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Symbols
bj offset

C penalty included in SVM that has to be

added in order to take into account those

samples that cannot properly separated

f(x) function representing the separating

surface

K kernel function

n number of training data points

t score value

w weight vector

<w, x> inner product of w and x

x, y first and second dimensions in the
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yi reference or group value (�1)

�i Lagrangian multipliers

� third dimension in the hypercubes repre-

senting spectral variation (wavelengths)

�i variables that measure the error made at

point (Xi, Yi)

4.06.1 Introduction

In the past decade, multispectral and hyperspectral chemical imaging have become powerful analytical
approaches in several areas including quality control and troubleshooting of pharmaceutical products, remote
sensing to tackle environmental, agricultural or mineralogy challenges, assessment of painting features, and
safety evaluation and quality control of agrofood products.1 In fact, these optical imaging techniques are
increasingly considered the preferred tools in the design of nondestructive food/feed inspection instruments
with applications in sample characterization, the measurement of chemical species distribution and the
detection of contamination and defects in agrofood products,2 and for a variety of applications for trouble-
shooting and quality assurance of pharmaceutical products. Of particular interest from a public health
standpoint are instruments designed for multispectral or hyperspectral near-infrared (NIR) imaging analysis,
which already play and will increasingly hold a key role for automatic food and feed inspection. For analysts
and chemometricians, this is something of a revolution with hundreds or thousands of spectra (including tens or
hundreds of variables) being collected for each sample, instead of the unique average spectrum typically
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collected with classical spectroscopic instrumentation.2 The challenge is to handle, extract, and exploit the
relevant information contained in this large amount of data now available.

The aim of this chapter is to discuss the integration of chemometric processing tools for studying NIR
imaging data. The first part of this chapter briefly introduces the instrumentation and some preprocessing
requirements specific to imaging data. Some of the most popular chemometric tools used in NIR image analysis
are then discussed, with a short introduction to a tool only recently added to the imaging spectroscopists’ box.
Finally, a number of applications of chemometrics in the development of NIR imaging analytical methods are
explored, with a focus on agrofood and pharmaceutical products.

4.06.2 Introduction to NIR Imaging

NIR imaging instruments probe the spatially resolved chemical composition of samples. The spectral range probed
by the instrument depends on its illumination source, wavelength selection mechanism and detector. Long-
wavelength infrared imaging systems probe the combination, first, and second overtone bands of NH, CH, and
OH bonds; intermediate-wavelength instruments measure the first, second, and third overtones; short-wavelength
systems access only the third overtone. The chemical specificity of the spectral information, greater in the combina-
tion bands and gradually decreasing through the first, second, and third overtone bands, is the key to the value of this
family of techniques aptly named chemical imaging. The recent success of NIR chemical imaging can be attributed to
a combination of different factors: (1) nondestructive method, (2) high performance and availability of uncooled or
Sterling-cooled NIR-sensitive two-dimensional array detectors, (3) digitally tunable infrared optical filters, and
(4) drastic increase in both speed and capacity of laboratory computing platforms. The integration of these elements
has already shown promising results in the determination of quality parameters for complex matrices such as
pharmaceutical blends (e.g., Lyon et al.,3 Reich4), food products such as the detection of apple surface defects (e.g.,
Lu5) and contaminations (e.g., Mehl et al.6), or for the feed industry (e.g., Fernández Pierna et al.7 Fernández Pierna
et al.8). Indeed, it differs from classical NIR spectroscopy (NIRS) in that the quality attributes can be assessed from
both spatial and spectral (and therefore chemical) information. This makes the hyperspectral imaging technique
better than NIRS in extracting details on a smaller scale with the objective of obtaining a better quality evaluation.

Hyperspectral images or hypercubes are three-dimensional data sets containing light intensity measurements
where two dimensions (x and y) represent spatial distances, while a third dimension (�) represents spectral variation
such as wavelength (Figure 1). They can be interpreted as stacks of typically hundreds of two-dimensional spatial
images at different wavelengths, or tens of thousands of spectra, aligned in rows and columns. Three instrumenta-
tion approaches are used to acquire hyperspectral images (Figure 2). These different approaches can be termed
‘point’, ‘line’, or ‘plane’ scan, based on the orientation of the scanning dimension relative to the two-dimensional
spatial sample axes. These three acquisition modalities are described in detail later.
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Figure 1 The three-dimensional hypercube.
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Regardless of the scanning acquisition method, instruments may be multispectral and hyperspectral in nature.
With multispectral instruments, only a limited number of wavelengths (below 10) are collected. Typically, these
make use of a set of interference filters to measure the radiation of a fixed or predefined number of spectral
bands. The band pass of the filters used may vary from a few tenths up to hundreds of nanometers. On the
contrary, hyperspectral instruments allow collection of continuous spectral information from many contiguous
or discrete wavelengths (typically >100 wavelength channels) within a specified spectral range.

