it does



M.H. Zhang et al. / Talanta 62 (2004) 25–35 29

Fig. 2. Investigation of green tea data set using PCA scores: (a) PC1–PC2 (b) DBSCAN based on the first two PCs.

select some extreme samples for both sets, which is a de-
sirable characteristic. However, it is not expected that the
y-values of the samples will be much outside they-range
of the calibration samples and this is the case here for two
prediction samples, objects 108 and 119, withy-values of
respectively, 14.53 and 16.47, nor is it expected that there
would be as much as five samples out of they-range of
the calibration set. It seems therefore possible that some of
these objects are atypical (and should not be included) or
that somey-values are wrong. To test this, these five sam-
ples are individually put into the calibration set to see their
influence on the model (Fig. 5).

It is found that object 108 and to a lesser extent object
122 have a very deleterious effect on the RMSECV. For that
reason, these two objects are marked as suspect and the root
mean square error of prediction (RMSEP) with and without
objects 108 and 122 are computed. The result shows that
objects 108 and 122 have the highest and the third highest
residuals respectively in the test set when five selected PCs
are used. Deleting them individually decreases the RMSEP.
Sample re-examination finds that objects 108 and 122 indeed
have special characteristics in appearance or composition,
which might result in wrong measurement ofX. Another
object in the test set, object 103, has the second highest
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Fig. 3. Clustering investigation of green tea data set by Sammon’s mapping: (a) Sammon’s mapping using all PCs of the calibration set. (b) DBSCAN
based on the result of Sammon’s mapping.

residual. It is found that it also increases the RMSECV, when
it is included in the calibration set, and the RMSEP. The
high residual for this object may due to a wrongy-value for
an unknown reason. These three objects are removed from
the test set.

3.5. Detection of possible outliers in X

3.5.1. Visual methods
The methods described inSection 3.3allow finding some

possible outliers. They are to be found inTable 4.

3.5.2. Mahalanobis distance (MD)
The squared MD is used as a distance measurement to

detect outliers. The distance is calculated as[18,19]:

MD2
i = (xi − x̄)S−1(xi − x̄)′ (9)

wherexi is theith value ofx, x̄ the mean of thex andS the
variance-covariance matrix of thex. The distance is com-
pared with a tabulatedχ2 value withA degrees of freedom
(A is the total number of PC or PLS factors used) at the 5%
significance level. The 5% objects with highest MD in the
calibration set are listed inTable 4.
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Fig. 4. Distribution ofy-values as obtained from the reference method.

3.5.3. X residual standard deviation (XRSD)
In this method, the total residual standard deviation of

the matrixX (se) and the residual standard deviation of its
individual objecti (sei) are calculated respectively. If sei is
three times larger than se as recommended by Martens[20],
the objecti is detected as an outlier (Table 4).

se2 =

I∑
i=1

K∑
k=1

e2
ik

df
(10)

0 5 10 15
1.8

2

2.2

2.4

2.6

2.8

3

3.2

number of PCs

rm
se

cv

◊ original calibration set 
•  object 105 is put into calibration set 
o object 108 is put into calibration set 
* object 109 is put into calibration set 
+ object 119 is put into calibration set 
∇  object 122 is put into calibration set 

Fig. 5. The influence of five objects from the test set on the RMSECV. The model is based on the calibration set using PCs in the selected order. These
five objects (objects 105, 108, 109, 119 and 122) have y-values exceeding the y-range of the calibration objects.

se2
i =

K∑
k=1

e2
ik

K − A
(11)

where

eik = xik − x̄k −
A∑

a=1

tiapka (12)
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Table 4
Objects flagged as possible outlier by different methods

Method Calibration set Test set

PCA plot 4, 9 in PC2; 58, 83, 97
in PC4; 3, 42, 46, 91, 99
in PC5

109 in PC3;
117 in PC5

Sammon’s
mapping

5, 9, 98 Not applicable

MDa 4, 5, 42, 74, 91, 97 117
XRSDa 10, 26, 62, 85 109
RHMa 4, 5, 9, 42, 74, 91, 97 111, 114, 117
MVTa 4, 5, 13, 91, 97 None

a Five selected PCs (PC1, 2, 5, 6, 11) are used.

