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1. Introduction 

In the STRATFEED project, the aim of 
work package (WP) 5, led by SAC, was to 
demonstrate the contribution of near-
infrared spectroscopy (NIRS) towards 
controlling compound feed and designing 
new methods to detect and quantify any 
addition of animal meal. Six partners 
(SAC, UCO, LAGC-Gencat, JRC, RIKILT 
and CRA-W) were involved in carrying 
out the WP5 activities. 

NIRS is probably the most rapid method 
for testing feed in terms of speed of 
reporting, timeliness and convenience, 

allowing a substantial increase in the 
number of controlled samples and 
providing an instant response in detecting 
contaminated specimens. Its speed enables 
testing to be part of the decision-making 
processes in managing  a feed mill. NIRS 
is already used widely in the feed industry 
and is the most likely technique to be used 
to protect the food chain from 
contamination by mammalian protein 
tissue. It is a particularly valuable method 
for screening feed imported from countries 
that have not yet experienced bovine 
spongiform encephalopathy (BSE) and  
Creutzfeldt-Jakob disease (CJD) and still 
allow meat-and-bone meal (MBM) to enter 
the food chain, directly or indirectly (e.g., 

Page 1 



WP5 : The STRATFEED NIRS method 

via aquaculture). Our main concern is 
gross contamination of feed with MBM 
due to ignorance, malpractice or economic 
fraud, which can lead to high levels of 
MBM entering the food chain, thus 
incurring greater risk. Fish meal (66% CP) 
is at risk as it commands a very high value, 
but in the developed world MBM (55% 
CP) is now a waste product that needs to 
be disposed. NIRS is important as a 
method of screening feed to detect suspect 
specimens and refer them for scrutiny by 
more labour-intensive forensic tests, such 
as  polymerase chain reaction (PCR), that 
can be cited in a court of law of an EU 
Member State. 

Although NIRS is easily performed, its 
calibration and validation present 
difficulties in that the spectrocomputer 
must be able to recognise the spectral 
features of MBM within highly variable 
plant and fish tissue. As animal fat is still 
allowed in feed, NIRS must specifically 
distinguish mammalian protein tissue. This 
is demanding in terms of the need to 
include in the model all possible plant-
derived ingredients as well as permitted 
fish meal, fats, oils and dairy by-products. 
The analytes of importance are those 
specific to red meat tissue – haemoglobin, 
myoglobin, collagen, actin and myosin – as 
well as bone and nervous system tissue.  

It must be emphasised that NIRS is a 
secondary method that depends on a pre-
existing primary reference method. 

As is well known among NIRS workers, an 
accurate NIRS measurement of agro-food 
material relies heavily on the sample set 
used to develop a mathematical 
relationship between spectra and the 
chemical and/or other qualitative reference 
values (in our case, the percentage of 
MBM included). The important point 
about the calibration/training/library set is 
that samples chosen should represent the 
full range of characteristics (chemical, 
physical, technological, etc.). In the 
STRATFEED project and WP5, great 

efforts were made to build spectral 
libraries representing the variability found 
in European compound feed. 

2. Current situation 

Several studies have demonstrated the 
capacity of NIRS technology to detect and 
quantify animal-origin meal in compound 
feed. Garrido and Fernández [5] reported 
the results of a tentative evaluation of the 
potential of the NIRS technology. They 
used feed samples spiked at various levels 
(0.5% to 4%) and ‘real-process’ samples 
(cattle and pig feed) that also contained 0–
4% of MBM, supplied by the feed sector 
prior to the ban and now no longer 
available. The authors concluded that 
NIRS could be used for the instant 
detection and quantification of MBM at 
low levels. 

Later, Murray et al. [9] used NIRS to 
detect MBM in fish meal. PLS 
discriminant analysis was developed on a 
calibration set of 67 samples consisting of 
22 authenticated fish meal specimens and 
45 fish meal specimens deliberately 
contaminated with MBM at 3%, 6% and 
9%. The results showed the potential of 
this technique to identify animal protein 
from two species. 

Other authors [4,6,10] also reported data of 
calibration equations to quantify the 
percentage of MBM in compound feed and 
to classify samples according to the 
presence/absence of MBM. However, as 
stated by Garrido and Fernández [5], in 
order to have NIRS models that can be 
used to label and inspect all feed 
compounds marketed in Europe, it is 
necessary to build ‘universal’ models. The 
word ‘universal’ here denotes that the 
model can be used for a large group of 
samples and can be applied to any material 
classed as feed or a feed ingredient fed to 
farmed livestock. Much of the 
disappointment that has been expressed 
about NIRS is due to a lack of 
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understanding of the ‘universal’ NIRS 
model concept. It is also important to 
clarify here that to build a ‘universal’ 
model is not easy; it could take years, and 
needs European research collaboration, 
good justification and the support of 
interested official bodies. This is the type 
of work carried out in WP5 in the 
STRATFEED project.  

3. Results  

The WP5 activities began with designing 
and writing the protocols for spectra 
collection, standardisation and transfer by 
NIRS, undertaken by SAC. These 
protocols are available on the private 
STRATFEED website.  

3.1 NIRS instrument network 

3.1.1 The ISI Standardisation Set Box and 
the Z score spectra transform 

For instrument cloning, a standardisation 
box consisting of 30 sealed cups of 
agricultural materials (ISI set) was used 
(Table 1). The box was circulated among 
the partners, with each one following the 
protocol designed for checking the 
instrument performance before conducting 
duplicate (or more) scans until the spectra 
were closely matched. Standardisation files 
to match each instrument were thus 
constructed. These files would permit 
spectra from the partners’ laboratories to 
be brought together for developing 
calibration models. 

 
Table 1: ISI Standard Set (box). Samples in bold indicate animal by-product meal. 

1 barley 7 hay 13 fish meal 19 MBM 25 small grain  
2 soy hulls 8 soy meal 14 fresh forage 20 wheat 26 sorghum 
3 brewer grain 9 cotton meal 15 gluten feed 21 High 

protein feed 
27 whole soy  

4 concentrate 10 distillers  16 gluten meal 22 oats 28 soy meal 
5 corn grain 11 feather 

meal 
17 hay 23 poultry BP 29 Compound 

feed 
6 corn silage 12 mixed feed 18 hay 24 coffee BP 30 wheat 

 

 

This set of 30 animal feeds and feed 
ingredients were presented as sealed 
standard surfaces in all six of the scanning 
instruments (SAC, CRA-W, LAGC, 
RIKILT, UCO and NUTRECO), providing 
the opportunity to survey the large 
variation among the specimens. The 
specimens would be expected to show  the 
typical variation encountered universally in 
animal feed and feed ingredients. The ISI 
set is thus a suitable model to study. It 
consists of 26 plant-based feeds and 4 
animal by-product meals – feather meal 
(#11), fish meal (#13), MBM (#19) and 
poultry meal (#23). 

When the spectra of all 30 samples were 
used to create Principal Component scores 
(PCs), it was found that a minimum of 8 
PCs were required to explain 98% of the 
variance in the spectra (1100–2500nm; 
2,12,2,2 math). These 8 PCs were then 
used to calculate multivariate ‘distances’ – 
Global H (GH) statistics. This was done 
using either the mean of all 30 specimens 
as the centre, or MBM, fish meal or 
poultry meal individually as the centres. 
The GH distances are shown in Table 2. 
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Table 2: GH distances of the 30 samples in the ISI set. GH values >3 are in red. 
Centre:  MEAN of all ISI 30 MBM #19 FISH MEAL #13 POULTRY MEAL#23 
position sample# GH sample# GH sample# GH sample# GH 

1 3 0.103 19 0 13 0 23 0 
2 20 0.17 23 2.966 23 2.315 3 0.739 
3 29 0.301 18 3.155 3 2.629 29 0.967 
4 1 0.314 17 3.244 14 2.645 11 1.019 
5 12 0.321 20 3.397 9 2.649 12 1.149 
6 17 0.341 30 3.42 20 2.758 20 1.196 
7 4 0.381 3 3.531 4 2.902 4 1.251 
8 7 0.383 9 3.538 17 3.092 8 1.371 
9 6 0.459 4 3.541 7 3.406 1 1.383 