4.06.3 Chemometrics and NIR Imaging

Traditionally, chemometrics are used with spectroscopic data to yield a measure of composition. The advent of
imaging spectrometers adds a new dimension to the data set and it is imperative that the chemometric tools be
designed to use this information as well. Structurally intricate samples are well suited for chemical imaging
because of spatial and chemical complexity. Pharmaceutical products are a good example of chemically
complex architectures and they have become one of the most prolific fields of use of NIR chemical imaging
(e.g., Veronin and Youan,9 Dubois et al.10 Lee et al.11 Lewis et al.12). Combining the spatial and chemical
information brings about a need for different data-processing modalities in order to exploit the information that
is present in the chemical imaging data set. In the following sections, the multistep chemometric approaches
that attempt to include the spatial information present in the image as well as the chemistry to better describe
and segment complex mixtures are presented and discussed.

The fundamental requirement for NIR chemical imaging experiments is that sample building blocks should
possess different chemistries. A chemometric model is used to segment the image based on chemical parameters
that are specific to that system, just like it would be used on individual spectra obtained from regular NIR
spectroscopy. The contrast contained in the results of the chemometrics allows a segmentation of the sample
into smaller parts that are characterized by their chemistry; these segments may further be measured and
described with size and shape parameters such as their elongation, circularity, and convexity. The value of this
combination of information, chemistry and morphology, is discussed later in the chapter with an example
relating it with dissolution profiles of pharmaceutical granules. We also explore how the same type of
processing applied to individual samples can provide valuable phenotypic information or insight into insect
and rot occurrence in corn kernels.

The strength of chemical imaging resides in the availability of a massive amount of information in the data
set; it can never be overemphasized that carefully designed data processing is required for accessing this
information. Image-processing techniques can be applied to individual images measured at single-wavelength
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Figure 2 Modes of acquisition used for hyperspectral image data collection: a, single-point mapping; b, line scanning, and;

c, global imaging.
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channels (or combinations of channels) to obtain spatial information content such as feature recognition.
Chemometric techniques can also be applied to the spectra from complete hyperspectral data sets as well as
subsets of spectra measured within spatial regions of interest (ROIs). The first section of this chapter explores
data conditioning or pretreatment and the application of some chemometric techniques (principal component
analysis (PCA), partial least squares (PLS), support vector machine (SVM)) to aid in the extraction of
information contained within hyperspectral images.

4.06.3.1 Image Acquisition and Data Conditioning

Spectroscopic data typically comprise variations in sample illumination and systematic throughput dependencies
on wavelength that must be accounted and corrected for; this is especially true when working with spectroscopic
imaging systems. Equally important are any variations due to spatial differences not linked to the chemical
composition of the sample, for example, variations of physical origin such as density or glare, and they must be
corrected for to focus the chemometric analysis on the chemical information. As introduced earlier, there are
different approaches to collect hyperspectral image data. The process of converting instrument measurement
signals to units of reflectance or absorbance depends on the type of instrumentation used for image acquisition.

A point scan instrument acquires a spectrum at a single spatial location using a Fourier transform or grating-
type spectrometer. Hyperspectral images are obtained by successively measuring spectra while the sample is
repositioned in the X and Y spatial dimensions. Assuming the lighting source remains fixed relative to the
spectrometer, instrument calibration can be performed utilizing a one-dimensional (spectral) calibration model.
This instrument configuration is often used in microscopy utilizing a high-precision X–Y motion stage.

For push-broom systems, which project a line of light onto a two-dimensional focal plane array (FPA), a two-
dimensional calibration model (spatial–spectral) is needed to account for variation in sample illumination and
instrument throughput. This instrumentation is best suited for remote sensing by aircraft or online process
measurement since the Y spatial axis may be arbitrarily long.

Finally, plane scan imaging systems position the measurement camera parallel to the sample surface,
obtaining X–Y spatial images with fixed sizes limited by the dimensions (pixels) of the camera detector.
Hyperspectral images are obtained by modulating the radiation reaching the camera using band pass or tunable
filters positioned in front of the camera. In this configuration, a complete three-dimensional (spatial–spatial–
spectral) calibration model must be determined. This calibration typically uses only two points (dark and bright
images), but calibrations with intermediate values have also been designed to account for system nonlinearity.13

Figure 3 shows a single-wavelength image obtained at 1430 nm of a mixture of grains containing soybean,
barley, maize, and wheat. The NIR chemical imaging instrument used for this acquisition is a MatrixNIR
system (Malvern Instruments Ltd.) based on an InGaAs FPA detector with 240�320 pixels (76 800 spectra per
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Figure 3 Image obtained by the NIR camera at 1430 nm of a mixture of grains containing soybean, barley, maize, and wheat.
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scan) and a liquid crystal tunable filter (LCTF) for wavelength selection. The effective field of view (FOV) is
variable and selection is made using microscope objectives.

