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Técnica Superior de Ingenieros Agrónomos y de Montes. University of Córdoba. Apdo. 3048. 14080 Córdoba. Spain (A.G.-V., D.P.-M.); and
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Chemometric procedures are usually applied to near-infrared (NIR)

spectra in order to obtain prediction models. These procedures include the

application of different combinations of spectral mathematical pretreat-

ments for the improvement of calibrations and the selection of the best

model on the basis of validation results. In this work, we used an

automatic routine to obtain calibrations for unground and ground

compound feedingstuffs (N¼354 samples), including 49 combinations of

pretreatments (first and second derivatives, an auto scaling procedure,

detrending and two versions of multiplicative scatter correction).

Calibrations for crude fiber and crude protein were developed without

elimination of outliers and with 2 or 9 maximum passes of elimination of

outliers. Validation statistics were highly influenced by the pretreatments

used, as a combined result of their ability to improve the detection of

outliers and the model adjustment. The standard error of prediction

(SEP) values ranged from 0.61 to 1.27 for crude protein (CP) and from

0.74 to 1.33 for crude fiber (CF). In spite of the fact that validation

statistics did not show a clear distribution pattern, some combinations of

pretreatments provided consistently better results.

Index Headings: Near-infrared reflectance spectroscopy; NIRS; Spectral

signal pretreatments; Compound feedingstuffs; Unground analysis.

INTRODUCTION

Near-infrared reflectance spectroscopy (NIRS) has under-
gone an exciting evolutionary process during the last thirty
years, these days exhibiting an excellent reputation as an
accurate and reproducible technique for qualitative and
quantitative analysis in many fields, such as agro-food, the
pharmaceutical and chemical industries, human health, envi-
ronmental studies, etc.

Currently, NIRS analysis is conceived as a synthesis of
spectroscopy, mathematics, statistics, and instrumentation, with
the progress in this technology being closely related to the
advances in these fields, particularly in the development of
chemometric algorithms. Chemometric procedures1,2 are
usually applied to NIR spectra for extracting relevant
information, since the spectra are influenced by features such
as temperature, moisture content, particle size, texture, light
scattering, sample manipulation, and other sources of error.3,4

Precision and accuracy in NIRS analysis are subject to the
availability of algorithms or spectral data pretreatments that
reduce the above mentioned effects, particularly the scatter
effect. This is one of the most relevant factors influencing the
spectra of agro-food products.5,6 However, there is not a
standard procedure for determining which pretreatment will
give the best results when developing NIRS calibrations.

The selection of a suitable spectral pretreatment method is
not easy since, in many cases, the software packages operating
with NIRS instruments offer several different mathematical
transformations, including derivatives, multiplicative scatter
correction (MSC), standard normal variate (SNV), detrending
(DT), and orthogonal signal correction (OSC). Sometimes,
however, there is neither a clear definition of the chemometric
algorithms used, nor clear recommendations for their correct
application. This circumstance could cause a chaotic situation
for beginners in NIRS calibration development, who could
obtain uncertain results with the prediction models used.

Furthermore, the conclusions obtained by different authors
regarding the use of certain spectral pretreatments such as
derivatives, MSC, etc., cannot be generalized to other data sets,
since some of them have been performed with artificial data
sets7,8 or with synthetic spectra or spectra modified by the
inclusion of intended variations.9–12 Other studies have been
devoted to the comparison of pretreatments on calibration
development for drugs or chemical products,13–15 whose
compositions are relatively simple in contrast to agro-food
materials and, particularly, compound feedingstuffs.

While pretreatments seem to be of importance in calibration
development, the statistical significance of the improvements
obtained with their use in the prediction ability of NIRS
equations is often not established. Moreover, most of the
published works recommend the use of a specific pretreatment
on the basis of the minimum values obtained for the standard
error of cross-validation (SECV) or the standard error of
prediction (SEP). This method of obtaining conclusions about
the optimum pretreatment of the spectral data is a risk, mainly
when other factors affecting the final SECV or SEP values may
have influenced the results (i.e., outlier samples removed from
the calibration set).