10 8 0.496 7 3.548 5 3.414 28 1.407 
11 28 0.527 26 3.694 30 3.42 22 1.415 
12 9 0.54 15 3.765 6 3.433 17 1.419 
13 5 0.557 1 3.982 28 3.457 6 1.462 
14 18 0.592 25 4.021 8 3.485 7 1.471 
15 15 0.619 6 4.043 29 3.528 15 1.521 
16 22 0.658 8 4.089 18 3.547 5 1.568 
17 23 0.703 28 4.136 12 3.554 24 1.591 
18 25 0.718 5 4.163 1 3.596 9 1.638 
19 14 0.973 29 4.171 26 3.635 18 1.644 
20 26 1.119 14 4.201 11 4.032 10 1.7 
21 30 1.142 24 4.218 15 4.074 25 1.745 
22 24 1.183 21 4.218 22 4.103 14 2.2 
23 21 1.205 12 4.224 16 4.147 13 2.315 
24 10 1.628 11 4.51 25 4.273 21 2.407 
25 16 1.958 22 4.736 27 4.484 26 2.416 
26 11 2.099 16 4.943 10 4.639 16 2.467 
27 2 2.386 10 4.976 21 4.789 27 2.602 
28 27 2.46 27 5.428 2 4.913 30 2.694 
29 13 2.632 2 6.17 24 5.165 19 2.966 
30 19 3.03 13 6.866 19 6.866 2 3.37 

GH calculated from 8 Principal Components; 1100–2500nm; 2,12,2,2 math; no scatter correction  
 
It can be seen that MBM (#19), followed 
by fish meal (#13), were farthest from the 
mean of all 30 feeds with GH values, at 
3.03 and 2.63, respectively. The GH values 
can be thought of, somewhat incorrectly, 
as multivariate versions of a standard 
deviation. GH values  > 3.0 are considered 
outliers and are in red. When MBM is 
taken as the centre with a zero value, fish 
meal is the most remote spectrum 
(GH=6.87), and poultry meal ((#23) is its 
closest neighbour (GH=2.97). Nearly all 
feed specimens have a GH value greater 

than 3 relative to MBM. When fish meal is 
taken as the centre with a zero value, 
MBM is the most remote spectrum 
(GH=6.87), and poultry meal is its closest 
neighbour (GH=2.32). It can be concluded, 
therefore, that both MBM and fish meal 
are not only markedly different from all 
other feeds and feed ingredients, but also, 
and more importantly, very different from 
one another. 

This is because mammalian, avian and fish 
by-products are rich in lipid, protein and 
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bone but almost devoid of any 
carbohydrate, such as starch or cellulose, 
that constitutes the bulk of plant matter. 
The reasons why MBM should differ so 
markedly from fish meal are more difficult 
to explain. Fish meal is cooked gently at 
ambient pressure, with the temperature 
never exceeding 100ºC. MBM is pressure 
cooked at 133ºC, 3 bars for 20 minutes, 
which greatly denatures protein and forms 
Maillard products, reported to cause 
changes in infrared spectra [2]. Because 
fish meal and MBM are so different, it 
should be possible to detect MBM in fish 
meal by infrared spectra, as shown by 
Murray et al. [9]. Poultry meal  is more 
problematic because it clusters more 
closely with the 26 plant-based feeds and is 
the nearest neighbour to both fish meal and 
MBM, albeit at a considerable GH distance 
(2.32 and 2.97, respectively). 

An effort was made to identify the 
underlying spectral differences that may 
explain why processed animal protein 
(PAP) differs from plant-derived feed and 
feed ingredients, and how PAP from 
different species (mammal, bird and fish) 
could be distinguished by their reflectance 
spectra. Identifying the wavelength regions 
characteristic of different feeds and PAPs 
is not straightforward because of the 
ramped baseline offset resulting from 
scattering. This makes subtraction of 
spectra or comparison of spectra subjective 
and prone to error. A new approach was 
developed during the STRATFEED 
project. Called Z score spectra, it permits 
spectra to be transformed and compared. 

The mean and standard deviation of the 26 
ISI plant-based feeds was used to centre all 
30 of the ISI specimen spectra around this 
mean, so that the spectrum of the mean 
plant-based feeds lay along a zero line on 
the wavelength axis. All the individual 
spectra were then transformed into positive 
and negative departures from the mean, but 
scaled in units of the standard deviation. 
This form of scaling is called 'Z score' – a 

technique often used to re-scale 
measurements. Z score is another name for 
the standard normal variate. It is calculated 
from: 

Z λ = (sample λ - mean λ )/ SDλ 

Using this plotting method allowed 
identification of wavelength bands that 
were unique to the 4 animal by-product 
meals and to MBM in particular. While 
feather meal and fish meal were relatively 
distinct from MBM, poultry by-product 
meal was much less well differentiated 
from MBM. This suggests that poultry 
meal may be less easily distinguished from 
MBM by reflectance. This experiment 
identified wavelengths that could be used 
to detect MBM (e.g., 1728 nm region of 
the -CH- stretch first overtone and 2034 
nm arising from amide features of 
denatured protein). 

The problem with detecting and 
quantifying MBM stems from the great 
diversity of plant and animal material that 
constitute ‘feed’ and of the mammalian 
slaughter by-products known as MBM. 
This is further complicated by rendered 
animal fat and fish meal being allowed in 
feed for certain species only. Most 
previous analytical experience in NIRS has 
been in determining the composition of a 
narrow range of feeds, such as cereal or 
forage.  Both MBM, the analyte to be 
detected and the feed matrix can be 
visualised as two diffuse clusters. There 
are two kinds of detection errors:  

- False negatives that risk banned 
material entering the food chain. 

- False positives that incorrectly flag up 
concern requiring referral / rejection. 

At the boundary between uncontaminated 
and slightly contaminated feed there will 
be uncertainty and the possibility of not 
detecting accidental trace contamination. 
However, blatant fraud contamination 
usually exceeds 10% inclusion. For this 
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reason 9% (w/w) was selected as the upper 
limit for WP5 in artificial mixtures. 

Figure 1 shows the Z score spectra of the 
30 samples in the ISI set, with the 26 plant-
based feeds shown in green. In contrast, 
the four animal by-product meals are 
shown in different colours: blue for the fish 
meal, dark pink for the poultry meal, pale 

pink for the feather meal, and red for 
MBM. It is clear that in animal by-product 
meal there are regions that are distinctly 
different from plant-based feed. As noted 
earlier, Z score spectra are scaled in units 
of ± standard deviation. The Z score 
spectra for the four types of ISI animal by-
product meal are shown in Figure 2. 

 

Figure 1: Z score spectra of the 30 ISI standardisation samples. Plant-based feed in green, 
fish meal in blue, poultry meal in pink, feather meal in pale pink, and MBM in red. 
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Figure 2: Z score spectra of four types of ISI animal by-product meal, showing unique 
wavelengths. 
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Figure 3: Z score spectra of animal by-products relative to MBM defined as zero. 
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Figure 4: Two wavelength discriminants for animal meal vs vegetable feed. 

 
Figure 3 shows Z score spectra of three 
types of ISI animal-tissue meal calculated 
relative to sample 19 (MBM), the Z score 
being calculated as Zλ = (sampleλ - 
MBMλ)/SDλ. The MBM thus lies along the 
zero line to show wavelengths where 
MBM clearly differs from other types of 
animal meal. 

Figure 4 shows a two-wavelength (1728 
nm vs 2034 nm) plot that best distinguishes 
fish meal from MBM and from all the 
other 28 ISI standard specimens. In this 
plot, MBM and fish meal are widely 
separated from each other and from the 
cluster of 26 plant-based feeds. However, 
the plant-based feed cluster, being very 
diverse in range, is still quite diffuse, 
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covering a relatively wide area. This two-
dimensional plot shows clearly the 
problem of detecting MBM in all types of 
feeds. Scaling the levels of MBM present 
in a feed as a numerical 'distance' score 
from the centre of this cluster will cause 
uncertainty because of the unknown 
position in the cluster of the 
uncontaminated background feed matrix. 
This may be described as the 'zero location 
error'. Thus, unless more additional 
explanatory wavelengths are able to 
‘shrink’ this cluster, low levels of MBM 
will be more difficult to detect. 
Alternatively, if the all feeds were 
restricted to a much narrower subset (e.g., 
only ruminant feed, or feeds from only one 
factory), better discrimination could be 
possible, with less uncertainty at low 
levels. 