The spectral imaging system was calibrated prior to further analysis with a dark image and a white
(background) image collected from a standard white reference board. The reflectance was calculated for
each pixel at each wavelength using the following equation:

R ¼ sample – dark

back – dark

where sample¼ image of the sample, dark¼ dark current image, and back¼ reference image (background).
This is performed to remove noise and to compensate for offset (bj) due to dark current, light source

temperature drift, and spatial lighting nonuniformity across the scene.
The image was preprocessed by applying a second derivative using the Savitzky–Golay algorithm.14 The

mean spectrum of each grain was calculated following the application of a morphological mask obtained
through a process of erosion in order to determine the contour of each grain. The resulting mean spectra from
each kernel are shown in Figure 3(b).

An additional issue common to all spectroscopic instrumentation is calibration transfer: How can spectral
data sets obtained from one instrument be corrected to allow direct comparison with data sets collected on
different days or with different instruments? Instrument standardization procedures employing known sample
standards with unique spectral signatures carefully selected to span the spectral space of expected sample
materials have been successfully applied to hyperspectral imaging data sets.15–17 Such chemometric-based
techniques determine correction models which ‘stretch’ the measured spectra of a slave instrument to match the
corresponding spectra of a master instrument. The selection of NIR imaging standards is still a matter of
personal preference and creativity; there are currently no official NIR chemical imaging standards available.
Common NIR spectroscopic standards, such as NIST 2036, can be employed to verify wavelength accuracy,
but these do not possess the spatial patterns required for spatial accuracy and resolution. Reflectance standard
materials such as Spectralon can be used; however, these materials may appear inhomogeneous at high spatial
magnification.

Spectral transferability can be achieved quite simply, thanks to the large spatial dimension of the image; small
spatial areas within the sample image can be allocated to the reference sample materials necessary for
instrument standardization. What was previously a time-consuming calibration step can be automatically
incorporated into every hyperspectral image by including these standards in situ within the FOV of the image.

One final consideration in data conditioning is that an FPA detector may contain a small number of bad or
‘dead’ pixels originating from sensor elements that either fail to respond or respond erroneously. The type of
imaging instrumentation setup implies a different impact of such bad sensor pixels on the data set and dictates
different approaches to their detection and removal.

A bad sensor element in a push-broom line scan configuration affects only the part of the spectrum imaged
onto that element. Removing this data value would require eliminating either a complete wavelength channel
or the affected spatial channel from the entire hypercube. Such ‘bad’ data elements are routinely simply
replaced instead, using median filters that examine the surrounding neighborhood of data values.

Bad pixels in a plane scan image system affect all values within a single spectrum. Correction steps depend on
the type of analysis. In the case of chemometric processing of sets of spectra, bad spectra can be detected as
outliers and removed. In the case of spatial image processing, bad pixels can be replaced with the median value
of neighboring pixels. The impact of the number of bad pixels must be considered both as a function of their
spatial distribution and a proportion to the total number of detectors. Clusters of tens of bad pixels greatly
impact the image by removing all spatial resolution for the entire area of the cluster, while tens of isolated bad
pixels in an array containing tens of thousands of pixels have relatively no impact.

How are bad data values detected? Simple thresholding will identify sensors stuck ‘on’ or ‘off’. For example,
with 12-bit digital data values ranging between 0 and 4095, data values < 100 or > 4000 may be suspect.
Principal component analysis (PCA) score plots of image spectra will often reveal significant outliers where an
individual sensor may give an erroneous result that otherwise lies within the acceptable data value range. For
example, Figure 4 shows t1 – t2 score plots (1) before and (2) after replacement of bad line scan data with
neighborhood values. The data are taken from 160 000 reflectance spectra of a single cheese sample. Each line
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scan image (320�256 pixels) contained 298 bad pixels. The strange clustering of points observed is due
primarily to sets of spectra containing individual values near 0 or 4095. These extreme outliers have very
significant leverage and must be detected and removed to obtain accurate PCA or PLS calibration models.
Because hyperspectral images often contain tens or even hundreds of thousands of spectra, outlier spectra can
be liberally removed while retaining quality spectra representative of the true sample nature.

4.06.3.2 Spectral Preprocessing

As with conventional spectroscopy, hyperspectral image reflectance spectra can be further transformed or
filtered to remove unwanted nonlinear, additive, and multiplicative effects. Transformation to absorbance units
estimated as the base 10 logarithm of reflectance, or application of the Kubelka–Munk transform18 may help to
‘linearize’ diffuse reflectance spectra making them proportional to chemical constituent concentrations, which
is frequently the objective of spectroscopic analysis.