Recently, several authors16–19 used statistical tests to
compare the SEP or bias-corrected SEP (SEP(c)) values
obtained after the application of different pretreatments to
NIR data. The statistical tests used are mostly based on a
procedure published by Fearn.20 Delwiche and Reeves19

concluded that, even with statistical testing, for the develop-
ment of a NIRS calibration, the selection of the appropriate
pretreatment must ultimately be based on the modeler’s
judgment.

Fine and homogeneous milling has traditionally been
recommended to reduce the effect caused by particle size
differences, which affects the scatter properties of the irradiated
surface. NIRS instruments underwent considerable modifica-
tions during the 1990s. Versatile NIRS analyzers, with
different sample presentation attachments and large scanning
windows, allowing the analysis of unground material, are now
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commercially available.21 However, the majority of the
mathematical pretreatments usually used with low moisture
materials, such as forages and feeds, have been developed to
correct additive and multiplicative scatter errors caused by the
interaction of NIR radiation with ground material.

The main goal of this paper is to evaluate the statistical
significance of prediction errors obtained after the application
of different spectral treatments to ground and unground
compound feeds.

MATERIALS AND METHODS

Samples and Reference Data. A total of 354 commercial
compound feedingstuffs, destined for different production
animals (poultry, cattle, pig, ovine, and equine), were used in
this study. The reference data for crude protein (CP) and crude
fiber (CF) were determined by AOAC methods 976.06 and
978.10.22.

The global set was randomly split into a calibration set
(n¼ 324) and a validation set (n¼ 30) in order to estimate
prediction errors for all the calibrations obtained. The chemical
composition for both sets is displayed in Table I.

Near-Infrared Reflectance Spectroscopy Hardware. All
the samples were scanned in two different forms: unground and
ground to 1 mm particle size, using a cyclonic mill (Cyclotec
1093 sample mill, Foss-Tecator, Höganäs, Sweden).

Reflectance spectra for ground samples were performed with
a Foss NIRSystems 6500 SY-I monochromator, equipped with
a spinning module. The instrument works in reflectance mode
in the spectral range of 400–2500 nm, taking readings every 2
nm (spectral bandpass 10 6 1 nm). Samples were analyzed
using standard circular cups (3.75 cm diameter).

Unground samples were scanned using a Foss NIRSystems
6500 SY-II monochromator, from 400 to 2500 nm, every 2 nm
(spectral bandpass 10 6 1 nm). Analysis was performed using
a transport module and a rectangular ‘‘coarse’’ cell (16.4 3 3.3
cm).

Near-Infrared Reflectance Spectroscopy Software. All
spectra were manipulated and processed, and all calibration
equations were obtained using the ISI softwares NIRS3 ver. 4.0
and WINISI ver. 1.5 (Infrasoft International, Port Matilda, PA).

Statistical tests for SEP(c) comparisons were computed with
Microsoft Excel.

Mathematical Pretreatments. A total of 49 combinations
of pretreatments (Table II) were applied to obtain modified
partial least squares (MPLS) calibration equations.23,24 The
mathematical pretreatments used were spectral auto scaling
(AS),25 detrending (DT),25 a combination of AS followed by
DT (ADT), a combination of DT followed by AS (DTA), two
versions of multiplicative scatter correction (MSC)26 included

in WINISI software (Standard MSC and Weighted MSC), and
four different derivative math treatments.

Auto Scaling Based on Standard Normal Variate.25 The
SNV centers each spectrum and then scales it by its own
standard deviation (r), correcting shifts on the log(1/R) axis.
The transformation is applied to each spectrum individually,
and the resulting spectra have mean zero and unit variance.

XSNV;i ¼
Xlogð1=RÞ;i � Xlogð1=RÞ

rlogð1=RÞ
ð1Þ

where XSNV;i is the SNV spectrum value at wavelength i,
Xlogð1=RÞ;i is the log(1/R) spectrum value (raw data) at
wavelength i, Xlogð1=RÞ is the mean value of log(1/R) spectrum
(for all wavelengths), rlogð1=RÞ is the standard deviation of the
log(1/R) spectrum (for all wavelengths), and i is the wave-
length.

The AS algorithm (wrongly called SNV) as included in
WINISI software has been simplified excluding spectral
centering, so transformed spectra have non-zero mean and
unity variance.

