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Abstract

The development of rapid analysis systems for the determination of the fatty acid profile of Iberian pig fat is decisive for the industries
involved. Near infrared spectroscopy (NIRS) can fulfil the requirements of this sector, however NIR spectra of fat and oils can be subjected to
uncontrolled error sources (changes in the instrument, environment, sample preparation procedure, etc.). Moreover, these errors are particularly
important for the calibrations developed for these products, as they present sharp and narrow spectral peaks. There is evidence for correction of the
effect of some spectral variations by the use of certain mathematical pre-treatments during calibration. Therefore, this work developed an
automatic routine to obtain fatty acid calibrations (palmitic, stearic, oleic and linoleic acid) for Iberian pig fat, using 49 combinations of pre-
treatments (first and second derivatives, Auto-Scaling, Detrending and two versions of Multiplicative Scatter Correction), in order to evaluate
statistically the effects of different spectral corrections on the prediction ability of NIR equations affected by unexpected variations. Despite that
the performance of prediction models showed variations with the mathematical pre-treatment used, generalised significant differences were not
detected with the tests applied, except for linoleic acid. However, the optimisation of the derivatives used (order, gap and smoothing segment)
proved to be essential for the implementation of robust calibrations.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Iberian pig production has become an important sector in the
Spanish economy, as their products, particularly dry-cured
hams, have acquired an extraordinary reputation at national and
international levels due to their high quality [1–3]. Traditional
production systems include a final fattening phase called
“montanera”, which is based on the consumption of natural
resources, mainly acorns, in extensive conditions. Different
studies have demonstrated that one of the most important factors
affecting the quality of Iberian pig products is the composition
of the diet during the above cited final feeding process [4].
Particularly, a conventional final feeding in extensive condi-
tions defines the composition and features of sub-cutaneous fat,
giving typical profiles for fatty acids and triglycerides
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composition, as well as the delightful sensorial quality of
these products [5,6].

One of the main goals of organizations and industries
involved in Iberian pig production is the implementation of an
integral quality control system able to certify at any moment the
authenticity of products, in order to establish their price as a
function of their real quality. Control programs include
recording of field data, like live weights at the beginning of
“montanera”, duration of this phase, amount of available acorns,
number of animals, etc., together with laboratory analyses of
sub-cutaneous fat. In this sense, the Spanish Ministry of
Agriculture, Fishery and Food (MAPA) establishes each year an
official norm for the commerce with fattened Iberian pigs
destined to slaughtering and transformation, where classifica-
tion of pigs in commercial categories is set based on quality
specifications about animal weights and feeding program; as
well as fatty acid contents (palmitic, stearic, oleic and linoleic),
determined by gas chromatography in sub-cutaneous fat. As the
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required data for correct classification of products are very
expensive, they are only available just for 20 to 50% of total
production.

In this context, a new technology based on Near Infrared
Spectroscopy (NIRS) arises for rapid analysis of a wide variety
of products and parameters. This technology has been involved
in an exciting evolution process during the last thirty years,
exhibiting nowadays an excellent reputation as an accurate and
reproducible technique for qualitative and quantitative analysis
in many fields like agro-food, pharmaceutical and chemical
industries, human health, environmental studies, etc. There are
evidences showing that NIRS technology can fulfil the re-
quirements stated by this sector, as it has been demonstrated in
specific works, where there were obtained quantitative models
to predict fatty acid contents in pig fat (sub-cutaneous or
intramuscular) or qualitative models to classify animals based
on their products’ NIR spectra [1–3,7–9]. The potential of NIR
technology for the prediction of fatty acid profiles has been
recently documented for a wide range of products, like
vegetable oils [10,11]; fish oil [12]; rabbit and beef meat
[13,14]; and egg yolk [15].

Nevertheless, NIR analysis of fats and oils is strongly
affected by uncontrolled variations related to the instrument, the
environment, the sample preparation protocol, etc. Chemo-
metrics procedures [16,17] are usually applied to NIR spectra in
order to extract relevant information, as they are influenced by
the above mentioned features and other sources of error [18,19],
resulting that precision in NIR analysis is subjected to the
availability of algorithms or spectral data pre-treatments de-
veloped to reduce these effects. It has been noted that the effect
of these unexpected variations in the spectra are particularly
important in the fat spectra versus those of other agro-food
products, since while the latter generally present very broad
absorption bands (more than 200 nm), fats and oils present very
sharp and narrow peaks [20].