This concept explains why macroscopic 
NIRS is best applied within the feed 
industry in individual factories where an 
established product spectra library with a 
timeline, running mean and standard 
deviation (SD) can act as a basis for 
detecting suspect specimens among a more 
restricted range of products. In contrast, 
microscopic NIRS spectra of individual 
feed particles offers advantages because 
individual particles of MBM give the 
spectrum of 100% MBM.  

3.1.2 Cloning  instruments 

A European NIR Spectrometer Network 
was created to facilitate the merging of 
spectral libraries of MBM and feed 
specimens into one large spectral library, 
in order to harmonised feed evaluation 
using shared common calibration models.  

To transfer the NIRS spectra and equations 
between the STRATFEED project’s NIRS 
instruments, the standardisation algorithm 
of Shenk and Westerhaus [11,13] available 
in WinISI software (ver. 1.5) [7]  was used. 
The standardisation box described earlier 
was analysed in duplicate in five 
instruments at WP5’s partner laboratories, 

following the established protocol. This 
protocol tries to cover all the factors that 
could influence this procedure, such as 
laboratory environment and instrument 
working conditions. With these data, 
standardisation matrices (STD files) were 
developed.  

The results of the standardisation were 
evaluated by comparing the average root 
mean square of differences corrected for 
bias (RMS[C]), at n wavelengths, between 
spectra obtained in the master (CRA-W) 
and satellite instruments before and after 
standardisation. 
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where ya and yb are the log(1/R) 
values of two spectra at a given 
wavelength and n is the number of 
wavelengths used, that is 700 (1100-
2500 nm, every 2 nm).  

All the spectra scanned on the master 
instrument (N = 30) were compared with 
the corresponding spectra scanned on the 
satellite instruments using the WinISI 
software Clone program [7], following the 
methods developed by Shenk and 
Westerhaus [12, 13]. 

From Table 3 it can be seen that RMS(C) 
values between spectra obtained after 
standardisation were similar to those 
normally encountered by scanning samples 
in duplicate in one instrument (i.e., 500–
700). 

To demonstrate the performance of the 
network, a set of 9 commercial feed 
samples from set A-21 were analysed in 
the five NIR instruments described earlier. 
These samples, provided by the 
STRATFEED sample bank, were scanned 
in standard ring cups, apart from the 
LAGC and SAC instruments where 1/4 
rectangular cups and 55 mm-diameter 

Page 8 



WP5 : The STRATFEED NIRS method 

round cups, respectively, were used. The 
spectra obtained were predicted using an 
NIR equation to quantify the percentage of 
MBM in compound feed by UCO with the 
set qn-1, to be described later (range: 0.0–

34.85%; SD=5.30%; standard error of 
cross validation [SECV]=0.84%; R2=0.97). 
In this case, the UCO instrument was used 
as master.  

 

Table 3. RMS(C) between spectra before and after standardisation (n = 30), using CRA-W 
instrument as master. 

NIR instrument RMS(C) before 
standardisation 

RMS(C) after 
standardisation 

SAC 3854 368 
LAGC 15475 1114 
NUTRECO 9733 701 
UCO 2316 503 
RIKILT 4727 359 

 

Table 4: Statistics for evaluating five NIR instruments, before and after standardisation, using 
a validation set  and an NIR equation for predicting the %MBM added to feed. 

 Master Satellites 

 UCO CRAWbefore CRAWafter NUTbefore NUTafter LAGCbefore LAGCafter SACbefore SACafter

2.32 2.52 1.91 -2.46 1.88 3.20 2.59 4.81 3.85 
SD 2.61 2.44 2.69 2.43 2.56 2.50 2.68 2.97 3.08 
SED(c) 0.57 0.41 0.56 0.54 0.57 0.86 0.85 0.82 0.93 
Bias -0.27 -0.20 0.41 4.78 0.43 -0.88 -0.27 -2.49 -1.53
R2 0.97 0.98 0.96 0.96 0.95 0.89 0.90 0.93 0.92 
Av. H 1.73 3.49* 2.27 6.51 1.89 4.76 1.83 3.31 2.27 

aSEP(c) value 

 
Table 5: NIRS predicted values (%MBM) of the validation set, before and after 
standardisation. 

Sample 
UCO 

master 
CRAWbefore CRAWafter Nutbefore Nutafter LaGCbefore LaGCafter SACbefore SACafter

102 1.3 1.6 0.7 -3.8 0.8 4.0 3.3 4.2 3.2 
103 -0.1 -0.4 -1.7 -5.5 -1.5 0.7 -0.6 0.7 -0.5 
111 3.1 - - - - 4.6 4.2 4.3 3.3 
112 3.5 4.3 3.8 -0.7 3.7 4.7 4.2 7.1 6.3 
113 5.2 5.1 4.9 -0.2 4.3 5.8 5.5 8.5 7.7 
114 2.9 2.7 2.0 -2.1 2.2 2.8 2.2 4.6 3.6 
115 0.4 1.1 0.7 -3.4 0.9 1.4 0.9 3.0 2.1 
116 -0.7 -0.3 -0.8 -5.3 -1.1 -0.4 -1.0 1.9 0.8 
120 6.3 6.1 5.7 1.1 5.7 6.6 6.1 8.5 7.6 

- Error in spectral data 
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The statistics obtained in the evaluation of 
the instrument cloning are shown in Table 
4. Before the standardisation, the bias 
values ranged from -2.49 to 4.78; after 
standardisation they fell to between -1.53 
and 0.43. The H values ranged from 3.31 
to 6.51 before standardisation; after 
standardisation they ranged from 1.83 to 
2.27,showing a convergence in instruments 
after cloning.Another useful statistic used 
to evaluate the success of cloning was the 
H distance [12], which is analogous to the 
Mahalanobis distance. It provides 
information on the predicted values of the 
same samples scanned by the satellite and 
by the master. The results obtained by 
using the H value confirm those obtained 
by using the RMS(C) and bias values. The 
H values obtained in the satellite 
instruments reach values similar to those 
found in the master instrument. 
The NIRS predicted values of the 9 feeds 
analysed in the five NIR instruments are 
shown in Table 5. 

The results show that, after cloning, the 
agreement between predicted values in the 
master and the satellite instruments was 
improved for each instrument in the 
network. There was a fall in bias values in 
all the satellite instruments, apart from the 
one at the CRA-W laboratory. This shows 
that the CRA-W spectrophotometer is very 
similar to the UCO instrument, and that in 
this case the standardisation had hardly any 
influence on the results. After 
standardisation, the reduction in the bias 
values for the NUT instrument was very 
marked. Thus, as shown in Table 5, before 
standardisation in the NUT instrument, 
samples with MBM (i.e., samples 112 and 
113) were predicted to be free of MBM. 
After standardisation, however, the 
predictions were correct and were very 
similar to those of the master instrument 
for the same samples. 
In general, the results showed that the 
STRATFEED NIRS network enables all 
instruments to produce harmonised results, 
which is very important for demonstrating 

that NIRS could be used as a standardised 
method for implementing the ban on 
animal meal protein in compound feed 
throughout Europe. 

3.2 Development and validation of NIRS 
prediction model  

3.2.1 Detection and quantification of 
animal-origin meal in compound feed 

The WP5 partners agreed to work with 
various spectral libraries and to study 
various strategies of NIR calibration.  

The libraries used to develop the prediction 
models were the ‘real-process’ sample set 
(set B-NIRS 3) and the ‘experimental’ 
sample sets (sets B-NIRS 1 and 2 – 
Centurion C and Trojan T). Set B-NIRS 3 
consisted of commercial compound feed 
supplied by the industry and stored in the 
STRATFEED sample bank; sets B-NIRS 1 
and 2 consisted of samples prepared in the 
laboratory (preparation details are given in 
the WP2 part on ‘Sample Bank and Sample 
Preparation’). Reflectance spectra were 
acquired and used to form models to detect 
the presence of mammalian tissue. All the 
samples were analysed, in ground form, in 
the spinning and/or transport module in the 
partners’ various instruments. 