XAS;i ¼
Xlogð1=RÞ;i
r logð1=RÞ

ð2Þ

Detrending.25 Detrending is performed using a second-order
polynomial in a regression analysis, where the spectral value of
a sample is the response or dependent variable and the
independent variable is given by the wavelengths, correcting
effects due to baseline curvature. DT correction is also applied
to individual spectra and gives a spectrum with zero mean and
non-unity variance.

X̂logð1=RÞ;i ¼ Aþ B �W þ C �W2 þ ei ð3Þ

XDT;i ¼ Xlogð1=RÞ;i � X̂logð1=RÞ;i ð4Þ

where XDT;i is the DT spectrum value at wavelength i, X̂log(1/R),
i is the estimated value of Xlogð1=RÞ;i obtained from the quadratic
function, and W is the wavelength value.

Combinations ADT and DTA. The ADT and DTA methods
are calculated by applying both AS and DT sequentially in
differing order. ADT is calculated directly by the WINISI
software, while DTA is obtained by separately applying both
transformations. ADT transformation results in a spectrum that
has mean zero and non-zero variance, while DTA correction
gives a spectrum with non-zero mean and variance of one. Both
ADT and DTA were found to be related by a scaling factor.27

Multiplicative Scatter Correction.26 Standard MSC
(SMSC) is performed by calculating a least squares regression
between each spectrum and the mean spectrum of the whole
data set; thus, it is considered a set-dependent transformation.
Afterwards, the regression coefficients are used to correct the
spectra, as stated below:

Xlogð1=RÞ;i ¼ ai þ biXlogð1=RÞ;i þ ei ð5Þ

XMSC;i ¼
ðXlogð1=RÞ;i � aiÞ

bi
ð6Þ

where XMSC;i is the MSC spectrum value at wavelength i,
Xlogð1=RÞ;i is the log(1/R) spectrum value (raw data) at

TABLE I. Composition of calibration and validation sets (%).a

Global set Calibration Validation

CP CF CP CF CP CF

n 354 351 324 321 30 30
Mean 17.2 7.6 17.2 7.5 17.1 8.0
Minimum 11.9 1.4 11.9 1.4 12.7 3.2
Maximum 32.5 25.3 32.5 25.3 21.1 18.1
SD 2.28 4.37 2.30 4.33 2.09 4.89

a n: number of samples; SD: standard deviation; CP: crude protein; CF: crude
fiber.
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wavelength i, Xlogð1=RÞ is the mean value of all log(1/R) spectra
of the data set at wavelength i, and i is the wavelength.

Weighted MSC (WMSC)28 is defined as a modification of
SMSC that uses a correction for the spectral mean and
standardizes at each wavelength. In this transformation, to
compute the simple linear regression, the absorbances are
weighted according to their standard deviation.

Dhanoa et al.29 found that MSC and SNV were lineally
related, while Helland et al.30 confirmed the existence of
connections among other pretreatments developed for scatter
correction.

Spectral Derivatives Spectral differentiation or derivatives
are frequently used in NIR spectroscopy. As the main methods
used to calculate derivatives, Hopkins31 cited the convolution
function developed by Savitzky and Golay,32 the point-
difference method used in Grams software (Thermo Galactic,
Salem, NH), and the Norris derivative or ‘‘segment-gap’’
method used in Vision and NSAS software (FOSSNIRSys-
tems, Silver Spring, MD) and in ISI software (Infrasoft
International, Port Matilda, PA).

The ISI derivative math treatments are defined by a four-
digit notation (a, b, c, d), where a is the derivative order, b is
the derivative gap, c is the smoothing segment, and d is the
second smoothing segment.28

Calibration Development and Management of Outlier
Samples. Modified partial least squares (MPLS) calibrations
were obtained using an automatic routine implemented with the
option ‘‘Teach automatic sequence’’ included in the ISI
software.28 The NIRS prediction models were obtained using
the spectral range 1100–2498 nm, for each chemical parameter
and milling status, and none, 2, or 9 maximum number of
outlier elimination passes. Limits for outlier detection were 2.5
and 3 for T and H statistics, respectively. T outliers are defined
as samples with significant differences between their laboratory
and predicted values, while H outliers are defined as samples

whose spectra show excessive distance (H . 3) to the spectral
center of the calibration set.28

Statistical Analysis. The performance of NIRS equations
was evaluated by examining the statistical values obtained for
calibration and validation with test set procedures. The main
calibration statistics used were 1-VR (determination coefficient
for cross-validation) and SECV (standard error of cross-
validation), while validation was evaluated by SEP(c) (standard
error of prediction bias corrected) and r2 (determination
coefficient for validation).