It has been demonstrated that the sensitivity of calibrations to
the unexpected variation sources can be reduced by the use of
certain chemometric algorithms like repeatability files [21].
However, the implementation of repeatability files is not an easy
task, as it requires a specific design for fats and oils.

On the other hand, the use of one or more spectral pre-
treatments during calibration development is a regular practice
in the development of NIR prediction models, as some of these
transformations reduce significantly the observed residuals
(NIR predicted value minus reference value). In this context, it
Table 1
Composition (weight percentage of total methyl esters) of calibration and validation

Entire set Calibration set

C16:0 C18:0 C18:1 C18:2 C16:0 C18:

N 341 341 341 341 311 311
Mean 21.08 10.67 52.32 9.39 21.07 10.6
Min. 17.90 7.70 45.00 6.80 18.00 7.7
Max. 25.30 14.90 58.10 13.50 25.30 14.9
SD 1.46 1.32 2.44 1.32 1.45 1.3

n: number of samples; SD: standard deviation.
C16:0: palmitic acid; C18:0: stearic acid;C18:1: oleic acid; C18:2: linoleic acid.
could be interesting to know if these spectral transformations
can correct some of the observed unforeseen variations and, as
well, determine the degree and extent of the corrections.

While pre-treatments seem to be of importance in calibration
development, statistical significance of the improvements
obtained in the prediction ability of NIRS equations, after its
use, is often not established. Moreover, most published works
conclude about the use of a specific pre-treatment on the basis
of minimum values obtained for the standard errors of cross
validation (SECV) or standard errors of prediction (SEP). This
is risky, because any improvement is confounded by other
factors, for example outlier rejection.

Recently, several authors [22–25] used statistical tests to
compare SEP or bias-corrected SEP (SEP(C)) values obtained
after applications of different pre-treatments of NIR spectral
data. The statistical tests used are mostly based on a procedure
published by Fearn [26]. Conclusions found in these papers are
diverse: Roggo et al. [23] indicated that best results for the
prediction of sucrose content of sugar beet were achieved with
spectra pre-treated with Standard Normal Variate (SNV) and a
second derivative; while Delwiche and Reeves [25] concluded
that, even with statistical testing, the selection of the appropriate
pre-treatment in a NIR calibration must ultimately be based on
the modeller's judgment.

Thus, the present paper tries to evaluate the statistical sig-
nificance of the effect of different mathematical pre-treatments
on the sensitivity to unexpected sources of errors, of NIR
equations developed for the prediction of main fatty acids in pig
fat.

2. Experimental

2.1. Samples and reference data

A total of 341 samples of Iberian pig fat belonging to animals
reared during 1997 and 1998 and produced under the guidelines
of the Designation of Origin “Jamón de Huelva” were used in
this study. Sub-cutaneous fat samples were collected from the
tail insertion area in the coxal region of all animals after
slaughtering.

Liquid fat samples were obtained after melting in a
microwave oven, and were maintained at 35 °C in an oven till
they were scanned in a liquid state [27]. Due to the melting
procedure used, samples were clear but not totally free of
residual moisture or solids.
sets

Validation set

0 C18:1 C18:2 C16:0 C18:0 C18:1 C18:2

311 311 30 30 30 30
4 52.36 9.38 21.20 10.96 51.90 9.45
0 45.00 6.80 17.8 7.9 45.8 7.8
0 58.10 13.5 24.8 14.20 56.90 13.10
1 2.43 1.33 1.64 1.46 2.48 1.27