The four methods used to detect MBM in 
feed using the ISI software were:  

1. Stepwise Multiple Linear Regression 
(SMLR), using a few selected 
wavelengths 

2. Modified Partial Least Squares 
(MPLS) regression, using nearly all 
wavelengths  

3. 'Local', using a database of spectra and 
selecting in the 'neighbourhood' of an 
unknown 

4. Discriminant, assigning unknowns to 
two (or more) files ('clean' or 
’contaminated’).  

All these methods were explored using 
various mathematical pre-treatments, 
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particularly the second derivative of log 
reciprocal reflectance (log1/R). The second 
derivative is calculated by a running 
difference between three segments (A, B 
and C) separated by two gaps. The second 
derivative is calculated by (A-B)-(B-C) = 
A - 2B + C. The derivatives most often 
used in the STRATFEED project were 
2,12,2,2 and 2,5,5,1 where the first number 
was the derivative order (2nd

 in this case); 
the second number was the gap in 
nanometres; and the third and fourth 
numbers referred to the number of data 
points in the first and second smoothing. 
Second derivatives can be easily related to 
the wavelength space while bringing into 
focus the local features of a spectrum. 
Additionally, the software offers six 
combinations of two types of scatter 
correction – SNV-DT and MSC– which 
may be applied before creating the 
derivative [1,8]. 

Previous UCO research work showed how 
NIRS could be used to control and detect 
the illegal addition of animal-origin meal 
in compound feed [5,6]. This work 
highlighted the importance of calibration 
set characteristics, such as set size, type of 
samples ('real-process' versus 
experimental), the presence of different 
ingredient matrices and the variability of 
ingredients used to produce a given 
formula. These issues could be 
determining factors for improving the 
performance of the equations developed. 

Therefore, at the start of the project, it was 
decided that UCO would work with the 
‘real-process’ sample set and that the other 
partners would work with the experimental 
sample set (Centurion C and Trojan T). 
Ultimately, both sets would be merged to 
develop the ‘Global NIR Calibrations’. 

 

3.2.1.1 Calibration using the experimental 
sample sets (sets B-NIRS 1 and 2 – 
Centurion C and Trojan T ) 

 

3.2.1.1.1 Quantitative strategy 

3.2.1.1.1.1 Calibration with set B-NIRS1 -  
(setC Centurion) 

Set C was the first mixing experiment in 
WP5 of the STRATEFEED project. The 
procedure for preparing this set is 
described in the WP2 part on ‘Sample 
Bank and Sample Preparation’. 

Set B-NIRS1 produced 900 spectra 
(triplicate re-packed scans). There were 
225 scans at both the 0% and 9% levels, 
and 105 at each of the 1, 3, 5 and 7% 
levels, giving a reasonable balance across 
the concentration range.  

Each of the three laboratories involved 
(SAC, LAGC and CRA-W) scanned 
samples with three re-packed scan 
replicates. Spectra were collected by SAC, 
where clone files were applied to 
standardise to the CRA-W Foss 6500 
monochromator. Both standardised and 
unstandardised spectra were used in 
modelling. 

Calibration models using MPLS regression 
on set C usually ran to 16 terms, producing 
the data shown in Table 6. SEC values 
slightly greater than 1% MBM in feed 
were obtained for each of the three 
laboratories. However, when these files 
were combined, the SEC values almost 
doubled and the R2 values fell from 0.9 to 
0.7. Standardisation of the files brought no 
benefit. Loss of performance on combining 
the partners’ files was probably due to 
increasing diversity among the background 
feeds accumulated. 

Calibrations using ‘Local’ performed 
slightly better than MPLS. The combined 
file did not show the same degraded 
performance as MPLS because ’Local’ 
does not attempt to produce a model across 
samples. Rather, it selects a set of nearest 
neighbours from the database to perform a 
calibration for each sample likely to be 
encountered in future.  
 

Page 11 



WP5 : The STRATFEED NIRS method 

Table 6a: Results for set B-NIRS1 
MPLS 2,12,2,2 (not standardised) 

RSQ SEC SECV 1-VR FILE 

0.859 1.23 1.297 0.834 C-SAC 

0.899 1.32 1.474 0.865 C-CRAW 

0.901 1.00 1.127 0.863 C-LAG 

0.728 1.93 1.975 0.701 CENT-ALL 

 
Table 6b: Results for set B-NIRS1 

MPLS 2,12,2,2 (standardised) 
RSQ SEC SECV 1-VR FILE 

0.859 1.229 1.297 0.834 #C-SAC 

0.909 1.252 1.431 0.873 #C-CRAW 

0.901 1.000 1.046 0.901 #C-LAG 

0.730 1.922 1.940 0.711 #CENT-ALL 

 
Table 6c: Results for set B-NIRS1 

Local 2,12,2,2 (not standardised) 

*LOCAL only attempts to predict specimens for which it has enough neighbours 
 

Npred Total* SEP BIAS SEP(C) SLOPE RSQ GH NH FILE 

427 450 1.116 0.03 1.117 1.110 0.884 1.009 0.178 SAC 

193 270 1.003 0.10 1.000 1.109 0.930 1.082 0.074 CRAW 

147 180 0.873 -0.11 0.869 1.021 0.912 1.139 0.094 LAG 

797 900 1.003 -0.01 1.003 1.068 0.919 1.087 0.133 ALL 

Table 6d: Results for set B-NIRS1 
Local 2,12,2,2 (standardised) 

Npred Total* SEP BIAS SEP(C) SLOPE RSQ GH NH FILE 

427 450 1.094 0.002 1.095 1.113 0.889 1.01 0.178 #SAC 

245 270 1.006 0.060 1.006 1.063 0.939 1.06 0.069 #CRAW 

148 180 0.852 -0.09 0.849 1.032 0.915 1.16 0.094 #LAG 

820 900 1.163 0.012 1.164 1.055 0.895 1.12 0.135 #ALL 

 

The oily texture of MBM made successful 
mixing at best difficult and at worst almost 
impossible. The partners greatly 
underestimated the difficulties of this 
apparently simple preparation task. 
Containers more than a third full cannot be 
properly mixed by stirring and/or shaking. 
In some cases, attempts to ensure good 
mixing  led to agglomeration into ‘prill’ 

balls, causing segregation. Subsequent 
performance of calibration and validation 
models was almost certainly diminished by 
inadequately mixed and dispersed oily 
MBM. Replicated (X3) re-packing and re-
scanning did not always show up mixing 
defects, possibly because the scanned 
aliquots were too small in mass. 
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3.2.1.1.1.2 Calibration with set B-NIRS2 -  
(set T Trojan) 

Set B-NIRS2 was the second feed mixing 
experiment. The aim was to expand the 
scope of set B-NIRS1 by introducing more 

‘new’ feed samples and to offer sufficient 
numbers to provide better cross-validation 
opportunities. Details on set B-NIRS2 are 
given in the WP2 part ‘Sample Bank and 
Sample Preparation’.  

 
 
Table 7a: Results for set B-NIRS2 

MPLS 2,12,2,2 (not standardised) 
RSQ SEC SECV 1-VR FILE 

0.585 2.675 2.741 0.529 T-SAC 

0.872 1.48 1.558 0.848 T-CRAW 

0.991 0.68 0.716 0.989 T-LAG 

0.833 2.251 2.284 0.823 TROJ-ALL 

 
Table 7b: Results for set B-NIRS2 

MPLS 2,12,2,2 (standardised) 
RSQ SEC SECV 1-VR FILE 

0.582 2.685 2.753 0.525 #T-SAC 

0.870 1.488 1.565 0.846 #T-CRAW 

0.991 0.690 0.728 0.989 #T-LAG 

0.835 2.239 2.292 0.822 #TROJ-ALL 

 
Table 7c: Results for set B-NIRS2 

LOCAL 2,12,2,2 (not standardised) 
Npred Total SEP BIAS SEP(C) SLOPE RSQ GH NH FILE 