The SEP(c) values were compared according to the
procedure published by Fearn,20 based on pair-wise compar-
isons of the standard deviation of the residual vectors coming
from two models and on the r2 between these two vectors.
First, the correlation coefficient between the two sets of
prediction errors (r) was found and then it was calculated:

K ¼
2ð1� r2Þt2

n�2;0:025

n� 2
ð7Þ

where t2
n�2;0:025 is the upper 2.5% point of a t distribution for

n� 2 degrees of freedom.
Then, we found

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 � 1Þ

qr
ð8Þ

The next two functions define the lower and the upper limits
of a 95% confidence interval for the ratio of the true standard
deviations. If the interval includes 1, errors are not significantly
different at the 5% level:

SEPðCÞ1
SEPðCÞ2

x
1

L
and

SEPðCÞ1
SEPðCÞ2

xL ð9Þ

The previous test was compared with the procedure used by
Roggo et al.17 This method, based on a Fisher test, defines a

TABLE II. Combinations of pretreatments used in calibration.a

Equation Scatter correction Derivative Equation Scatter correction Derivative

1 None None 26 ADT 1,5,5,1
2 AS None 27 ADT 1,10,5,1
3 DT None 28 ADT 1,10,10,1
4 ADT None 29 ADT 2,5,5,1
5 DTA None 30 ADT 2,10,5,1
6 Standard MSC None 31 ADT 2,10,10,1
7 Weighted MSC None 32 DTA 1,5,5,1
8 None 1,5,5,1 33 DTA 1,10,5,1
9 None 1,10,5,1 34 DTA 1,10,10,1

10 None 1,10,10,1 35 DTA 2,5,5,1
11 None 2,5,5,1 36 DTA 2,10,5,1
12 None 2,10,5,1 37 DTA 2,10,10,1
13 None 2,10,10,1 38 Standard MSC 1,5,5,1
14 AS 1,5,5,1 39 Standard MSC 1,10,5,1
15 AS 1,10,5,1 40 Standard MSC 1,10,10,1
16 AS 1,10,10,1 41 Standard MSC 2,5,5,1
17 AS 2,5,5,1 42 Standard MSC 2,10,5,1
18 AS 2,10,5,1 43 Standard MSC 2,10,10,1
19 AS 2,10,10,1 44 Weighted MSC 1,5,5,1
20 DT 1,5,5,1 45 Weighted MSC 1,10,5,1
21 DT 1,10,5,1 46 Weighted MSC 1,10,10,1
22 DT 1,10,10,1 47 Weighted MSC 2,5,5,1
23 DT 2,5,5,1 48 Weighted MSC 2,10,5,1
24 DT 2,10,5,1 49 Weighted MSC 2,10,10,1
25 DT 2,10,10,1

a AS: auto scaling; DT: detrending; ADT: auto scaling þ detrending; DTA: detrendingþ auto scaling; MSC: multiplicative scatter correction.
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confidence interval for errors with non-significant differences
with minimum error obtained (Errormin):

ðErrormin; Errormin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1�a;n�1;n�1

p
Þ ð10Þ

where a is the significance level (5% in this study) and (n� 1)
is the degrees of freedom.