Table 2
Combinations of pre-treatments used in calibration

Equation Scatter
correction

Derivative Equation Scatter
correction

Derivative

1 None None 26 ADT 1,5,5,1
2 AS None 27 ADT 1,10,5,1
3 DT None 28 ADT 1,10,10,1
4 ADT None 29 ADT 2,5,5,1
5 DTA None 30 ADT 2,10,5,1
6 Standard MSC None 31 ADT 2,10,10,1
7 Weighted MSC None 32 DTA 1,5,5,1
8 None 1,5,5,1 33 DTA 1,10,5,1
9 None 1,10,5,1 34 DTA 1,10,10,1
10 None 1,10,10,1 35 DTA 2,5,5,1
11 None 2,5,5,1 36 DTA 2,10,5,1
12 None 2,10,5,1 37 DTA 2,10,10,1
13 None 2,10,10,1 38 Standard MSC 1,5,5,1
14 AS 1,5,5,1 39 Standard MSC 1,10,5,1
15 AS 1,10,5,1 40 Standard MSC 1,10,10,1
16 AS 1,10,10,1 41 Standard MSC 2,5,5,1
17 AS 2,5,5,1 42 Standard MSC 2,10,5,1
18 AS 2,10,5,1 43 Standard MSC 2,10,10,1
19 AS 2,10,10,1 44 Weighted MSC 1,5,5,1
20 DT 1,5,5,1 45 Weighted MSC 1,10,5,1
21 DT 1,10,5,1 46 Weighted MSC 1,10,10,1
22 DT 1,10,10,1 47 Weighted MSC 2,5,5,1
23 DT 2,5,5,1 48 Weighted MSC 2,10,5,1
24 DT 2,10,5,1 49 Weighted MSC 2,10,10,1
25 DT 2,10,10,1

106 V.M. Fernández-Cabanás et al. / Chemometrics and Intelligent Laboratory Systems 87 (2007) 104–112
Fatty acid composition, defined by contents in oleic (C18:1),
linoleic (C18:2), palmitic (C16:0) and stearic (C18:0) fatty
acids, was determined by gas chromatography on liquid fat,
using an HP-5890 chromatograph fitted with automatic injector
and an RTX-2330 column.

The entire set was randomly split into a calibration (n=311)
and a validation set (n=30), in order to segregate an
independent collective to evaluate the prediction models
developed using the remaining samples. Chemical composition
data for both sets used is displayed in Table 1.

In order to test the effect of unexpected variations in the
spectra, a fat sample was divided into sub-samples that were
preserved frozen and scanned after thawing at regular intervals
during the spectra recording period.

2.2. NIRS hardware

Reflectance spectra were obtained on a Foss NIRSystems
6500 SY-I monochromator, from 400 to 2498 nm, every 2 nm
(spectral bandpass 10 nm±1 nm). Analysis was performed
using a spinning module. Samples were scanned using a
transflectance cam-lock ring cell (3.75 cm diameter) with
0.1 mm pathlength and provided with an aluminium reflectance
surface (FOSS ref. IH-03459). The volume needed per sample
was 0.3 ml, approximately. Reflectance data were stored as the
logarithm of reciprocal of reflectance (1/R), collecting 1050 data
points per sample. The spectrum of each sample was the
average of the spectra of two fat sub-samples, being each sub-
sample spectra the result of 32 successive scans (16–32–16,
reference–sample–reference).

2.3. NIRS software

All spectra were manipulated and processed, and all cali-
bration equations were obtained using ISI software NIRS3 ver.
4.0 and WINISI ver. 1.5 (Infrasoft International, State College,
PA), respectively.

Statistical tests for SEP(C) comparisons were computed with
Microsoft Excel.

2.4. Mathematical pre-treatments

A total of 49 combinations of pre-treatments (Table 2) were
applied to obtain Modified Partial Least Squares (MPLS)
calibration equations [28,29]. The mathematical pre-treatments
used were a spectral Auto-Scaling (AS) based on Standard
Normal Variate (SNV) [30], Detrending (DT) [30], combination
of AS followed by DT (ADT), combination of DT followed by
AS (DTA), two versions of Multiplicative Scatter Correction
(MSC) [31] included in the WINISI software (Standard MSC
and Weighted MSC) and four different derivative math
treatments.

2.4.1. Auto-Scaling (AS) based on Standard Normal Variate
(SNV) [30]

The SNV centres each spectrum and then scales it by its own
standard deviation (σ), correcting shifts on the log(1/R) axis.
The transformation is applied to each spectrum individually, and
the resulting spectra have mean zero and unit variance.

XSNV;i ¼
Xlog 1=Rð Þ;i−

P
X

log 1=Rð Þ
rlog 1=Rð Þ

where

XSNV,i is the SNV spectrum value at wavelength i.
Xlog(1/R),i is the log(1/R) spectrum value (raw data) at wave-
length i.
P
X log 1=Rð Þ;i is the mean value of log(1/R) spectrum (for all

wavelengths).
σlog(1/R) is the standard deviation of log(1/R) spectrum (for all
wavelengths).
i is the wavelength.