210 210 1.958 0.015 1.963 1.44 0.838 1.122 0.107 SAC 

392 420 1.138 -0.08 1.137 1.128 0.929 0.969 0.117 CRAW 

385 450 0.664 0.033 0.664 1.016 0.991 0.908 0.085 LAG 

989 1080 1.216 -0.01 1.216 1.06 0.952 0.96 0.097 ALL 

 
Table 7d: Results for set B-NIRS2 

LOCAL 2,12,2,2 (standardised) 
Npred Total SEP BIAS SEP(C) SLOPE RSQ GH NH FILE 

209 210 1.945 -0.02 1.95 1.418 0.835 1.12 0.11 #SAC 

393 417 1.135 -0.09 1.133 1.124 0.929 0.98 0.12 #CRAW 

386 450 0.701 0.03 0.701 1.018 0.990 0.91 0.08 #LAG 

969 1080 1.271 -0.02 1.272 1.057 0.947 0.94 0.09 #ALL 

 
Calibration models using MPLS on set B-
NIRS2 again ran to 16 terms, producing 
the data in Table 7. The performance of 

the SAC set was very poor (SEC = 2.67%), 
while the LAGC set performed very well 
(SEC = 0.68%; RSQ = 0.99). The good 
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performance of the LAGC set can be 
attributed partly to the inclusion of 
specimens with 27% MBM in the model, 
making the set bimodal, inflating R2 while 
reducing  SEC to 0.68%. Nevertheless, the 
LAGC set gave the best calibration 
statistics, indicating that good mixing and 
presentation had been achieved. SAC had 
with mite infestation problems in some 
samples, requiring heat sterilisation; this 
affected the results. 
Once again, combining three data sets led 
to degraded performance, but perhaps this 
can be explained by the poor performance 
of the SAC set. As in set B-NIRS1, the 
standardisation of files did not improve 
performance significantly.  
Some models had good calibration 
statistics, but these tended to decline when 
more diverse specimens were accumulated. 
Combining sets from the partners’ different 
laboratory instruments nearly always made 
performance worse. Calibration models 
were not robust when cross-validated with 

other independent sample sets. An 
alternative approach using the ISI ’Local’ 
procedure was also tried (Table 7d). The 
advantage of ’Local’ is that it selects a 
neighbourhood group of samples 
surrounding the unknown sample and thus 
does not depend on fitting all samples into 
one calibration model. While ’Local’ gave 
good results in calibration, it was not more 
robust; to be effective, it probably requires 
a database with a much greater number and 
diversity of samples. However, it does 
seem to be a much better procedure for 
diverse sets of samples than that offered by 
MPLS regression.  

3.2.1.1.1.3 Validation with set B-NIRS5 
(setD Decaset) 

This was the last laboratory mixture 
experiment to be performed in WP5. It was 
conducted to expand the database, to test 
performance and to provide a basis for 
validation. 

 

Table 8: NIRS predicted values for Set B-NIRS5 

Partner Code 
%MBM-Ref. 
 

 

%MBM 
NIRpred. Partner Code %MBM-

Ref. 
%MBM 

NIRpred. 

SAC 31 1.00 0.12  Rikilt 11 9 5.16 
SAC 32 0.00 -0.61  Rikilt 12 0 -3.66 
SAC 33 3.00 1.02  Rikilt 13 7 3.22 
SAC 34 0.00 0.40  Rikilt 14 0 -2.41 
SAC 35 5.00 3.22  Rikilt 15 5 6.79 
SAC 36 0.00 0.57  Rikilt 16 0 -1.05 
SAC 37 7.00 6.66  Rikilt 17 3 -1.95 
SAC 38 0.00 4.64  Rikilt 18 0 -1.64 
SAC 39 9.00 6.42  Rikilt 19 1 2.34 
SAC 40 0.00 1.93  Rikilt 20 0 -0.66 

CRAW 13C 9 5.75  LAGC 01L 0 0.40 
CRAW 18C 9 3.56  LAGC 02L 0 1.50 
CRAW 21C 3 2.23  LAGC 03L 0 -0.03 
CRAW 22C 1 1.15  LAGC 04L 3 3.31 
CRAW 24C 7 1.60  LAGC 05L 1 -0.48 
CRAW 25C 5 1.26  LAGC 06L 9 10.52 
CRAW 26C 3 1.98  LAGC 07L 0 1.72 
CRAW 27C 1 -3.69  LAGC 08L 3 4.56 
CRAW 29C 7 -10.38  LAGC 09L 5 4.28 
CRAW 30C 5 2.18  LAGC 10L 7 5.41 
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Validation was carried out using the 
Decaset prepared in the laboratory and the 
NIRS prediction model developed with the 
calibration set made up of sets B-NIRS 1 
and B-NIRS 2 (Centurion and Trojan) 
analysed by LAGC (n=630, SD=6.21, 
Mean=3.97, SECV=0.84 and R2=0.98). 
The results of this in-house validation 
procedure are shown in Table 8. From the 
40 samples, six samples were predicted as 
false positive and three as false negatives. 
Clearly, poor mixing and presentation 
played some part in those samples that 
were incorrectly assigned. Some of these 
sources of error are explained in a later 
section. 

3.2.1.1.2 Qualitative strategy 

Discriminant methods were found to be 
sufficiently useful for screening purposes, 
but no one model emerged as reliably  
robust across the data sets. With the partial 
least squares (PLS) discriminant, two files 
(‘clean’ and ’contaminated’) are used to 

form a model with the file extension .PSD. 
Unknown specimens are assigned to either 
file name, depending on which has the 
larger score. A score of 2.0 is ‘perfect 
identification’, while 1.0 is ‘no 
identification’. The sum of both scores is 
always 3.0, while a score of 1.5 in both file 
names means that the classification could 
go either way. An example is shown in  

Figure 5 for the PLS discriminant for the 
SAC set of 450 scans in set B-NIRS1. This 
model ranged from zero to 9% MBM. The 
model used 30 factors and gave the correct 
classification for all specimens. In contrast,  

Figure 6 is the combined set B-NIRS1 for 
all three partners. Of the 900 scans there 
were 29 false positives and 25 false 
negatives. Repeated patterns in the scores 
suggest bias in some background feed 
samples as the source of these 
classification defects.  
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Figure 5: PLS discriminant for %MBM in feed. SAC set B-NIRS1, 30 terms. 
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Figure 6: PLS discriminant for %MBM in feed. Combined set B-NIRS1, 27 terms. 

Table 9: PLS discriminant results for sets B-NIRS1 et 2, including the ISI box 
  False + False Negative   RSQ 
 %MBM: 0 <1 1 3 5 7 9  

Set C n samples   
CRAW 270 0 0 1 0 0 0 1 0.84 
LAGC 180 2 2 0 0 0 0 0 0.84 
SAC  450 0 0 0 0 0 0 0 0.802 
All 900 29 3 10 10 1 0 1 0.616 

Set T          
CRAW 417 2 0 2 0 0 0 1 0.814 
LAGC 453 14 2 1 1 0 0 1 0.717 
SAC  210 3 0 3 2 0 0 1 0.742 
All 1080 84 20 14 21 3 4 8 0.457 

Sets C+T          
CRAW 690 5 0 17 3 0 0 1 0.726 
LAGC 630 31 5 1 9 1 1 4 0.602 
SAC  660 22 0 9 3 1 0 0 0.616 
All 1980 258 18 24 15 4 8 9 0.337 

C+T+Box          
CRAW 778 13 0 20 4 1 0 1 0.729 
LAGC 718 61 18 8 12 0 2 5 0.507 
SAC  868 46 0 17 8 4 2 5 0.594 
All 2408 242 34 50 28 11 19 47 0.426 
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The results for the PLS discriminant for 
sets C and T alone and combined, from all  
the laboratories, are given in Table 9. The 
number of PLS terms used varied from 18 
to 30. Set B-NIRS1 gave the best results, 
with few errors even when the sets were 
combined from three laboratories. 
Combining sets led to poorer 
performances, in varying degrees. 
However, those from CRA-W showed the 
best performance when combined. Of 690 
scans, there were only 5 false positives and 
21 false negatives, and of 778 scans there 
were only 13 false positives and 26 false 
negatives. This reflects the similarity of 
background feeds used by CRA-W. 
Combining the ISI set (n=30) did not 
improve the data in the way we had 
expected. The results were nevertheless 
promising in terms of performance. 