i is the number of objects of the matrix X, K is the number
of variables, A is the complexity of the PCR or PLS model,
t are scores of X, p are loadings and df is the number of
degrees of freedom:

df = IK − K − A(max(I, K)) (13)

3.5.4. Robust methods
Resampling by the half-means method (RHM) is a ro-

bust method to detect extreme objects [21]. In this test,
the column mean and the standard deviation of 50% ran-
domly selected samples from the whole matrix are calcu-
lated. The whole matrix is then autoscaled by this mean
and standard deviation. According to this autoscaled ma-
trix, a matrix of vector lengths for all objects is calculated.
Objects are recorded if their vector lengths are larger than
the fixed percentage of distribution (95% in our study).
The whole procedure is repeated three times the number
of objects. If an object has been recorded in many resam-
pling experiments, it is considered to be a possible outlier
(Table 4).

Multivariate trimming (MVT) [22] contains a loop that
(1) calculates the squared MD of each object in the whole
data set, (2) removes a fixed percentage (decided by the
analyst beforehand, 70% in our study) of the objects with the
highest MD, (3) calculates the covariance matrix and median
of the 30% objects with the lowest MD and uses them in
step (1) again. The loop is repeated until the covariance
matrix and the median become stable. Based on the final
median and the covariance matrix, the squared MDs of all
objects are calculated. It is shown that objects 4, 5, 13, 91,
97 of the calibration set have the top 5% squared MD when
five selected PCs are used (Table 4). None of the objects
in test set has higher squared MD than those of these five
objects.

In this study, different outlier detection methods are used.
Visual methods, MD, XRSD, Grubbs’ test are non-robust
methods. They are effective for identifying a single out-
lier or influential observation in a data set. When there
is more than one outlier or influential observation, the
diagnosis may become difficult due to the masking or
swamping effects. For this reason, robust methods, such as

RHM and MVT are applied. In most of these methods, a
cut-off value of 95% is used. This means that the listed
objects in Table 4 are extreme values but might not be bad
outliers.

The results from the MD, RHM and MVT are quite
similar because they are based on mean (or median) and
variance-covariance matrix. The MVT result is a little dif-
ferent because it uses median instead of mean. That the
non-robust MD method performs as well as the robust
methods might be due to the absence of bad X-outliers in
our data set.

It is noticeable that the objects detected with XRSD are
entirely different from those by MD, RHM and MVT. The
main reason may be that different distances are used. In
XRSD the Euclidean distance is used and in the rest of
the methods the Mahalanobis distance, which takes into
account the correlation among variables in the data, is
used.

All above methods only consider X, not taking y into
account. This is the limitation of these methods. Extreme
objects detected by these methods mean that they are outside
the X population, but they may not be outliers towards the
model, i.e. be good outliers.

3.6. Model building

A principal component regression model is built and two
measures of predictive ability are used. One is the RM-
SECV, which is obtained from the calibration set using a
leave-one-out strategy. The other is the RMSEP. This is ob-
tained by predicting an independent set, the test set. The
modelling includes three steps. First, an initial model based
on the calibration set without any refinement is constructed.
Then by selecting a suitable pretreatment method, retaining
meaningful PCs and eliminating bad outliers, the model is
optimized. Finally, the model is validated through internal
and external validation.

3.6.1. Selection of the initial model
Building a PCR model with PCs included according to

the variance they represent shows that 11 PCs are needed
to obtain a RMSECV (1.97) similar to the standard devi-
ation of the reference method (Fig. 6a). A less complex
model is preferred since, with increasing number of PCs,
there is more chance to include noise and unrepresentative
information from the calibration data. Using too many PCs
may result in a phenomenon called overfitting, i.e. the cal-
ibration data are summarized well but the prediction will
be bad. To decrease the complexity of the model, selected
PCs are used. The PCs are arranged in decreasing order
of correlation with the antioxidant capacity. Fig. 6b shows
that the minimum RMSECV (1.91) is obtained using seven
selected PCs but we preferred a less complex model with
only four PCs (PC2, 6, 11, 1) which still achieves a rela-
tively low RMSECV (2.09). The latter model has no sig-
nificant difference with the former model when checked by
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Fig. 6. (a) The RMSECV of the PCR model using top-down PCs. (b) The RMSECV of PCR model using selected PCs.