The AS algorithm (wrongly called SNV) as included in ISI
and WINISI softwares has been simplified excluding spectra
centering, so transformed spectra have non-zero mean and
unitary variance.

XAS;i ¼
Xlog 1=Rð Þ;i
rlog 1=Rð Þ
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2.4.2. Detrending (DT) [30]
DT is performed using a second-order polynomial in a

regression analysis, where spectral values of a sample form the
response or dependent variable and the independent variable
is given by the wavelengths, correcting effects due to base-
line curvature. DT correction is also applied to an individual
spectrum, and gives a spectrum with zero mean and not-unitary
variance.

X̂ log 1=Rð Þ;i ¼ Aþ BdW þ CdW 2 þ ei

XDT;i ¼ Xlog 1=Rð Þ;i− X̂ log 1=Rð Þ;i

where

XDT,i is the DT spectrum value at wavelength i.
X̂log(1/R),i is the estimated value of Xlog(1/R),i obtained from the
quadratic function.
W is the wavelength value.
2.4.3. Combinations ADT and DTA
ADT and DTA are calculated applying both AS and DT

sequentially in different order. ADT is calculated directly by the
softwares used, while DTA was obtained applying separately
both transformations. ADT transformations result in a spectrum
that has mean zero and non-unitary variance, while DTA cor-
rection gives a spectrum with non-zero mean and variance of
one. Both ADT and DTAwere found to be related by a scaling
factor [32].

2.4.4. Multiplicative scatter correction (MSC) [31]
Standard MSC (SMSC) is performed calculating a least

squared regression between each spectrum and the mean spec-
trum of the whole data set, thus, it is considered a set-dependent
transformation. Afterwards, the regression coefficients are used
to correct the spectra, as it is stated below:

Xlog 1=Rð Þ;i ¼ ai þ bi
P
X log 1=Rð Þ;i þ ei

XMSC;i ¼
Xlog 1=Rð Þ;i−ai
� �

bi

where

XMSC,i is the MSC spectrum value at wavelength i.

Xlog(1/R),i is the log(1/R) spectrum value (raw data) at wave-
length i.

X̄ log(1/R) is the mean value of all log(1/R) spectra of the data set
at wavelength i.
Fig. 1. Reflectance spectra of the reference pig fat thawed and scanned at regular
intervals.
i is the wavelength.
Weighted MSC (WMSC) [33] is defined as a modification of
SMSC that uses a correction for the spectral mean and standardizes
at each wavelength. In this transformation, to compute the
simple linear regression, the absorbances are weighted accord-
ing to their standard deviation.

Dhanoa et al. [34] found that MSC and SNV were lineally
related, while Helland et al. [35] confirmed the existence of
connections among other pre-treatments developed for scatter
correction.

2.4.5. Spectral derivatives
Spectral differentiation or derivatives are frequently used in

NIR spectroscopy. Hopkins [36] cited, as the main methods
used to calculate derivatives, the convolution function devel-
oped by Savitzky and Golay [37], the point-difference method
used in the Grams software (Thermo Galactic, Salem. NH,
USA); and the Norris derivative or “segment-gap” method used
in Vision and NSAS softwares (FOSS NIRSystems, Silver
Spring, MD, USA) and ISI–WINISI softwares.

ISI derivative math treatments are referred to by a four-digit
notation (a, b, c, d), where a is the derivative order, b is the
derivative gap, c is the smoothing segment and d is the second
smoothing segment [33].

2.5. Calibration development and management of outlier
samples

Spectral centering and detection of spectral outliers prior to
calibration development were omitted, so as to test the ability of
pre-treatments in the detection of these anomalies. All calibra-
tions were obtained for the spectral range 1100–2498 nm and
none, 2 or 9 maximum number of outliers elimination passes.
Limits for outlier detection were 2.5 and 3 for T and H statistics,
respectively [33].