3.2.1.1.3 Errors arising in mixture 
experiments and in NIRS calibration 

The reliable detection of MBM in feeds 
depends on finding wavelengths unique to 
MBM. To be unique, a region must show 
the largest and most significant difference 
between MBM and all other acceptable 
'clean' feeds. A compromise wavelength 
region is sought where MBM is most 
different, while all plant-based feeds are 
most similar. The Z score transform of 
spectra is an appropriate discriminant in 
this context. It maximises the distance 
between MBM and plant-based feeds while 
'shrinking' the cluster of plant-based feeds. 
Combinations of such regions may perform 
PLS discrimination. If, however, the 
background feeds are very diverse, 
forming a diffuse cluster, this compromise 
region will lead to a 'zero location error' 
that affects the low level detection of 
MBM. It also causes scatter in the 
predicted values for 'clean' feed, an error 
that is reflected in those same feeds 
augmented with MBM. 

Another problem is 'distraction'. This 
occurs because all animal by-products are 
rich in proteins and lipids. If a model 

detects proteins and lipids instead of 
MBM, then all protein- and oil-rich plant 
foods (e.g.,  maize gluten feed and oilseed) 
will show up as suspect. Maillard 
compounds generated by the high 
temperatures (133ºC) for rendering MBM 
may be the source of unique MBM 
absorption bands arising from denatured 
protein. 

The constant drawback of NIRS is 
achieving robustness in independent 
validation sets. Here, calibration (self tests) 
may appear successful, while validation 
(blind tests) may not. This arises because 
regression algorithms tend to 'force-fit' or 
‘over-fit’ the data. Overfitting is 
exacerbated by having too many terms in 
the model (including spurious correlation) 
and/or too few samples to adequately 
represent all possible future samples. 
Therefore, maximising sample numbers 
and minimising the number of terms may 
bring benefits through increased robustness 
at the expense of some loss in 
performance.  

If proportional mixtures of MBM are 
carefully prepared for several background 
plant-feed matrices, regression models can 
produce a well-fitting model with R2 
approaching 1.0 and SEC approaching 
zero. However, such models often fail on 
independent validation; they are not 
'robust'. This usually occurs because the 
independent validation set contains 
specimens not represented in the 
calibration set, and/or the number of terms 
used in the model is too great, leading to 
overfitting, where spurious correlation 
occurs. Maximising the number of samples 
while reducing the number of terms in the 
model may help through sacrificing good 
fitting in favour of increased robustness 
and wider applicability. The ‘Local’ 
procedure avoids these problems by using 
a large spectral library that is searched to 
locate a cluster of spectral nearest 
neighbours for each specimen tested, 
including unknown specimens. These 
nearest neighbours are then used to create a 
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model to test only that one unknown. This 
offers distinct advantages. However, the 
number of library specimens required may 
be very large before ‘Local’ is able to test 
the majority of future feed specimens. If 
insufficient nearest neighbours are found, 
‘Local’  does not attempt to test the 
specimen. 

Two types of poorly fitted outlier 
specimens occur: the H statistic and the t 
statistic. H statistic errors arise because 
there are 'new' background feeds in the 
independent validation set. These are 
spectrally different from those used to 
construct the model. Such H statistic 
failures in background feeds will scatter 
predicted values negatively or positively 
around zero. This 'zero location error' will 
persist when the same background feeds 
are contaminated with low levels of MBM, 
leading to a scatter of results around the 
reference value. Poorly mixed or poorly 
presented contaminated samples will 
compound this error. In contrast, t statistic 
outliers arise because of poor mixing  and 
presentation to the instrument (e.g., 
insufficient area of sample scanned or 
coarsely ground specimens). Mixing 
particulate matter with different densities 
to produce a near homogeneous 
distribution is difficult to achieve if the 
particles are very dry or oily and sticky. 
Sometimes, mechanically mixing or 
shaking  causes segregation. Mixing errors 
tend to get worse at lower levels of 
inclusion. It is clear that both outlier types 
occur in the models created in WP5 of the 
STRATFEED project. 

3.2.1.2  Calibration with the ‘real-process’ 
sample set (set B-NIRS-3) and validation 
with set A-21 

UCO worked on improving and optimising 
chemometric models by testing two 
complementary calibration strategies: first, 
the development of qualitative 
discriminant models for detecting whether 
or not a feed is contaminated with animal-
origin meal; and second, the development 

of a quantitative model to estimate the 
percentage of MBM in feeds. All these 
calibrations were performed using, first,  
the ‘real-process’ sample set of compound 
feed stored in the sample bank and then, in 
collaboration with other WP5 partners, a 
‘global calibration file’ combining both 
sets of compound feed, ‘real-process’ and 
experimental.  
An in-house validation of the models 
obtained for both strategies was carried out 
with a blind test set of nine ‘real-process’ 
compound feeds, drawn from the 
STRATFEED sample bank (set A-21). The 
% MBM in this set ranged from 0% to 6%.  

3.2.1.2.1 Qualitative strategy 

In the first strategy for developing a 
qualitative discriminant model, three 
calibration sets were tested to obtain the 
prediction equations:  

• Set ql-1, with 1,144 samples. The 
reference data for 560 of these 
samples were obtained from the 
formulation declared by the feed 
company; for the other 584 
samples, data were estimated from 
optical microscopy. 

• Set ql-2, with 663 samples. The 
reference data for this sample set 
were obtained entirely from the 
feed formulation.  

• Set q1-3, with 1005 samples. This 
set was a combination of Set q1-2 
with the experimental sample set 
(C+T) scanned on the LAGC 
instrument and standardised to the 
UCO instrument. 

MPLS regression equations were 
developed using the three calibration sets 
described above. A score of 2 was used to 
identify samples contaminated with animal 
meal and a score of 1 was used for samples 
free of animal meal. The results are shown 
in Table 10. The best results were obtained 
using the calibration set q1-2 in which all 
the samples came from ‘real-process’ 
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commercial feed where the reference data 
were obtained from the feed formulation. 
In this set, the SECV was 0.18, while in set 
ql-1 the SECV value was 0.32 and in set 

ql-3 it was 0.33. These values correspond 
to R2 = 0.87 in set ql-2, compared with 
0.57 and 0.54 in the other sets. 

 
Table 10: Calibration statistics obtained for detecting MBM in compound feed (qualitative 
strategy)* 

 Eqa set ql-1 Eqa set ql-2 Eqa set ql-3 

N 1144 663 1005 
Mean 1.45 1.54 1.46 
Range 1.00–2.00 1.00–2.00 1.00–2.00 
SD 0.50 0.50 0.50 
SECV 0.32 0.18 0.33 
R2 0.57 0.87 0.54 

* These values are discriminant scores, not % MBM 
 
The classification of the validation set as 
contaminated or free of MBM using these 
qualitative models is shown in Table 11. 
There were two types of classification 
errors: false positives, where MBM-free 
specimens are classified as contaminated, 
and false negatives, where contaminated 
specimens are classified as free of MBM. 
As shown, when the model developed with 
set ql-1 was validated with the 9 blind 
compound feeds, two mis-classified 

samples occurred: sample 103 as false 
positive and sample 114 as false negative. 
For the model performed with set ql-2, 
only sample 114 was mis-classified (false 
negative). The global calibration developed 
by merging ‘real-process’ and 
experimental specimens classified all 9 
validation samples correctly; this could be 
explained by the greater number of feed 
samples with low MBM levels included in 
this training set. 

 

Table 11: Detection of MBM contamination in compound feeds for the validation set using the 
calibrations developed with sets ql-1, ql-2 and ql-3 (qualitative strategy). 

NIRS predicted values 
Sample %MBM 

reference Eqa set ql-1 Eqa set ql-2 Eqa set ql-3 
102 0.9 + + + 
103 0.0 + - - 
111 2.5 + + + 
112 2.5 + + + 
113 4.5 + + + 
114 2.5 - - + 
115 0.0 - - - 
116 0.0 - - - 
120 6.0 + + + 
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3.2.1.2.2 Quantitative strategy 

For the quantitative strategy, to predict the 
%MBM in compound feed, three 
calibration sets with different ranges of 
%MBM were studied. 

• Set qn-1, with 630 samples, using 
the total range of available samples 
(0.0–34.85%) 

• Set qn-2, with 531 samples, using a 
restricted range (0.0–8.0%) 

• Set qn-3, with 1005 samples. This 
set is a combination of set qn-1 and 
the experimental sample set (C+T) 
scanned on the LAGC instrument 
standardised to the UCO 
instrument. 

The %MBM declared by the feed company 
was used as reference data. For the 
experimental samples, the reference data 
were the %MBM added to the compound 
feed to produce the mixture. MPLS 
regression equations were developed using 
the calibration sets described earlier. 