RESULTS AND DISCUSSION

The effect of data pretreatments is easily appreciated by
visual observation of the transformed spectra. Thus, Fig. 1
shows that the degree of spread observed in raw data (log(1/R))
for ground compound feeds along the Y-axis is reduced by the
use of any of the pretreatments selected. The mentioned effect

is more remarkable with unground product (Fig. 2), with the

differences in particle size in this case becoming the main

source of spectral variation. AS transformation (note, not SNV)

applied by ISI software28 does not produce significant effects

in reducing the spread observed in the original log(1/R) data, as

centering, by subtraction of the mean absorbance value for

each spectrum, is not applied. This simplification is a

consequence of the common use of AS together with other

transformations, such as DT or derivatives, which implement

corrections in the absorbance axis. DT and MSC reduce

spectral variation, maintaining peak position in relation to the

log(1/R) raw data. In addition, DT removes the ascending

baseline effect. Application of both derivatives drastically

FIG. 1. Reflectance spectra of the ground compound feedingstuffs belonging
to the calibration set. (A) Raw spectra; (B) AS transformed spectra; (C) DT
transformed spectra; (D) standard MSC transformed spectra; (E) derivative
1,5,5,1; and (F) derivative 2,10,10,1.

FIG. 2. Reflectance spectra of the unground compound feedingstuffs
belonging to the calibration set. (A) Raw spectra; (B) AS transformed spectra;
(C) DT transformed spectra; (D) standard MSC transformed spectra; (E)
derivative 1,5,5,1; and (F) derivative 2,10,10,1.
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changes spectral shapes, duplicating original peaks into
positive and negative, and introducing new peaks.

As was stated above, it is impossible to know beforehand
which pretreatment will lead to the most accurate model with a
certain calibration set. Thus, we used the option ‘‘teach
automatic sequence’’ included in the ISI software to create a
macro command that allows the calculation of 49 regression
models for each constituent (analyte) with just one order. This
option has an invaluable utility, as for this paper it was
necessary to develop and validate 588 equations with more
than 300 calibration samples. Although actual computers are
able to perform calculations in a reasonable period of time,
each outlier elimination pass implies a new calibration
computation and, consequently, an increment in the final
computation extent.

Although we are aware of the importance of a detailed
discussion about the causes and management rules of the
outliers detected during calibrations development for complex
products, such as compound feedingstuffs, in the present paper
this phase was omitted due to the huge number of calibrations
to test. Nevertheless, using an automatic deletion procedure, it
was possible to obtain regression models with 0 to 9 outlier
elimination passes. This fact allowed us to test the effect of
spectral pretreatments on the number of samples detected as T
or H outliers.

The influence of the data pretreatments used in calibration,
for 0, 2, and 9 maximum number of outlier elimination passes
with a selected number of MPLS factors that varied between 2
and 16, is displayed in Table III. It can be observed that
remarkable differences appear between the minimum and
maximum SECV values. It can be also observed that SECV
values for protein are lower for ground product calibrations

than for unground product calibrations for all levels of
automatic outlier elimination passes, although these differences
are reduced when outliers are eliminated. SECV values for
fiber only show important differences between unground and
ground samples without automatic outlier elimination, indicat-
ing that the presence of outliers affects the performance of
calibrations to a greater extent than particle size.

Regarding the ability of the pretreatments to detect real
outliers, Table IV shows the mean, minimum, and maximum
number of samples deleted during calibration development for
2 or 9 maximum number of automatic outlier elimination
passes. The selection of 9 passes as maximum for the
elimination of outliers was done for comparison purposes
only, and it is not recommended. However this option does not
suppose the mandatory reaching of this limit in the develop-
ment of calibrations, as a lower number of passes is generally
selected. The minimum number of samples deleted was
obtained with CP for ground product without any pretreatment,
while the maximum value corresponded to CP for unground
product using DT transformation. It can be observed that the
number of outliers detected during the first two passes is quite
consistent for both parameters and milling status. This fact
could indicate that these samples present real anomalies in their
spectra or lab value. With a higher number of elimination
passes, a higher variation in outliers detected with different
pretreatments is revealed. Nevertheless, if we compare the
minimum number of outliers detected with 9 and 2 maximum
number of elimination passes, we find that the differences are
slight. This tells us that some pretreatments show a better
ability to detect real outliers during calibration development,
while other transformations lead to the detection of false
anomalies, such as samples with extreme laboratory values.