Modified Partial Least Squared (MPLS) calibrations were
obtained using an automatic routine implemented with the
option “teach automatic sequence” included in ISI software [33].
The calibrations were developed using from 0 to amaximum of 9
passes of automatic outliers (T and H) elimination. T outliers are
defined as samples with significant differences between their



Fig. 2. Standard Deviation of reflectance spectra of the reference pig fat thawed
and scanned at regular intervals.
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laboratory and predicted values, while H outliers are defined as
samples whose spectra show excessive distance (HN3) to the
spectral centre of the calibration set [33].

2.6. Statistical analysis

Performance of NIRS equations was evaluated by examining
the statistical values obtained for calibration and validation with
test set procedures. Main calibration statistics are 1-VR (deter-
mination coefficient for cross validation) and SECV (standard
error of cross validation), while validation was evaluated by SEP
(C) (standard error of prediction bias corrected) and R2

(determination coefficient for validation).
The SEP(C) values were compared according to the procedure

published by Fearn [26], based on pairwise comparisons of the
standard deviation of the residual vectors coming from two
models and on the R2 between these two vectors. First, the
correlation coefficient was found between the two sets of pre-
diction errors (r) and then K was calculated:

K ¼ 2 1−r2ð Þt2n−2;0:025
n−2

where tn − 2,0.025
2 is the upper 2.5% point of a t distribution for

n − 2 degrees of freedom.
Fig. 3. Correlation coefficients (R) between absorbance values corresponding to
sub-samples of the reference pig fat, thawed and scanned at regular intervals
along the spectral collection period, and elapsed time since first scan.
Then, L was found

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2−1ð Þ

pq

The next two functions define the lower and the upper limits
of a 95% confidence interval for the ratio of the true standard
deviations. If the interval includes 1, errors are not significantly
different at the 5% level:

SEPðCÞ1
SEPðCÞ2

� 1
L

and
SEPðCÞ1
SEPðCÞ2

� L:

The previous test was compared with the procedure used by
Roggo et al. [23]. This method is based on a Fisher test and
Fig. 4. Reflectance spectra of the Iberian pig fat calibration set. A=raw spectra;
B=AS transformed spectra; C=DT transformed spectra; D=standard MSC;
E=derivative 1,5,5,1, and F=derivative 2,10,10,1.



Table 3
Maximum and minimum SECV values for C16:0, C18:0, C18:1 and C18:2 calibrations with 0, 2 or 9 maximum number of outliers elimination passes for all pre-
treatments; and Standard Error of Laboratory (SEL) for the reference analyses

C16:0 C18:0

Elim. passes 0 2 9 0 2 9

Calibration SECV Eqa SECV Eqa SECV Eqa SECV Eqa SECV Eqa SECV Eqa

Minimum 0.38 5 0.27 17 0.18 38 0.32 5 0.25 15 0.22 7
Maximum 0.45 23 0.31 7 0.30 1 0.36 8 0.32 47 0.30 29

SEL 0.26 0.22

C18:1 C18:2

Elim. passes 0 2 9 0 2 9

Calibration SECV Eqa SECV Eqa SECV Eqa SECV Eqa SECV Eqa SECV Eqa

Minimum 0.42 19 0.27 44 0.22 3 0.22 8 0.15 15 0.15 14
Maximum 0.45 1 0.32 1 0.28 1 0.28 7 0.20 1 0.20 7

SEL 0.25 0.15

C16:0: palmitic acid; C18:0: stearic acid; C18:1: oleic acid; C18:2: linoleic acid.
SECV: standard error of cross validation.
SEL: standard error of the reference method (gas chromatography).
Eqa: equation number.
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defines a confidence interval for errors with non-significant
differences with minimum error obtained (Errormin):

Errormin;Errormin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1−a;n−1;n−1

p� �

where α is the significance level (5% in this study) and (n − 1)
the degrees of freedom.

3. Results and discussion

As stated before, there is evidence of the existence of unexpected
spectral variation during spectra acquisition. Therefore a preliminary
stage explored the spectra plot of the data set corresponding to the
reference pig fat sample scanned repeatedly (Fig. 1), where spectral
scatter effects were confirmed. In this figure, it could be noticed that
spectral variations were higher for wavelengths with higher absorbance
values. This fact was confirmed studying the standard deviations of the
absorbance data for this set (Fig. 2), where it was observed that the
shape of the spectral discrepancies was similar to the average log(1/R)
value, indicating that some of the pre-treatments used for the scatter
correction could help in their reduction.