Several derivative treatments were tested. 
In all cases, the NIR spectral range (1100–
2500nm) and the SNV and Detrend 
methods for scatter correction were 
selected to perform the calibrations. The 
software WinISI (ver. 1.05) [7], was used. 
The statistics used to select the best 
equations were the coefficient of 
determination (R2), the SECV and the RPD 
statistic [14]. 

The MPLS calibration statistics for 
predicting %MBM in compound feed are 
shown in Table 12. The values obtained 
for SECV, R2 and RPD confirm the 
accuracy of the calibrations developed for 
screening a large collection of samples. 
However, the predictive performance of 
the equations may be improved by better  
coverage of the range with samples of low 
%MBM. It is therefore clear that, with the 
available samples, it is more appropriate to 
use the equation developed with the 
calibration sets qn-1 or qn-3 (see RPD 
values), which use the total available range 
of %MBM. 

 
Table 12: Calibration statistics obtained with three calibration sets for predicting %MBM in 
compound feed (quantitative strategy). 

%MBM Set qn-1 Set qn-2 Set qn-3 

Range 0.00–34.85 0.00–8.00 0.00–34.85 
Mean 3.31 1.68 3.24 
SD 5.30 2.33 5.50 
SECV 0.84 0.72 0.94 
R2 0.97 0.91 0.97 
RPD 6.30 3.24 5.85 
n 630 531 1005 

 
For the validation set, the values predicted 
for each model are shown in Table 13. The 
best prediction values were obtained with 
the calibration set qn-1. As shown, the SEP 
value obtained with the calibration 
developed with set qn-1 (0.59%) is half 
that obtained with set qn-2 (1.18%), and 

also lower than that obtained with set qn-3 
(0.95%).  
Most of the samples in the calibration sets 
used were from Spanish feed companies; 
the validation samples 102, 103 and 111 
were from Belgium. As indicated by the H 
values (H < 3), all the validation samples 
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could be predicted without extrapolation of 
the models, apart from sample 103, which 
has a rather different spectrum from the 
others shown by high H values (Table 13).  
For the calibration developed with sets qn-
1 and qn-2, only sample 115 was predicted 
to be a false positive. The other eight 
samples were correctly predicted. 
Nevertheless, with the third equation 
performed using set qn-3, the %MBM in 

sample 115 was correct; in this case, only 
sample 103 was incorrectly predicted. 
Given that sample 103 had an 
exceptionally high GH statistic, well above 
the critical value of 3.0, it is clearly 
spectrally very different and cannot 
reliably be predicted by the model. The 
model did, however, successfully predict 
the remaining eight samples.  
 

 
Table 13: Prediction of the validation set using the three calibrations developed (quantitative 
strategy). 

Sample 
%MBM 

Reference 
Eqa  Set qn-1 Eqa Set qn-2 Eqa Set qn-3 GHset qn-1 GHset qn-2 GHset qn-3

102 0.9 1.3 2.3 0.6 1.573 1.464 0.813
103 0.0 -0.4 -0.1 0.6 6.083* 5.745* 5.854*
111 2.5 3.1 2.0 3.8 1.724 1.462 0.890
112 2.5 3.5 3.3 3.7 0.307 0.347 0.229
113 4.5 5.2 2.8 4.4 1.280 1.324 1.239
114 2.5 2.9 1.9 3.5 0.697 0.750 0.798
115 0.0 0.4 0.4 -0.1 0.784 0.722 0.513
116 0.0 -0.7 -1.9 -0.1 1.485 1.514 1.161
120 6.0 6.3 4.4 7.9 1.629 2.124 1.119

SEP 0.59 1.18 0.95  

Bias -0.31 0.42 -0.60  

 
It must be stressed that the models 
developed with ‘real-process’ samples 
should be validated with the same type of 
samples, because the processing conditions 
in compound feed manufacture are such 
that  the final product is very different 
from the artificial mixtures prepared in the 
laboratory. This was corroborated by other 
validations of the qualitative and 
quantitative prediction models carried out 
with the following sets: 

• 54 compound feeds (28 commercial 
and 26 prepared in laboratory) 
supplied by the co-ordination team 
for validation.  

• 29 commercial compound feeds 
supplied by a Spanish feed plant, 
with the %MBM used in the 
formulation. 

• 10 compound feeds in the SAC 
‘Decaset’, supplied by SAC as blind 
samples. 

• 10 compound feeds, in the RIKILT 
‘Decaset’, supplied by RIKILT as 
blind samples.  

Some of these results were presented at the 
International Symposium on ‘Food and 
feed safety in the context of prion diseases’ 
held from 16 to 18 June 2004 in Namur, 
Belgium. 

3.2.2 Species identification in animal by-
products 

UCO has also developed NIRS equations 
to predict the percentage of MBM derived 
from tissues of various animal species 
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(cattle, ruminants, pigs and poultry) in 
MBM samples.  
On 3 October 2002 the EU adopted 
Regulation EC No. 1774/2002 [3], 
governing Animal By-Products (ABPs). In 
Article 21 the regulation seeks to address 
the possible risk inherent in recycling 
potential infectivity because of the absence 
of a barrier within species, as well as to 
exclude cannibalism, which may arise 
from within-species recycling. Because of 
that, there is an urgent need to develop 
methods of analysis which allow 
identification of the animal species in 
ABPs and which could overcome the 
limitations of current analytical methods.  
For this application, two strategies were 
tested: the first was quantitative, relating to 
predicting  the percentage of each animal 
species in MBM samples, and the second 
was qualitative, relating to the performance 
of models for classifying the samples as 
‘single species specimens’ (pig, poultry, 
cattle) or ‘multi-species mixtures’.  

The samples used to develop these NIRS 
prediction models were supplied by a 
Spanish rendering plant (set B-NIRS4). 
Each sample was identified according to: 
sample number; date and time of 
processing; raw materials used (percentage 
of tissue of each animal species); 
sterilisation conditions (temperature, 
pressure and time); and the name of the 
person in charge of plant quality control. 
The calibration set was scanned unground, 
using the natural product cup, in a Foss 
NIRSystems 6500 scanning 
monochromator equipped with a transport 
module. 
For quantitative purposes, MPLS equations 
were developed to predict the percentages 
of poultry, pig, cattle, ruminant and non-
ruminant in MBM specimens. Various 
mathematical approaches (derivatives and 
scatter correction) were used. The best 
results for each constituent are shown in 
Table 14. 
 

 
Table 14: Prediction statistics for the percentage of each animal species in MBM. 

Constituent N Mean SD Range SECV R2 RPD 
% Poultry meal 204 41.41 35.44 0–100 9.51 0.93 3.73 
% Pig meal 189 47.38 31.85 0–100 8.2 0.93 3.88 
% Cattle meal 192 9.05 7.75 0–25.63 3.04 0.85 2.55 
% Ruminant meal 190 9.37 7.79 0–25.63 2.9 0.86 2.69 

% Non-ruminant meal 188 90.85 7.94 74.4–
100 3.12 0.85 2.54 

 
 
For the qualitative approach, a PLS2 
discriminant analysis was used. 
Discriminant models were developed using 
a training set of 103 samples: 78 of which 
were in  Class I (ruminant, made up of 
mixtures of different percentages of cattle 
and other species meal), and the remainder 
were in Class II (non-ruminant, made up of 
pure pork and pure poultry meals and one 
mixture of pork and poultry meal). All the 
samples in the non-ruminant class in the 
training and validation sets were correctly 

classified (Table 15), but one sample in 
the ruminant class was apparently 
classified incorrectly. However, a 
subsequent PCR analysis in an external lab 
(CRA-W) confirmed that this ‘mis-
classified’ sample also contained non-
ruminant DNA. The best PLS-DA Type I 
model was applied to the validation set of 
16 samples. Table 15 shows that all of 
them were classified correctly. 
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Table 15: Classification results for species identification (ruminant vs non-ruminant) in 
MBM. 

Training Set 
Ruminant (n=78); Non-ruminant (n=25) 

Validation Set 
Ruminant (n=8); Non-ruminant (n=8) 

Classified as... Classified as... 
Belong to... 

Ruminant Non-ruminant
Belong to... 