Changes in sample orientation, particle size distributions, packing, instrumentation hardware, and/or
analytical environment such as lamp intensity, temperature, or detector response may result in background
signal that is added throughout the spectrum. The application of first and second derivative transforms14,19–21

can compensate for constant additive effects.
Multiplicative scatter correction (MSC)22,23 can be applied to correct for particle light scatter effects when

sample preparation or data acquisition tools cannot be adapted to limit this effect. Since the scatter effect may
not be exactly the same for all wavelength ranges, Isaksson and Kowalski24 proposed correcting the spectral
value at each wavelength with independent offset and slope correction terms. This technique is called
piecewise multiplicative scatter correction (PMSC). Alternatively, the standard normal variate (SNV) trans-
form was proposed by Barnes et al.25 and has been shown to be equivalent to the MSC transform, differing only
in scaling factors.26

Hyperspectral imaging offers unique opportunities to closely examine the interaction between preprocessing
treatments, instrumentation, and sample problems. Fundamental particle scattering effects can be explored, for
instance, by examining the large populations of spectra contained within individual hyperspectral images.
Large population statistics and data visualization tools can be employed to compare the effectiveness of
different preprocessing treatments.

A series of hyperspectral NIR images (960–1662 nm) were acquired of ordinary table salt and sugar,
separated into eight different particle size fractions ranging between > 400 and < 63 mm. From each image
250 spectra were randomly selected from the two sets of images (salt and sugar), thereby providing a combined
spectral data set containing 4000 spectra. PCA was applied to mean-centered data, following different spectral
preprocessing treatments. The results are shown in Figure 5(a), where the plus symbols represent sugar and the
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circles represent salt. The arrow indicates the direction from small to large particle size fractions. Each size
fraction has been color coded as well.

Sugar has a much stronger NIR absorbance than salt; consequently, the scattering effects are greater. This is
indicated in the first plot for absorbance spectra (Figure 5(a)). The variation in score values for each particle
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size fraction is much greater for the sugar samples, and increases with particle size. The first derivative
transform (Figure 5(b)) reduces the variance in sugar relative to that in salt; however, the trend in particle
size group clusters is still clearly evident. The second derivative transformation (Figure 5(c)) results in a
similar reduction in relative variance in the sugar samples.

One approach to MSC corrections was based on first computing individual mean spectra for each of the eight
size fractions of both sugar and salt samples. These 16 spectra then became the target spectra for the respective
size fraction MSC corrections. As indicated in Figure 5(d), this technique greatly reduces the within-fraction
variance – each cluster is significantly tighter when compared to the untreated absorbance (Figure 5(a)). The
general trend between different size fractions is the same. Figure 5(e) indicates the results when a single target
spectrum is used for each salt and sugar (the mean of the eight respective size fraction spectra) and piecewise
MSC is applied. Here, the variation in sugar spectra has been dramatically reduced. Compared with sugar, the
salt has very little absorbance – consequently, the piecewise MSC models a much higher noise contribution
indicated by the larger relative cluster sizes. The overall trend in particle size dependency has been reduced for
both salt and sugar.

To indicate the exploratory nature of this process, Figure 5(f) shows the results of applying MSC with
targets based on particle size fractions as in Figure 5(d), but to spectra first transformed using the Kubelka–
Munk transformation on reflectance spectra. As with the second derivative transform (Figure 5(c)), the size
dependency of the salt fractions has been nearly completely removed. These figures indicate some of the
possible ways of combining exploratory analysis with preprocessing and PCA to examine the group populations
of spectra obtained with hyperspectral imaging. Such exploratory analysis of class populations is realistically
possible only with the immense number of spectra available from hyperspectral images.

4.06.3.3 Unsupervised Data Analysis of Imaging Data

In pattern classification problems (e.g., discrimination of incoming batches, authentication of food/feed
products, or detection of contaminants), all the variables used to describe the data may not be equally
distinctive and informative. In terms of hyperspectral imaging data, it means that it is not difficult to get
overwhelmed by the high dimensionality of the data set, which leads to the so-called curse of dimensionality.
For this reason, optimal variable selection and variable combination methods are important topics in these
fields.

In chemometrics, the most widely used method for exploratory analysis is the PCA.27,28 PCA is simple, easy
to use, and amply discussed, especially for its use as a pattern recognition and data compression method for
signal processing. In the case of image processing, volume reduction is a common objective of the PCA. PCA is
a way of identifying patterns in data by reducing the number of dimensions without much loss of information. In
other words, PCA is a linear transformation that tries to reduce the dimensionality. This is performed in such a
way that the reduced number of dimensions captures most of the informative variance of the data. The new
variables are called principal components (PCs) and correspond to the largest eigenvalues of the covariance
matrix that account for the largest possible variance in the data. The theory concerning PCA has been
explained elsewhere in this book. This section will focus only on its application to classical imaging and NIR
imaging.

Applied on digital photographs, PCA performs a coordinate transformation of the color image represented in
the space of fundamental colors (red, green, and blue, known as RGB). After this transformation, the new axes
are the largest eigenvalues of the covariance matrix of the three input images. Then three new images are
obtained by projecting the RGB axes onto the three resulting axes. The first axis corresponds to the largest
eigenvalue. The two other axes, which must be orthogonal to the previous axis, are linear combinations of the
input images that lead to the remaining variability or information that is not correlated to the first axis or to any
other PC of higher order.