Moreover, absorbance values associated with the reference sample
showed an increasing trend during the period of analysis, as older
spectra generally had lower log(1/R) values. Correlation coefficients of
absorbance values corresponding to sub-samples of the reference fat,
Table 4
Mean, minimum and maximum number of samples deleted during calibration
development for C16:0, C18:0, C18:1 and C18:2 with 2 or 9 maximum number
of outliers’ elimination passes

C16:0 C18:0 C18:1 C18:2

Passes 2 9 2 9 2 9 2 9

Del. samples Mean 15 31 11 20 14 24 10 13
Minimum 11 12 6 10 11 16 8 8
Maximum 19 42 15 30 18 39 13 25

C16:0: palmitic acid; C18:0: stearic acid; C18:1: oleic acid; C18:2: linoleic acid.
scanned at regular intervals along the spectral collection period, with
elapsed time since first scan proved to be medium-high for all
wavelengths at the second half of the spectral range (Fig. 3), showing
an important effect of time on the incidence of spectral variations.
Negative correlation coefficients found at the beginning of the spectra
could be a consequence of the presence of a spectral curvature effect
(illustrated by Fig. 4D) together with the distortions caused by reduced
absorbance values at the mentioned region. The observed drift in
absorbance values could be caused by the loss of reflectance properties
of the aluminium surface placed at the back of the analysis cell used or
even by slight changes in the optical features of the instrument.

The effect of data pre-treatments was easily seen by visual
inspection of transformed spectra, as shown in Fig. 4. The degree of
spread observed in raw data (log 1/R) for the pig fat spectra set along
the Y axis was reduced by the use of any of the pre-treatments studied.
Nevertheless, the greatest reduction in the spectral dispersion was
achieved with the application of MSC and derivatives. DT and MSC
reduced spectral variation maintaining peaks position in relation to the
log 1/R raw data. DT transformation, when applied to scattering
products like intact or milled animal feeds, usually corrects the
observed curvature of their spectral baselines [30], but in this case,
where original spectra showed an almost flat baseline, DT caused a
decreasing baseline effect. Application of any of both derivatives
changed drastically spectral shapes, duplicating original peaks into
positive and negative going features and introducing new peaks.

However, reduction of the observed spread in a spectral data set for
a certain pre-treatment is not a warranty for a good result in the
calibration development procedure. It is impossible to know before-
hand which pre-treatment will lead to the most accurate model with a
certain calibration set. Thus, we used the option “teach automatic
sequence” included in ISI software to create a macro command which
allowed the calculation of 49 regression models for each analytical
parameter with just one order. This option has an invaluable utility, as
for this paper it was necessary to develop and validate 588 equations
with more than 300 calibration samples. Although computers are able
to perform calculations in a reasonable period of time, each outlier
elimination pass implies a new calibration computation and, conse-
quently, an increment in the final computation time.



Table 5
SEP(C) maximum, minimum (lower confidence limit) and upper confidence limit for C16:0, C18:0, C18:1 and C18:2 calibrations with 0, 2 or 9 maximum number of
outliers elimination passes

C16:0 C18:0

Elim. passes 0 2 9 0 2 9

Calibration SEP(C) Eqa SEP(C) Eqa SEP(C) Eqa SEP(C) Eqa SEP(C) Eqa SEP(C) Eqa

Minimum 0.35 18 0.39 13 0.37 19 0.27 36 0.26 5 0.26 1
Maximum 0.43 1 0.46 4 0.45 2 0.34 20 0.34 8 0.34 8
Upper CL 0.48 0.53 0.50 0.37 0.35 0.35

C18:1 C18:2

Elim. passes 0 2 9 0 2 9

Calibration SEP(C) Eqa SEP(C) Eqa SEP(C) Eqa SEP(C) Eqa SEP(C) Eqa SEP(C) Eqa

Minimum 0.57 5 0.58 20 0.57 27 0.27 47 0.23 35 0.27 47
Maximum 0.65 22 0.67 47 0.68 47 0.36 2 0.43 ⁎ 2 0.43 ⁎ 2
Upper CL 0.78 0.79 0.78 0.37 0.31 0.37

C16:0: palmitic acid; C18:0: stearic acid; C18:1: oleic acid; C18:2: linoleic acid.
SEP(C): standard error of prediction bias corrected.
CL: confidence limit.
Eqa: equation.
* Indicates significant differences with minimum error at P=0.05.
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Although we are aware of the importance of a detailed discussion
about the causes and management rules for outliers detected during
calibration development for products like fats, that can be affected by
huge number of error sources [20,21], in the present paper this phase
was omitted due to the great number of calibrations to be tested.
Nevertheless, using an automatic deletion procedure, it was possible to
obtain regression models with 0, 2 or 9 maximum number of outlier
elimination passes. This fact allowed us to test the effect of spectral pre-
treatments on the number of samples detected as T or H outliers.

