
P. Dardenne and J.A. Fernández Pierna, J. Near Infrared Spectrosc. 14, 349–355 (2006) 349

© NIR Publications 2006, ISSN 0967-0335

Introduction

Linear regression relates two data matrices, X (k × m) and 
Y (k × n), to each other. For a single y vector, and if X and y 
are mean-centred, the regression model can be expressed by 
y = Xb + e. In this equation, the predictive model is defi ned 
by b (k × 1), the matrix of regression coeffi cients and by e 
(k × 1), the residual vector. The matrix of unknown parame-
ters, b, is solved as b = (XTX)–1XTy where the superscript T 
denotes the matrix transpose and the superscript –1 denotes 
the matrix inverse.1,2

Interpretation of regression coefficients has been 
described widely in the literature3–5 and the main conclusion 
is that a good estimate for these regression coeffi cients is 
required because they represent the most important part of 
the regression model: it must provide both a good fi t to y 
and good predictions for future unknown samples. However, 
since the beginning of the technique of near infrared (NIR) 
spectroscopy it has been known that the accuracy of the 
regression coeffi cients, and therefore the accuracy of the 
analyses (vector ŷ) estimated by NIR models, depends on 

the quality of the reference method. Both the y and the X 
values are subject to random error. Noise in X and y will 
affect the outcome of any prediction model, i.e. the quality of 
the predictions of y will be reduced with an increase of noise. 
Only few studies have addressed the effects of the noise on 
calibrations and most of them are based on noise addition on 
X.6,7 However, NIR can ultimately only be as accurate as the 
reference methods that provide primary calibration data. The 
performance of the reference laboratory methods limits the 
reliability of the NIR calibrations and any increased standard 
error of prediction (SEP) can be due to inaccuracies in NIR 
or differences in the reference method analytical procedure; 
in other words, if the variation of the reference method is 
large, the accuracy of the NIR models expressed as stan-
dard error of cross-validation (SECV) or SEP will be large. 
As explained by Sørensen,8 this effect may be negligible 
when the imprecision of the reference data is lower than 
the true accuracy of the NIR method. A crucial assumption 
in multivariate calibration is that these reference values are 
suffi ciently precise and the accuracy of the NIR models is 
never demonstrated to be better than the reference method.9 
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However, as discussed by Fernández et al.10 and Faber et 
al.,11 this assumption is certainly not always true; methods 
like octane rating or classical Kjeldahl have shown that often 
the prediction is even better than the reference value.

The robustness of a model can be improved by 
 introducing “stabilisation” spectra into the data set, such 
as including more samples over time to refl ect the chan-
ging conditions, like spectra at different temperatures, or 
by creating artifi cial variation, for example, two grindings 
for each sample. Dardenne et al.12 have proved that by 
introducing these matrix effects it is possible to prepare 
a NIR calibration with fewer samples and much less wet 
chemical analysis effort whilst retaining a robust calibra-
tion. Other approaches have been proposed to deal with 
robust  models.13,14 Some use statistical methods to compute 
whether a sample is contained within the variance already 
described by some initial samples or not, in such a way the 
sample can be added to the calibration model allowing the 
development of a more robust calibration using a low per-
centage of the samples. In all cases, these methods affect 
the matrix X and lead to more robust models.

This paper aims to prove that one can still have good 
calibrations with quite poor reference values or with a large 
quantity of noise added to y. For this reason, a method com-
patible with the classical chemometric techniques and based 
on an iteration noise addition model has been proposed. This 
method, called noise addition partial least squares (NAPLS), 
computes “stabilised” b coeffi cients for the construction of 
more robust models.

The algorithm
Before applying the method, the data set has to be split 

into three subsets: a calibration set, a validation set and a test 
set. The validation set will be used for internal optimisation 
and the test set is completely independent.

Figure 1 shows an overview of the method and for more 
details the method is described in Annex 1.

The fi rst step is to construct a partial least squares (PLS) 
model for the calibration data set (CAL) in order to obtain 
the standard error of calibration (SEC). This model is applied 
in both the validation (VAL) and the test (TEST) set in order 
to have an estimation of the root mean square error (RMSE) 
for both subsets. Even if the data contains some inherent 
noise (associated with the reference method), these results 
could be considered as “noise free” results.