Figure 6(a) represents a digital photograph of size M�N� 3 of a worldwide known Belgian scene. The
picture includes the information about intensity of color components stored in three planes. These R, G, and B
components are represented in Figure 6(b). Figure 6(c) represents the pseudocolor maps of the three
reconstructed components for each eigenvalue and of the PCA residuals. The first PC contains most of the
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intensity information. The other two PCs have a lower signal-to-noise ratio and they would require a filter in
order to improve the visualization; this is clear when looking at PC 2.

Owing to the recent availability of imaging spectrometers with high spectral resolution, hyperspectral image
compression has become increasingly important.29 In these cases, the hyperspectral image cube can be
considered as a high-dimensional feature space where each feature is represented as a spectral image. The
(reduced) dimensions obtained after PCA are defined as the ones that preserve the most information among
the hyperspectral data cube, that is, the ones that present the best representation of the original data.30

Examples of the use of PCA in chemical image analysis of agrofood and pharmaceutical products are presented
later in the chapter.

4.06.3.4 Supervised Data Analysis of Imaging Data

In order to locate features and to extract and analyze the information from spectral image data, a combination of
image-processing and chemometric techniques may be applied. Classical chemometric methods, such as PLS31

or artificial neural networks (ANNs),32 are well-known, proven techniques for both classification and regression
analysis of multivariate data, such as NIR spectra. New chemometric techniques such as SVMs are being
introduced in the hyperspectral imaging treatment. The use of SVM as a chemometric tool is recent, and its
application to spectroscopic data has been proposed by Cogdill and Dardenne33 among others.34,35 The use of
SVM in the analysis of hyperspectral imaging data is still sparse and the focus is on discrimination problems.7–8,36

Original

(a)

(b)

(c)

R G B

PC 1 PC 2 PC 3 Residual

Figure 6 A worldwide known Belgian scene: (a) digital image, (b) R, G, and B components, (c) pseudocolor maps of the

three reconstructed components for each eigenvalue and of the PCA residuals.
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Because the main theory about SVM has been explained elsewhere in this book, only the main ideas are presented
here, with examples in Section 4.06.4.

In brief, the main feature of SVM is that this method is able to construct a mathematical hyperplane
(f(x)¼wxþ b) based on a high-dimensional space to discriminate between groups. The problem of calculating
an SVM model can be solved by finding an optimal solution for the quadratic programming problem:

min
1

2
jwj jj2 þ C

Xn

i¼1

�i

 !
! subject to

yi wTxið Þ þ b � 1 – �i

�i � 0; fori ¼ 1; . . .; n
ð1Þ

where n is the number of training data points, yi is the reference or group value (�1 for training points xi), C is a
penalty that has to be added in order to take into account those samples that cannot be properly separated, and
�i represents the variables that measure the error made at point (xi, yi).

This equation can be solved using the method of the Lagrangian multipliers (�i) and the support vectors are
the points for which �i is positive and correspond to the nearest points to the boundary. In order to solve the
problem of the dimensionality, the kernel K function is introduced. The K function maps the data into some dot
product space (feature space) through a nonlinear map and in such a way that it constructs an optimal
hyperplane in a high-dimensional space and is returned to the original space as a nonlinear decision frontier.

Finally, the separating surface f(x) that maximizes the distance between the two groups of cases is found of
the form:

f ðxÞ ¼
Xn

i¼1

�i yi K x; xið Þ þ b ð2Þ

The kernel function, as well as the associated parameters, has to be defined prior to applying SVM.

4.06.4 Example Applications

4.06.4.1 Hyperspectral Imaging of Agrofood Products

The following examples of NIR images aim to demonstrate the potential of this technique to assess damaged
kernels and identify kernel types. Figure 7 shows a NIR chemical image at 1430 nm following processing with a
second derivative using the Savitzky–Golay algorithm (third polynomial degree and a gap of 15 points). The
image shows three maize grains with different characteristics: The grain at the left part of the image
corresponds to a damaged grain containing an insect (weevil larvae), the grain in the middle is a damaged
empty grain, and the grain at the right is a healthy grain. An enlargement of the image at the left that contains
the grain with the insect allows to study the spectral difference between the ‘healthy’ part and the damaged part
(containing the insect) of the grain.

Figure 8 shows the PCA results for another example of two maize grains analyzed by NIR imaging. The left
grain is a healthy one and the right grain a damaged one. In the middle is placed an insect. From the PCA
analysis on the multispectral images, it has been found that mainly the first PC score of images, which explains
> 71% of the variance, is suitable for identifying the presence of the insect. This is also the case when looking at
the residual matrix obtained after reconstruction using the three first PCs, which explain > 89.95%.

NIR imaging and PCA can also be used for the detection of the presence of rot in cereals. Figure 9 shows
an example of this problematic with two grains of maize, one of them being rotted (the left part of the
image) and the other being healthy. This figure shows the images taken at two different wavelengths: At
1160 nm, the difference between the two grains is enhanced as it is also shown in the spectra, and at
1560 nm, the rotten part of the grain becomes clearer. PCA, and mainly the seventh PC, is also useful in
order to put in evidence the rotten part of a grain mainly because of the large loading at 1560 nm as
indicated in Figure 10.