randomization t-test [23]. During the validation with the test
set, though different samples are removed, the first minimum
of RMSEP is always obtained using the five PCs (PC2, 6,
11, 1, 5) (data are not shown). Thus, PC5 is also retained.
As a result, PC2, 6, 11, 1 and 5 are used in the further
study. The preliminary model using these five PCs for the
calibration set has RMSECV equalling 1.99 (R2 = 0.7279)
and test set has RMSEP equalling 1.91 (R2 = 0.6234)
with no sample deletion. The calibration model was sus-
pected to be slightly non-linear. Therefore, a non-linear-
ity test was performed on the model, but the result was
negative.

3.6.2. Selection of pretreatment method
Different spectral pretreatment methods, such as off-

set correction, detrend, multiple scatter correction (MSC),
standard normal variate transformation (SNV), first and
second derivative are applied to the calibration set. None
of the methods improves the RMSECV, nor the RMSEP
(Table 5).

3.6.3. Optimization and validation of the model
The possible outliers found in X (see Table 4) are removed

from the model to see whether the model can be improved.
The result shows that none of them affects the RMSECV
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*r: correlation coefficient between the estimated values and the observed values 
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Fig. 7. The final model for prediction of the total antioxidant capacity in green tea using five selected PCs (PC2, 6, 11, 1, 5): (a) calibration set, (b) test set.

Table 5
The RMSECV and RMSEP of the preliminary model with different
pretreatment

Pretreatment RMSECV RMSEP

None 1.99 1.91
Offset 2.00 1.94
Detrend 2.01 2.08
MSC 2.18 2.41
SNV 2.15 2.54
First derivative 2.27 2.13
Second derivative 2.02 2.21

No object is eliminated from the calibration set. From the test set, objects
103, 108 and 122 are removed.

or RMSEP much, indicating that they are not bad outliers
(Table 6).

The studentized residual [24] for each object in the cal-
ibration set is calculated to study the outliers towards the
model. Objects whose studentized residuals exceed 2.5 are
identified as outliers at 99% confidence level [25]. It is found
that objects 6 and 23 of the calibration set, which have
the highest residual in the model, are outliers toward the
model and they are eliminated. The RMSECV of this model
is 1.86 (R2 = 0.7505) when five selected PCs are used
and the RMSEP is 1.81 (R2 = 0.7557) (Fig. 7). The bias
of the model is −0.08, which is not significantly different
from 0.
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Table 6
The RMSECV and RMSEP of the model with certain objects deleted
(five selected PCs are used and the spectra processed no pretreatment)

Object deleted RMSECV RMSEP

– 1.99 1.91
4 1.98 1.86
5 2.00 1.90
6 1.94 1.87
9 1.98 1.90
23 1.94 1.86
42 2.02 2.39
74 2.00 2.25
91 1.96 2.01
97 2.07 1.93
6, 23 1.86 1.81

From the test set, objects 103, 108 and 122 are removed.

4. Conclusions

Our study shows that it is indeed possible to use NIR and
chemometrics to estimate the total antioxidant capacity of
green tea.

A first conclusion about the outlier study is that differ-
ent methods give different results. The main conclusion is
however that none of the outliers detected has an influence
on the RMSEP. They are therefore “good” outliers that ex-
tend the range of calibration. Two outliers (objects 6 and 23
of the calibration set) were not detected with the outlier in
X or y methods. They are outliers of a different type. The
spectra are not outlying, but they do not follow the relation-
ship between y and X, probably because of measurement
errors either in the reference method or in the NIR study.
More generally, it follows that simply identifying outliers
by the tests described is not enough: their effect on RMSEP
must always be tested. Moreover samples with a high resid-
ual towards the calibration model should also be considered
potential outliers.

In this paper, a PCR model is built to predict the total an-
tioxidant capacity contained in green tea samples. Different
chemometric methods are applied to optimize the model.
The best PCR model has a RMSEP of 1.81, comparable to

the reference method, for which a pooled SD of 1.83 was
found.
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