The method proposed in this paper is an iterative method; 
in a fi rst step, 10% of random noise is added on the y matrix 
of the CAL set and a PLS model is constructed and applied 
to the VAL and TEST sets. This is done in order to record 
a fi rst impact of poor reference methods on the CAL and 
TEST sets. In a second step, a second vector of random 
noise (10% again) is added onto the y value of the already 
noisy CAL set and a new PLS model is constructed and 
applied to the VAL set. This second step is repeated 500 
times. After each iteration the b coeffi cients of the PLS 
models are kept in a matrix. Inside this 500 run loop, a 
test is used to check whether the root mean square error of 
prediction (RMSEP)_Val for a certain PLS model is lower 
or not than the previous one (i.e. the goal is to fi nd the mini-
mum). When a smaller RMSEP_Val is found, the “noisy” 
y values are kept as such, replacing the original ones and 
the noise added is smaller for the next iteration. In other 
words, when a better solution is found, a reduction factor is 
applied to the noise vector to decrease its standard devia-
tion. The median of the 500 vectors of the b coeffi cients 
is computed and the model which has its b coeffi cients 
with the highest coeffi cient of determination (R2) with the 
median is selected as the fi nal model. The median has been 
selected as being representative of the central tendency of 
the sample set, i.e. it expresses better the common run due 
to the fact that it is less affected by an excessively high or 
low fi gure (and, therefore, outliers) than the mean value. 
Then, this model is applied to the TEST set in order to 
obtain the fi nal RMSE_Test. The whole procedure can be 
repeated ten or more times to obtain an average value.

Experimental
Software

The algorithm described in this paper, the calculations and 
the graphics were executed in Matlab v7.04 (The Mathworks, 
Inc., Natick, MA, USA). PLS calibrations were derived 
using the SIMPLS algorithm included in the PLS Toolbox 
(Eigenvector Research, Inc., Manson, WA, USA).

Simulated data set
A matrix, X, was simulated by a weighted sum of four pure 

components with Gaussian distributions. Figure 2 shows the 
spectra for the four simulated components where the data 
points simulating wavelengths (as in a NIR spectrum) are Figure 1. NAPLS method.
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plotted against absorptions (here reported as arbitrary units 
on the y-axis).

These four components are mixed in different proportions 
to create 375 mixture spectra, as shown in Figure 3.

The proportions between components are such that the 
sum reaches 100% for all the samples. Table 1 reports the 
range of the concentrations and Table 2 the correlation 
matrix between the four components. The reference values 
were exactly the percentage used to sum the “pure” spectra 
at each “wavelength”.

The data set was randomly split into three subsets: 125 
spectra for calibration, 125 as a validation set and 125 as a 
test set. When calibrating component 1, as expected, a PLS 
model with four factors expressed 100% of the variation and 

data points

arbitrary 
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Figure 2. Spectra for four simulated components.
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data points

Figure 3. Spectra for four simulated components—the whole data 
set.

C1 C2 C3 C4

Mean 28.3 28.7 29.2 13.8

STD   8.7   8.8   9.7 12.6

Min.   4.8   3.6   0.0   0.1

Max. 51.8 57.3 55.8 58.6

Table 1. Simulated data—range of the concentrations as a percent-
age of total sample.

C1 C2 C3 C4

C1   1.00 — — —

C2 –0.19   1.00 — —

C3 –0.18 –0.16   1.00 —

C4 –0.42 –0.44 –0.53 1.00

Table 2. Simulated data—correlation matrix between the four 
components.

Run RMScal_noise RMSval RMStest RMStest_fi nal % difference test

  1 2.88 0.61 0.56 0.07 88.28

  2 2.45 0.47 0.45 0.02 95.76

  3 2.77 0.25 0.28 0.04 85.77

  4 2.48 0.64 0.55 0.05 91.12

  5 2.73 0.42 0.47 0.04 91.44

  6 2.40 0.49 0.43 0.02 94.34

  7 2.65 0.82 0.65 0.15 76.64

  8 3.14 0.66 0.63 0.04 93.63

  9 2.94 0.24 0.26 0.07 71.39

10 2.56 0.47 0.45 0.02 95.53

Ave 2.71 0.53 0.49 0.06 86.80

Table 3. Simulated data—improvements of RMSEP for C1 with NAPLS.
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SEC and RMSE for both validation and test sets are equal 
to zero. To simulate what happens with an actual reference 
method, which is never free of errors, a vector of random 
noise (mean = 0.0 and SD = 10% of the average value) was 
added to the vector, y (first column of the Y matrix), of 
the calibration set. The value of the validation and test sets 
were unchanged. A PLS model was recalculated with four 
 factors.