The examples of the use of PCA to handle visible and NIR imaging data are also reported in several papers.
For instance, in a work aiming to study the ripeness of tomatoes, Polder et al.37–39 used PCA and Fisher’s linear
discriminant analysis (LDA; a classical classification method) in order to visualize the data and calibrate the
instrument, respectively. The technique, based on hyperspectral NIR imaging to determine the maturity stage
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of preclimacteric apples,40 applied PCA in order to distinguish the starch concentrations within one apple and
among several apples during maturation. Lawrence et al.41 demonstrated the usefulness of PCA for distinguish-
ing the contaminants inside poultry carcasses. In their study to detect poultry skin tumors, Chao et al.42 used
PCA to select useful bands for detecting tumorous regions. Mehl et al.43 demonstrate that hyperspectral imaging
system allowed them to determine scabs, fungal, and soil contamination, and bruising using either PCA or the
absorption intensities at a specific frequency.

NIR chemical imaging has shown the potential to provide both speed for high-throughput analysis of large
numbers of kernels for quality assessment and a high content of chemical information – two important criteria
for plant breeding studies (e.g., Smail et al.44 Weinstock et al.45). The selection of a larger FOV for imaging
multiple kernels to extract average measurements per unit described previously highlights the value of the
spectroscopic image for high-throughput analysis. If kernels are spectroscopically imaged using a smaller FOV,
that is., at greater magnification, the data acquired may contain a breath of additional valuable information,
which may help establish phenotypic differences. The previous examples made this point clear. In this next
example, a corn kernel was sequentially sectioned and imaged plane by plane in the NIR spectral range
1150–1750 nm for 43 times. Each image is 250 mm deeper into the kernel than the previous one. It is noteworthy
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Figure 7 NIR chemical image at 1430 nm of three maize grains with different characteristics.
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that a single image acquired from a cross-section of the core of the kernel could suffice to access a large amount
of phenotypic information. The interest of the multiple slices is the possibility to render the final chemically
relevant results in three spatial dimensions, which allows volume calculations in addition to surface
measurements.

Data preprocessing consists of conversion to absorbance following subtraction of the dark image and
normalization by mean centering and scaling to unit variance by spectrum to reduce the effects of physical
parameters such as density. Data analysis is limited to a PCA, where the fourth PC was found to display good
discrimination between the various known structures of the kernel. Figure 11(a) shows a gray-scale image of
the scores of PC 4 at all pixels in the image and the histogram plot of the distribution of the scores.
Histogram-based segmentation was then performed using a curve-fitting algorithm. The graph in
Figure 11(b) clearly indicates three main fractions in the distribution, and histogram fitting further reveals
that the blue area in the image represents 23% of the area (i.e., of the pixels) of the kernel. Fine features of the
root and coleorhiza are also distinguished and highlighted in red, quantitatively representing about 0.4% of
the area of the kernel. The two colored regions in the image are delimited by segmentation of the image using
the chemical response, obtained by the calculation of a PCA. In this particular example, the segmented
images of all slices are recombined and rendered in three dimensions to create the image shown in
Figure 11(c).

A method for the detection of animal proteins in compound feeds was developed using NIR chemical
imaging with SVM data processing.7,8 A large spectral library that groups spectra representative of the
wide diversity of ingredients usually present in the preparation of compound feeds was gathered.35 The
objective was to investigate the limit of detection, specificity, and reproducibility of the NIR imaging
method using SVM for the detection and quantification of animal ingredient in feed. In brief, an SVM
discriminant model was applied to a single spectral image cube collected from animal sediment (bones)
particles and nonanimal sediment positioned separately on the same surface. Figure 12 shows the
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discrimination results for this model. Animal sediment material (121 particles) is shown on the left side of
the image and nonanimal sediment material (62 particles) on the right side. The results indicate that 101 of
the 121 animal particles were correctly detected as animal material, while 4 of the 62 nonanimal particles
were detected as being of animal origin. A visual inspection of the spectra of these four particles confirmed
that they were false-positive results. This wrong classification by the model was mainly due to the fact that
the discriminant models were constructed with nonsediment materials and applied here on sediment
fraction. However, the results indicate that the discrimination of animal particles in the sediment fraction
is possible using SVM.