The incidence of the combination of spectral pre-treatments used
during calibration can be analysed with the use of Table 3. There were
found differences between maximum and minimum cross validation
errors (SECV) for all parameters and number of outlier elimination
passes, as a result of the effect of the combination of the mathematical
pre-treatments applied. Elimination of outliers, generally, improved the
calibration statistics, allowing SECV to reach values close to the
calculated standard error of laboratory (SEL) for the reference method
(gas chromatography). It was observed that results obtained with 2 or 9
maximum number of outliers elimination passes were reasonably
similar, except for palmitic acid calibrations, which could be an
indication of the elimination of main outlier samples during the first
two deletion passes.

In relation to the ability of the different pre-treatments to detect real
outliers, Table 4 shows the mean, minimum and maximum number of
samples deleted during calibration development for 2 or 9 maximum
number of automatic outlier elimination passes. The selection of 9
passes as maximum for the elimination of outliers was done for
comparison purposes only, and it is not recommended. However this
option does not suppose the mandatory reaching of this limit in the
development of calibrations, being generally selected a lower number
of passes. The average number of deleted samples with a maximum of
two elimination passes for all calibrations varied between 10 and 15,
which represents a 3–5% of the initial calibration set. Important
differences were not detected between the maximum and minimum
number of samples removed, so it could be presumed that they were
real anomalous samples. With a maximum of 9 elimination passes,
there were removed an average number of outliers that varied between
13 and 31, which stands for 4–10% of the calibration set. One could
thus think that some pre-treatments show higher abilities to detect real
outliers during calibration development, while other transformations
lead to the detection of false anomalies, like samples with extreme labo-
ratory values. The importance of the use of an appropriate mathematical
transformation is emphasised, as elimination of false outliers during
calibration could cause a reduction in the prediction ability of calibrations
[38]. Nevertheless, differences in the number of deleted samples with 2 or
9 maximum number of elimination passes were slight, thus we could have
an estimation of the magnitude of the real number of anomalies present in
the calibration data set.

Influence of pre-treatments on the predictive ability of calibrations
was determined with paired comparisons of the minimum SEP(C)
value and the remaining SEP(C) values, using the statistical tests
proposed by Fearn [26] and Roggo et al. [23]. As conclusions obtained
with both statistical tests were coincident, all information was
summarised in Table 5, including maximum and minimum SEP(C)
values for both analytical parameters and the different maximum
number of outlier elimination passes, and also the SEP(C) upper
confidence limit value, calculated as SEPðcÞminx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0:95;29;29:

p
Accord-

ing to Roggo et al. [23] all models which have SEP(C) between SEP
(C)min and the upper confidence limit were not significantly different.
Table 5 shows that the prediction errors were also affected by the pre-
treatment used, but differences between maximum and minimum were
marginal for all parameters except for linoleic acid.

Comparison of prediction errors for palmitic acid showed that there
were not significant differences for any number of outlier elimination
passes. Minimum errors were obtained with calibrations developed
with derivative 2,10,5,1 combined with pre-treatments AS, ADT and
SMSC, for no outlier elimination passes; derivative 2,10,10,1 alone or
combined with AS, ADT, DTA and SMSC, for 2 maximum number of
outlier elimination passes; and derivative 2,10,10,1 combined with
SMSC and AS, for 9 maximum number of outlier elimination passes. It
is clearly shown that best results were obtained with the use of a second
derivative: 2,10,5,1 for no outliers’ deletion, and 2,10,10,1 for any
number of outliers elimination passes. On the contrary, highest errors
were obtained for AS, ADT, first derivatives and other pre-treatments
applied alone. Other validation statistics like bias, slope and deter-
mination coefficient fulfilled the control limits suggested by Shenk



111V.M. Fernández-Cabanás et al. / Chemometrics and Intelligent Laboratory Systems 87 (2007) 104–112
et al. [39] only for the calibrations developed without outlier elimination
passes. This fact could be explained as the control limits applied for SEP
(C) seem to be more restrictive for models with better calibration
statistics (lower calibration errors).