The three fi rst columns of Table 3 show the RMSEC for 
the calibration data set (RMScal_noise), the validation set 
(RMSval) and the test set (RMStest) for 10 runs of noise 
addition when calibrating component 1 (C1). The averaged 
RMScal is 2.71, while it reaches 0.53 and 0.49 for the valida-
tion and the test set, respectively. Figure 4 shows, respec-
tively, an example (run number 10) of (a) calibration and (b) 
test scatter plots.

When increasing the level of noise, RMScal changed 
much more than both the RMSval and RMStest. When the 
noise addition is repeated many times (a new random vec-
tor is added to the original values), the different PLS mod-
els produced a large variation of the b coeffi cients. This is 
shown in Figure 5 with 1000 calibrations. Many trials were 
undertaken to fi nd a way to stabilise the coeffi cients from 
these simulations.

At the end, the fi nal model is selected as the one with the 
closest b regression coeffi cients to the median of all these 
simulations. As shown in Figure 6, this vector of b coeffi -
cients shows a correlation coeffi cient with the original model 
(without any noise) close to 1.

The application of this model to the unchanged indepen-
dent test set is shown in the fi fth column of Table 3. The last 
column of this table shows, for the test set, the difference (in 
%) between the results obtained using the selected model and 
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Figure 4. Spectra for four simulated components—noise addiction, 
run number 10, of (a) calibration and (b) test scatter plots when 
calibrating component 1 (C1).
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Figure 5. Simulated data: b coeffi cients after 1000 calibrations 
when calibrating component 1 (C1).

0 20 40 60 80 100 120 140 160 180 200
-6

-4

-2

0

2

4

6

8

10

12

Estimated b vector
closest to the median
Original b vector

R2=0.999998

bcoef 

data points 

Figure 6. Simulated data: b vector close to the median coeffi cients 
and original b vector when calibrating component 1 (C1).
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the original RMStest. It is observed that the model produced, 
on average, a RMStest of 0.06 leading to an improvement of 
86% over the original RMStest.

Real data sets
Forage data set

A set of 328 dried and ground forage spectra, measured 
using a NIRsystems 5000 in the range of 1100–2498 nm 
every 2 nm, with known protein content (%DM) values was 
used. In these data, the y values are subject to random error 
due to the reference method. First, the data set was split 
randomly into a calibration (110 samples), validation (109 
samples) and test set (109 samples). The classical PLS (eight 
factors and no pre-treatment) model on the raw data led 

to a RMScal of 0.56 and a RMSval of 0.50 and a RMStest 
of 0.60. A 10% noise vector increased the RMScal to 1.59 
and the RMS errors to 0.79 and 0.84 for the validation and 
test sets, respectively. The same procedure as above, with a 
 second random noise of 10%, was applied 10 × 500 times 
and the model with the closest b regression coeffi cients to 
the median was selected. Applying the selected model to the 
test set, the RMStest decreased to 0.63 which is very close 
to the original SEP of 0.60 and led to an average of 25% 
improvement as is shown in Table 4.

Wheat data set
This data set contains 2650 samples of wheat measured 

using a NIRsystems 5000 in the range of 1100–2498 nm 

Run RMScal_noise RMSval RMStest RMStest_fi nal % difference test

  1 1.65 0.77 0.86 0.59 31.61

  2 1.52 0.68 0.82 0.67 17.39

  3 1.41 0.71 0.80 0.62 22.36

  4 1.62 0.68 0.86 0.62 28.12

  5 1.67 0.91 1.02 0.80 21.41

  6 1.49 1.05 0.97 0.68 30.02

  7 1.64 0.80 0.80 0.58 26.88

  8 1.50 0.77 0.75 0.55 27.47

  9 1.68 0.76 0.77 0.60 22.43

10 1.67 0.67 0.64 0.56 12.30

Ave 1.59 0.79 0.84 0.63 24.43

Table 4. Real forage data set—improvements of RMSEP for protein with NAPLS.