Ruminant Non-ruminant 
Ruminant  24 1 Ruminant 8 0 

Non-ruminant 0 78 Non-ruminant 0 8 

 
These preliminary results show that NIRS 
technology may allow the animal species 
present in animal protein by-products to be 
identified. However, more work is needed 
to build a sample and spectral data bank 
with specimens representing the variability 
found in all types of rendered animal 
protein meals.  
Simultaneously, and linked to this 
research, UCO is working on the 
application of NIRS technology for 
characterising animal fats. Work is in 
progress to collect authenticated samples to 
develop robust NIRS prediction models 
which can authenticate any type of 
rendered fat produced in Europe. 

3.3 Limitations of detection in particulate 
matter 

The limitations of detecting MBM in feed 
are difficult to determine in solid 
particulate matter. However, it should be 
noted that setting unrealistically low levels 
of detection as a target is misleading. The 
binomial distribution shows how 
measurement uncertainty increases as the 
%MBM decreases. In the following 
example, ‘clean’ feed particles are denoted 
as 'white' and MBM particles are denoted 
as 'red': 
If a feed contains 25% MBM then ¼ of the 
particles would be red and ¾ would be 
white. The probability of selecting a red 
particle is ¼ and of selecting a white one is 
¾.  If a sample of three particles is 
selected, the probability that the sample 
contains 0, 1, 2 or 3 white particles is 
shown in the expansion below, where the 

last term represents the all-white-particle 
('clean') scenario: 
(¼ + ¾)3  = (¼)3 + 3(¼)2(¾) +3(¼)(¾)2 + (¾)3 

64
27

64
27  

64
9  

64
1   +++=

So the expected frequencies for 64 
repeated three-particle samplings are 1, 9, 
27 and 27 for 0, 1, 2 and 3 white particles, 
respectively. Thus, in 64 repeated 
samplings of 3 particles there will be 27 
occasions when MBM would not be 
detected at all! The last term in the 
expansion gives the proportion of 
samplings that would entirely fail to detect 
MBM. 

If the target %MBM is 1%, this last term 
becomes 99/100 raised to a power of the 
number of particles examined. If 50 
particles were examined, this last term 
would show that 61% of the sampling tests 
would show no evidence of MBM in the 
sample. If the target %MBM is set at 0.1%, 
then the last term in the expansion 
(999/1000) would show that 95% of the 
samplings of 50 particles would show that 
the feed was 'clean'. 
If n feed particles were examined at levels 
of MBM decreasing from 10% to 0.1%, the 
percentage of apparently clean samplings 
would increase, as shown in Table 16 and 
Figure 7. If 400 particles were examined 
at 0.1% MBM, two-thirds of the sampling 
tests would be 'apparently clean'. Thus, as 
the %MBM decreases, the uncertainty of 
detection greatly increases for any method 
that examines particulate matter. Methods 
that take a large test portion and use 
density separation for bone tissue are not 
so prone to this failure, but methods that 
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take small test portions are much more 
likely to produce misleading results 
through unavoidable statistical sampling 
error. 

In a spinning cup presentation, the area 
scanned is 804 mm2 corresponding to 
1,024 particles with a diameter of 1 mm on 

the surface layer. In the natural product 
cell (200 x 16 mm), the area scanned is 
3,200 mm2 corresponding to 4,076 
particles with a diameter of 1 mm. These 
estimates concur with the observed 
standard errors of estimate being close to 
1% MBM for diffuse NIRS. 
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Figure 7: Percentage 'apparently clean' tests of n particles relative to %MBM in feed, 
calculated from the last term in the binomial expansion. 
 
Table 16: Sampling uncertainty in relation to %MBM particles in feed 

%MBM Percentage of 'apparently clean ' sampling tests.  
 50 particles 100 particles 200 particles 400 particles 1,000 particles 4,000 particles

10 0.52 0 0 0 0 0 
9 0.9 0.01 0 0 0 0 
8 1.55 0.02 0 0 0 0 
7 2.66 0.07 0 0 0 0 
6 4.53 0.2 0 0 0 0 
5 7.7 0.59 0 0 0 0 
4 13 1.69 0 0 0 0 
3 21.8 4.76 0.03 0 0 0 
2 36.4 13.3 0.23 0.03 0 0 
1 60.5 36.6 1.76 1.8 0 0 

0.1 95.1 90.4 81.9 67 36.7 1.8 
0 100 100 100 100 100 100 
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4. Pros and cons of the NIRS 
technology 

The advantages of NIRS technology are 
mainly speed, non-destructive analysis, 
minimal sample preparation, no use of 
reagents and no production of waste 
residues, and economical, good and 
replicable signal intensity coupled with 
rapid reporting for decision-making 
processes. The main drawback of NIRS is 
that it is an indirect method and thus 
requires large numbers of reference values 
of authenticated samples to develop 
prediction models. Also, any future 
unknown specimen needs to be adequately 
represented in the calibration model or 
database, it may not be predicted correctly 
by the model if its H statistic is beyond the 
limit (>3.0). 
Implementation is beyond the scope of 
STRATFEED and WP5. However, our 
research demonstrates that NIRS is best 
implemented as a screening method in the 
feed industry, where it is already widely 
used for routine quality control. Here, there 
is an established product spectra library 
with a quality control timeline for a 
particular product with a running mean and 
standard deviation. These characterise 
particular products with a much more 
restricted variation in composition and 
spectra, enabling such products to be 
transformed to a Z score and an H statistic 
that can detect serious deviations from the 
average, detect and flag outliers and refer 
suspect specimens. 
In this situation, the main disadvantage of 
NIRS is resolved at a stroke by assuming 
that most of the material in circulation is 
not contaminated. The necessary database 
is already in the manufacturer's archive. In 
the pharmaceutical industry such 
surveillance for inferior drug substitution 
fraud is commonplace. Legislation should 
demand that product timeline surveillance 
becomes a regular part of good 
manufacturing practice and due diligence. 
This would benefit responsible 

manufacturers, their clients and consumers, 
while lifting the burden on regulatory 
authorities and allowing them to 
concentrate surveillance efforts on referred 
suspect specimens that genuinely warrant 
scrutiny. Feed is a low-cost commodity 
with a high volume but a transient 
existence. Its inspection needs to be 
appropriate in terms of cost and 
convenience. If it is not done by NIR, it 
may not be done at all. 
 

5. Conclusions 

The results of WP5 indicate that NIRS 
could provide the feed industry and 
inspection bodies with a fast screening 
method for detecting the contamination of 
compound feed with animal by-products. 
NIRS could provide the first line of 
defence in the food chain and enable more 
costly methods to be used more 
productively on suspect specimens. 
Currently, the detection limit is, at best, 1–
1.5%, so it cannot be used alone as legal 
evidence. Nevertheless, the best results are 
obtained with the qualitative approach 
using discriminant analysis rather than 
with the quantitative strategy. Macroscopic 
NIRS is best employed in industry where a 
QC timeline of spectra of a particular 
product can provide a running mean and 
standard deviation for a range which is 
more restricted in terms of  composition. In 
this case, there is a better basis for 
detecting suspect outlier specimens that 
warrant further scrutiny. 
It has been stressed that it is necessary to 
build an authenticated sample library that 
contains samples representing all of the 
variability in global feed trading. In this 
sense, also, it is much better to work with 
‘real-process’ samples to create robust 
models that can replicate the type of 
samples produced by the industry. 
Therefore, it is necessary to enlarge the 
spectral libraries constructed in the 
STRATFEED project with more ‘real-
process’ samples to create robust models. 
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But such samples are now, of course, no 
longer available due to the ban imposed on 
processed animal meal. Nevertheless, for 
this purpose two strategies can be carried 
out together: first, collecting pet food 
samples because this type of compound 
feed is not affected by the MBM ban; and 
second, producing compound feeds 
contaminated with MBM in the pilot plants 
commonly found in large feed companies. 
It is also important to note that the results 
confirm that the cloning procedure enables 
all instruments to produce harmonised 
results, demonstrating that NIRS could be 
used as a standardised method Regarding 
species identification in animal by-product 
meal, preliminary results indicate that it is 
possible to characterise them using NIRS 
technology. Finally, it should be noted that, 
on statistical grounds, the setting of 
unrealistically low detection levels may be 
unhelpful in practice.  
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