TABLE III. Maximum and minimum SECV values for CP and CF calibrations, with 0, 2, or 9 maximum number of outlier elimination passes for all
pretreatments.a

No elimination passes Max of 2 elimination passes Max of 9 elimination passes

Calibrations SECV eqa terms n SECV eqa terms n SECV eqa terms n

Unground samples CP Minimum 1.22 43 14 324 0.88 18 13 308 0.61 31 16 281
Maximum 1.82 1 4 324 0.98 7 12 314 0.92 36 13 311

CF Minimum 1.57 35 3 321 0.60 29 11 304 0.47 35 10 279
Maximum 1.95 13 2 321 0.85 2 13 305 0.68 7 16 297

Ground samples CP Minimum 0.91 16 10 324 0.61 48 10 305 0.52 43 14 295
Maximum 0.98 13 7 324 0.70 1 12 314 0.70 1 14 317

CF Minimum 0.94 18 9 321 0.60 26 14 308 0.51 19 11 289
Maximum 1.10 1 13 321 0.80 1 13 307 0.71 24 9 313

a CP: crude protein; CF: crude fiber; SECV: standard error of cross-validation; eqa: equation; terms: number of MPLS factors; n: size of the calibration set.

TABLE IV. Mean, minimum, and maximum number of samples deleted during calibration development for CP and CF with 2 or 9 maximum number of
outlier elimination passes.a

Max of 2 passes Max of 9 passes

CP CF CP CF

Unground Ground Unground Ground Unground Ground Unground Ground

n eqa n eqa n eqa n eqa n eqa n eqa n eqa n eqa

Mean 13 . . . 13 . . . 16 . . . 11 . . . 32 . . . 21 . . . 28 . . . 23 . . .

Minimum 10 7 10 1 12 27 8 12 13 18 7 1 19 44 8 24
Maximum 17 17 19 48 19 5 16 14 45 3 32 5 42 35 34 31

a CP: crude protein; CF: crude fiber; n: number of samples deleted; eqa: equation.
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The importance of the use of an appropriate mathematical
transformation is emphasized, since elimination of false
outliers during calibration could cause a reduction in the
prediction ability of calibrations.

The influence of pretreatments on the predictive ability of
calibrations was determined with paired comparisons of the
minimum SEP(c) value and the rest of the SEP(c) values
using the statistical tests proposed by Fearn20 and Roggo et
al.17 The results obtained with both statistical tests matched
up. The information is summarized in Table V, including the
maximum and minimum SEP(c) values for both analytical
parameters and for different numbers of outlier elimination
passes, and also the SEP(c) confidence limit value, calculated
as SEPðcÞminx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0:95;29;29

p
. According to Roggo et al.,17 the

models that have SEP(c) values between SEP(c)min and
SEP(c) confidence limit were not significantly different. Table
V shows that the prediction errors were also affected by the
pretreatment used, since differences between the maximum
and minimum are evident for both parameters.

Comparison of prediction errors for CP showed that there
were not significant differences among calibrations developed
with ground samples, while for unground samples the
predictive ability of the calibrations was significantly lower,
indicating that the selection of the best combination of
pretreatments is essential when the particle size is one of the
main sources of spectral variations. For unground samples,
minimum errors were found for combinations of pretreatments
WMSCþ1,5,5,1 and DTþ1,5,5,1; while significant maximum
errors were obtained for DT, WMSC and none; DTþ2,5,5,1,
2 ,5 ,5 ,1 and DTAþ2 ,10 ,5 ,1 ; and ADTþ2 ,10 ,5 ,1 ,
SMSCþ2,10,5,1, and ASþ2,10,5,1 and 2,5,5,1; for 0, 2, and
9 maximum number of outlier elimination passes, respectively.
In spite of the non-significant differences found for ground
products, minimum errors were obtained for pretreatments
WMSCþ2,10,5,1 and DTAþ2,5,5,1; while maximum errors
were found for DT, SMSC, and 1,5,5,1 for 0, 2, and 9
maximum number of outlier elimination passes, respectively.
Other validation statistics such as bias, slope, and determi-
nation coefficient fulfilled the control limits suggested by
Shenk et al.,33 except for a few calibrations developed for
ground product with 9 maximum outlier elimination passes,
where SEP(c) values were superior to the calculated limit.
Nevertheless, this fact can be explained, as the applied control
limits seem to be more restrictive for models with better
calibration statistics.