Run
n = 100

RMScal_noise
n = 100

RMSval_noise
n = 100

RMStest_noise
n = 100

RMStest_fi nal
% difference test

1 1.34 0.50 0.47 0.39 15.51

2 1.28 0.57 0.50 0.42 16.43

3 1.25 0.63 0.53 0.36 32.70

4 1.24 0.69 0.59 0.42 28.71

5 1.27 0.64 0.55 0.41 26.22

6 1.27 0.65 0.55 0.37 33.67

7 1.36 0.59 0.53 0.36 30.94

8 1.23 0.62 0.55 0.37 32.04

9 1.21 0.53 0.47 0.38 19.64

10 1.31 0.57 0.50 0.40 20.15

RMS 1.28 0.60 0.53 0.39 26.05

Table 5. Real wheat data set—improvements of RMSEP for protein with NAPLS.
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every 2 nm to calibrate the protein content. As in the previ-
ous data set, the y values were subject to random error due 
to the reference method. The data set was split into three 
sub-sets where the calibration set contains only 100 samples, 
the  validation set 100 samples and test set contains 2450 
 samples. After SNV-detrend-fi rst derivative a PLS model 
with eight factors was constructed and applied to the test set 
that led to an RMStest of 0.50. After noise addition and selec-
tion of the fi nal model according to the NAPLS procedure 
the RMStest becomes 0.39, which supposes a reduction and 
an  improvement of more than 26% as shown in Table 5.

Conclusion
It has to be noticed that the fi nal b coeffi cients were not 

selected based on the minimum of RMSEP_VAL but only 
from the information found in the calibration set. The valida-
tion set is used to reduce the level of noise added.

The algorithm could be perfectible and must be optimised 
regarding the level of noise added and the reduction factor. 
The effect of the sample size must be tested too. It is obvious 
that with more samples there will be less variation of the b 
coeffi cients.

Nevertheless, this simple method is easy to apply and 
leads to signifi cant improvements. In the real world, the 
fi rst noise addition must be avoided and the “stabilised” b 
co effi cients computed only with one level of noise addition. 
The b coefficients will be much more stable (more inde-
pendent on the quality of y), although for a particular test 
set, the prediction could be optimum but it is impossible to 
prove because the reference data always have a certain level 
of noise.

Currently, we are doing something which leads to simi-
lar results by creating a huge data base with thousands of 
spectra. To cover the X variation, a sub-set of well selected 
samples would be suffi cient but, for the Y value, the more 
you average samples the more robust the model.
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Annex 1
Summary of the noise addition PLS method
1. Split the data (X, y) into CAL (X

cal
, y

cal
), VAL (X

val
, y

val
) 

and TEST (X
test

, y
test

) sub-sets.
2. Perform a PLS using X

cal
 and y

cal
.

3. Predict the validation and test sets by using the PLS 
model constructed in step 2.

4. Add 10% of random noise to y
cal

: y
c
 = y

cal
 + randn(k,1)* 

mean(y
cal

)*0.1 with k the number of samples in the CAL 
set.

5. Construct a new PLS model using X
cal

 and y
c
.

6. Predict the validation and test sets by using the PLS 
model constructed in step 5 in order to obtain RMSE_
Val and RMSE_Test.

7. Add 10% of random noise to y
c
 in the same way as step 

4 in order to obtain y
cc

.
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8. Construct a new PLS model using X
cal

 and y
cc

 and pre-
dict the VAL set to obtain a new RMSE_Val.

9. If the RMSEP_Val is lower than the previous one, then 
repeat steps 7 and 8 by adding 90% of the previous noise.

10. Repeat steps 7 to 9 500 times and keep the b coeffi cients 
for each of the PLS models.

11. Compute the median of the 500 vectors of the b 
 coeffi cients.

12. Select as best model the one with the most correlated b 
coeffi cients with the median.

13. Apply this final model on the TEST set in order to 
obtain the fi nal RMSE_Test.

14. Repeat steps 4 to 13 ten times.