SVM was also used in the development of an automatic system for pollen identification based on its texture
classification.36 In this study, a texture feature extractor computes image properties on selected ROIs; these
texture features are then used for pollen load classification. In a comparison of the classification ability of k-NN
(k-nearest neighbors), MLP (multilayer perceptron), and SVM using optical microscopy, SVM showed a 76%
classification rate for the discrimination of the different geographical origin compared to 69% for MLP and
67% for k-NN.
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Several studies have shown that hyperspectral imaging in combination with PLS and ANN present an
important opportunity for rapid chemical imaging of biological and agricultural products (for more informa-
tion, see dedicated papers and books, e.g., Martens and Naes31). Several studies performed on that topic concern
mainly quality parameter determination in the case of single kernel analysis. Cogdill et al.46 have used
hyperspectral imaging spectroscopy for the study of single maize kernel analysis. After comparison of different
spectral preprocessing methods, they have developed predictive calibrations for moisture and oil content using
PLS and principal component regression (PCR). The most accurate results were obtained for moisture
calibration using PLS on the raw data. The results for the oil content calibration were not as accurate as the
moisture calibration mainly due to the reference method rather than the spectrometer. In their paper,
Stevermer et al.,47 have designed an automated single kernel analysis and sorting system that allows them to
construct models for protein determination. The performance of this system has been tested by predicting
constituents using PLS and comparing the predicted values with the reference values. Gorretta et al.48 proposed
a combination of a hyperspectral system with partial least squares discriminant analysis (PLS-DA) for the
classification of durum wheat kernels according to their vitreousness in order to create an automatic method to
replace the visual method stipulated by the European Union regulations. They obtained a classification rate of
up to 94% when separating two nonvitreous classes, and a 100% separation when separating vitreous and
nonvitreous kernels.

4.06.4.2 Hyperspectral Imaging of Pharmaceutical Products

Pharmaceutical solid dosage forms are ideal candidates for NIR chemical imaging, because they are chemically
complex systems where the distribution of the chemistry affects product quality and performance. The size
scales of the architectural blocks match the spatial resolution achievable with NIR diffuse reflectance measure-
ments, thereby permitting nondestructive analysis of samples for which other tests must be performed. The
increasing popularity and broadening of application of the technique in this area is due to the access to
information that was previously hidden about the sample. Indeed, much detail is known about the chemistry
and morphology of pure ingredients and this information is valuable in the implementation of quality by design
strategies, but only bulk analysis information, such as content and dissolution profile, was measurable in the
finished product. The following paragraphs describe an example of the new information accessed with NIR
chemical imaging measurements and their effect on product quality and performance.
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In this example, three lots of pharmaceutical granules are used to illustrate the handling of hyperspectral
images for the assessment of compliance to bioavailability specifications as typically measured by dissolution
testing. These granules have been produced according to a single formulation, but yield different dissolution
profiles. The focus of this analysis is to find discriminant parameters that explain the differences in dissolution, as
well as to ensure that an unrelated product (which may, e.g., be a counterfeit product that does not contain the
active pharmaceutical ingredient of the true product) is flagged. For such tasks, individual measurements of
chemical composition,10 size, and shape can be employed, but we describe how a combination of these
parameters can be used to better answer the question by gathering all this information from a single modality,
namely, near-infrared chemical imaging (NIR-CI), and the chemometrics used to extract the information from
the data cube.

Chemical images were collected on a SapphireTM NIR-CI instrument (Malvern Instruments Ltd., Malvern,
UK) using a magnification of 88 mm per pixel. In brief, the Sapphire consists in a two-dimensional infrared FPA
detector (320�256 pixels), broad band illumination, a wavelength filtering unit, and diffractive optics. Diffuse
reflectance images were acquired in the spectral range 1200–2400 nm with a 10-nm step. Each resulting image
data cube is of dimension 320�256�121, thereby containing 9 912 320 data points. The granules were
deposited on a stainless-steel mesh resting on a mirror made of the same material, and images of discreet
sections were acquired, for a total of three images per lot. In total, nine images of granules and one background
and one dark image were acquired, in a total collection time of 33 min.

All data processing was performed using ISys 4.1 (Malvern Instruments). PCA was applied to mean-centered
and scaled spectral images. PCA, as explained previously in this chapter, is well suited for exploratory work in
spectroscopic imaging data because it requires no a priori knowledge about the samples. In the particular case of
pharmaceutical products, PLS analysis often offers better performance and is accessible because the ingredients
are generally available to create a library. In this example, an unsupervised analysis is sufficiently discriminat-
ing to achieve the chemical separation needed in the exploration of the causes of dissolution failures. The result
of the PCA prediction is a series of scores for each pixel in the image, regardless of which granule the pixels
belong to. It is therefore an unbiased measurement of the chemistry, that is, one that is not influenced by the
shape or size of the individual granules. A data set combining granules from a passing lot and from a failing lot of
the common formulation was created by concatenation and used to calculate the loading vectors. The loading
vectors are saved and used to calculate score images for the other sample images.