For errors for CF, the differences among minimum errors

were significant for the criteria used, except for unground
product calibrations developed with a maximum of two outlier
elimination passes. Table V shows that the confidence limits
were very close to the maximum error values for the majority
of cases, indicating that only a few of the pretreatments
produced errors significantly higher than the minimum error.
Minimum errors for unground product were found for
DTþ2,5,5,1, DTþ1,5,5,1, and 1,10,10,1, while maximum errors
were obtained for WMSC alone or combined with second
derivatives, ASþ1,10,10,1 and AS, for 0, 2, and 9 maximum
number of outlier elimination passes, respectively. For ground
products, minimum errors appeared with WMSCþ2,5,5,1 and
DTAþ2,5,5,1; and maximum errors were obtained for DT;
SMSC, 1,10,10,1, 1,5,5,1, ADT, DTþ1,10,5,1, none,
DTþ1,10,10,1, DTþ2,10,5,1, 2,10,10,1, DTþ2,10,10,1 for 0
outlier elimination passes, DT and DTþ2,10,10,1, none,
DTþ2,10,5,1 for 2 outlier elimination passes, and 2,10,10,1
for 9 outlier elimination passes. Most of the calibrations
presented validation statistics within the recommended values
when elimination of outliers was not used. Setting 2 outlier
elimination passes, we observed an increment in the non-
conformities with the recommended values for validation,
especially for ground products, since their calibration statistics
were better. Most of acceptable validation tests for ground
products were obtained for models that used a second
derivative in their pretreatments. For the highest number of
outlier elimination passes, only the calibration developed with
WMSCþ2,5,5,1 satisfied the control limits for ground products,
while five calibrations (four of them including first derivatives)
passed the control limits for unground products.

It resulted that it was impossible to find a clear pattern for the
combination of pretreatments that provided the best and worse
results in validation tests, as was concluded for other agro-food
products.17,18 However, the use of derivatives alone or in
combination with other pretreatments showed an important
effect on validation results.

In this study, it was not observed that SEP(c) followed
SECV values, as in the work published by Delwiche and
Reeves,19 although a full cross-validation model (leave-one-
out) may have reduced the differences between both statistics.

CONCLUSION

The effect of spectral pretreatments on the predictive ability
of NIRS calibration models can be defined by their ability to
improve the detection of real outliers during calibration and the

TABLE V. SEP(c) maximum, minimum (lower confidence limit), and upper confidence limit for CP and CF calibrations with 0, 2, or 9 maximum outlier
elimination passes.a

Unground samples Ground samples

0 passes 2 passes 9 passes 0 passes 2 passes 9 passes

SEP(c) eqa SEP(c) eqa SEP(c) eqa SEP(c) eqa SEP(c) eqa SEP(c) eqa

CP Minimum 0.78 44 0.64 1 0.61 8 0.75 48 0.69 35 0.68 35
Maximum 1.27* 1 0.90* 36 0.86* 11 0.86 3 0.82 6 0.82 8
Upper CL 1.06 0.87 0.83 1.02 0.94 0.92

CF Minimum 0.85 23 0.78 20 0.74 10 0.83 47 0.74 35 0.75 47
Maximum 1.33* 20 0.95 16 1.02* 2 1.14* 3 1.09* 3 1.07* 13
Upper CL 1.16 1.06 1.01 1.13 1.01 1.02

a CP: crude protein; CF: crude fiber; CL: confidence limit; SEP(c): standard error of prediction bias corrected; eqa: equation; * indicates significant differences with
minimum error at ¼ 0.05.
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degree of adjustment among the constituent values and the
transformed spectral data.

We did not find a clear distribution pattern for results with
the different data pretreatment methods evaluated, but since
scatter is the main source of spectral variability in the studied
products, most of the scatter-correction algorithms tested
improved the predictive ability of the equations developed.

The best pretreatments in calibration and in prediction
phases usually differ. Therefore, when evaluating pretreatments
it would be desirable to use some automatic software routines
that permit efficient testing of different validation sets and/or
the execution of a large number of cross-validation passes.
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