SEP(C) values obtained for stearic acid calibration were not
significantly different. Best results were observed with the application
of pre-treatments DTA+2,10,5,1; DTA; and none, DTA, SMSC,
2,5,5,1 and DT+2,5,5,1; for 0, 2 and 9 maximum number of outlier
elimination passes, respectively. A clear pattern was not observed
associated with the highest prediction errors, even though the use of
derivative 1,5,5,1 or AS produced higher errors in many cases. In
relation to the control limits for validation statistics, a 100% conformity
was observed without elimination of outliers, whereas with a maximum
of 2 elimination passes, only one situation arose where SEP(C) resulted
in values higher than the calculated limit (1.3 times SECV) [39]. The
use of more elimination passes incremented the number of non
conformities in relation to SEP(C) up to 20.

Significant differences were not found for the validation errors of
oleic acid calibrations at any level of outlier elimination passes.
Minimum errors for each outlier elimination level were obtained with
calibrations developed with DTA and SMSC; DT combined with
derivative 1,5,5,1; and DT combined with derivative 2,10,10,1; for 0, 2
and 9 maximum number of outlier elimination passes, respectively.
Prediction errors for 2 or 9 maximum number of outliers elimination
passes were superior for the combinations ADT+2,10,5,1 and WMSC+
2,5,5,1, giving quite poor prediction performance when using the second
derivative 2,5,5,1. Furthermore, all SEP(C) values were higher than the
calculated limit for all calibrations tested.

Probably, the most interesting results appeared with calibrations
developed for linoleic acid. Firstly, it was the only parameter that pre-
sented significant differences for the prediction errors with any number of
outlier elimination passes. The combination of pre-treatments that led to
lower validation errors for each outlier elimination level were WMSC
combined with derivative 2,5,5,1; DTA combined with derivative
1,10,10,1; and WMSC combined with derivative 2,5,5,1; for 0, 2 and 9
maximum number of outlier elimination passes, respectively. More-
over, all spectral transformations that included derivatives 2,5,5,1 or
1,5,5,1, combined or alone, produced lower SEP(C) values, showing
the influence of the derivative parameters (order, gap and smoothing
segment) on the performance of calibrations. On the contrary, the
application of scatter corrections like AS, DTA, SMSC, WMSC, ADT
and DT alone or the use of raw spectra resulted in higher validation
errors. In relation to the compliance with validation control limits, there
were detected only discrepancies for SEP(C) values. In this sense, only a
few combinations of pre-treatments that included derivatives 1,5,5,1 or
2,5,5,1 (except DTA+2,5,5,1) satisfied error limit criteria.

It was possible to find a pattern for the combination of pre-
treatments (especially derivatives) that provided the best and worst
results in validation tests, as it has been concluded for other agro-food
products [23,24]. Moreover, the use of certain derivatives alone or in
combination with other pre-treatments showed an important effect on
validation results for some analytical parameters.

4. Conclusions

Despite that performance of prediction models showed
variations with the mathematical pre-treatment used, general
significant differences were not detected with the tests applied,
except for linoleic acid.

The effect of spectral pre-treatments on the predictive ability
of NIRS calibration models should be measured not only by
their ability to improve the detection of real outliers during
calibration but also by the degree of adjustment among the
constituent values and the transformed spectral data.

The best pre-treatments in calibration and in prediction usually
differ. Therefore, when making evaluation of pre-treatments it
would be desirable to use some automatic software routines that
permit an efficient evaluation of different validation sets and/or
the execution of a large number of cross validation passes.

As NIR spectra of pig fats is characterized by the presence of
sharp peaks susceptible to changes caused by unexpected
variations, the optimisation of the derivatives used (order, gap
and smoothing segment) is essential for the implementation of
robust calibrations.

Unexpected spectral variations are partially corrected with
the use of pre-treatments in calibration, but not as well as using
other chemometric strategies, like repeatability files.
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