Shape and size measurements are performed on binary images obtained through intensity threshold at
1990 nm, where pixels with a value greater than the threshold are set to 0 and the others set to 1. There is little
specific NIR absorption at this wavelength in these samples; the intensity measured in pixels that do not contain
granules is very high because the metallic mesh and support do not produce diffuse reflectance and, therefore,
create an absorbance value that is > 1. An erosion morphological filter49 is applied to clean the boundaries of
objects. In brief, pixels straddling a boundary between objects and the background have an average intensity
value that falls between the high values of the background and the low values of the sample, producing what is
often referred to as an edge effect. The erosion filter is used to replace the 1 with a 0 in pixels that have three
neighbors with a value of 0, the result being the removal of a line at the edge of the object and of small
protrusions (less than two pixels in length) at each iteration. Many size and shapes of structural elements can be
employed for the erosion as long as the element selected preserves the centers of mass of the object. The
watershed filter is applied once or twice depending on the sample image and is used to separate touching
granules by performing a single cut for particles within the binary image with convexity (shape parameter)
smaller than 0.94. Convexity is defined as the ratio of the area of the object and the convex area of the object.
This is where preserving the center of mass for the objects affects the results; if the erosion biases the mask
toward one side of all objects, the spectra of that edge, which may be noisy and distorted at the boundary, will
affect the perceived chemistry of the objects. Finally, all granules touching the border of the image are excluded
because only a fraction of the whole granule is measured, which would generate erroneous shape character-
istics. Size-independent shape information, namely, elongation, circularity, and convexity, are calculated based
on this image and the binary image is used as a mask for its corresponding chemical image (the PCA scores
image of the sample).

Once all scores images and masks are created, it is possible to manipulate the data one more time to compare
the chemical signatures, either average chemical characteristics per granules or all individual pixels of each
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granule, with the shape parameters measured for each granule. The first data set of information about the
sample, the result of PCA, is a chemical description of the samples. In many cases, only chemical composition is
needed to discriminate between samples and to relate to quality parameters. When a sample is made up of many
units (like granules making up a dosage form), the chemistry per unit and the proportions of units presenting
various chemistries, that is, the distribution of the chemical composition, may be related to the common quality
parameter (like active ingredient dosage or dissolution profile). This is the information generated in the average
score vector per granule. We look into the shape parameters for the units to add information that may be
correlated to the quality parameter and may help go one step further and point to the cause of the different
results for the quality test. For the example of pharmaceutical granules, one could measure size and relate this
to the dissolution in a relationship as follows: If the granules are of the expected shape and size, they should
dissolve as expected. Once could go in the opposite direction and use chemistry only in a relationship that
would read: If the distribution of the chemical composition is correct, then dissolution should be as expected.
The difficulty often arises in establishing the thresholds that characterize a good distribution. Figure 13(a)
shows the distribution of the chemical composition (score for PC 4) for three sets of granules that arise from lots
with known differences for a particular quality parameter. The set represented in black appears somewhat
different and this is quantitatively measured by the difference in the mean and skew of the distributions. In
many situations, thresholds established on the basis of these distributions could be used to predict the quality
parameter response of a new data set.

Since the data were acquired using an imaging modality, it appears wasteful to discard the image information.
Figure 13(b) shows the loading vector of an LDA performed using a library comprising � 40 granules from
each lot. LDA could be used as a data reduction method, but we use it here to investigate the discriminating
power of the variables available.50 The information used is a vector including both chemical, in the form of the
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first eight scores of the PCA, and shape information, namely, elongation, circularity, convexity, and four
complex shape moments. The LDA loading vector indicates that the score for PCs 3 and 4 and the elongation
have better discriminating power. Both score for PC 4 and elongation also showed greater influence in the first
loading vector, so they were combined to characterize the three lots. Figure 13(c) shows images from subsets of
two of these lots. The granules identified in red satisfied both conditions of presenting a high score for PC 4 and
having a small elongation (i.e., being rounder granules). Quantitatively, 26% of granules in the upper sample
satisfy both criteria compared to 7% in the lower sample. This may be indicative of a relationship between the
chemistry expressed in the fourth PC and elongation and the quality attribute that separated the lots, that is, the
fact that one passed dissolution and the other failed. Accessing size, shape, and chemical information by both
chemometric analysis of the spectroscopic information measured at each pixel and image analysis of the
chemically contrasted image makes more efficient use of chemical imaging data. The relationships between
chemistry, shape and size parameters, and specific quality parameters are often not direct ones and calibrations
must be developed to establish the appropriate links.

4.06.5 Conclusion

Spectroscopic imaging, in particular chemical imaging, has rapidly developed over the past decade into a
technology that is deployed in numerous fields of endeavor. In this particular section, we have described a few
applications in the areas of pharmaceutical biological sciences; both have proven to be fruitful areas for the
exploitation of this particular technology. One of the reasons for this is the significant spatial/chemical
heterogeneity that exists in both these types of systems, where structure–function relationships drive perfor-
mance. On the contrary, because of the complexity of the data, this presents challenges for the traditional data
mining methodologies. We have shown how one may add a completely new multivariate descriptor of the data,
which relies on the shape and size of intrinsic ‘objects’ within a complex chemical system as an additional
discriminator. We consider this to be one of the new important steps forward in the chemometric analysis of
these complex systems.
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