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a b s t r a c t

Variable selection has been discussed in many papers and it became an important topic in areas as
chemometrics and science in general. Here a backward iterative step-by-step wrapper method is proposed
using PLS. The root-mean-square error of prediction (RMSEP) for an independent test set is used as
selection criterion to quantify the gain obtained using the selected range of variables. The method has
been applied to different data sets and the results obtained revealed that one can improve or at least
keep constant the prediction performances of the PLS models compared to the full-spectrum models.
Moreover with the advantage that the number of variables is reduced driving to an easier interpretation
of the relationship between model and sample composition and/or properties. The aim is not to compare
to other variable selection methods but to show that a simple one can improve or at least keep constant
the prediction performances of the PLS models by using only a limited number of variables.

© 2008 Published by Elsevier B.V.

1. Introduction18

In spectroscopy, thanks to the modern techniques of analysis,19

objects described by a large number of variables (i.e. absorbance at20

defined wavelengths or wavenumbers) can be easily measured in21

a short time. Then, multivariate chemometric techniques become22

necessary in order to extract the most relevant information from23

such data. PLS is probably the most common multivariate technique24

used for this extraction.25

Often, PLS is trained with the full-spectrum region including26

variables that are unrelated to the variation of the response (e.g.27

concentration); in this case there are risks of obtaining an overfitted28

model, i.e. a model with a small residual error but poor predic-29

tion ability. However training PLS with a range of selected spectral30

variables should allow the informative part of the spectrum to be31

extracted and modelled rapidly and to discard the other spectral32

variables that are redundant or not correlated to the response. In33

this case when too few variables are kept, one can reach the case of34

an underfitted model, i.e. an overestimation of the error variance.35

The goal of variable selection is to obtain a small set of variables36

that gives the generalization ability better or at least equivalent37

to the original set of variables [1]. The main benefits of variable38

selection are the improvement of data visualization and data under-39

standing, the reduction of measurement requirements and training40

as well as utilization times by defying the curse of dimensionality41

to improve prediction performance (better robustness) [2].42

∗ Corresponding author. Tel.: +32 81 62 03 50; fax: +32 81 62 03 88.Q1
E-mail address: dardenne@cra.wallonie.be (P. Dardenne).

Variable selection in PLS consists in obtaining latent variables 43

based on a reduced subset of variables in such a way that they 44

retain as much as information as the latent variables obtained with 45

the whole spectra (i.e. with all the variables) with a minimum error 46

in prediction. Variable selection methods are usually grouped into 47

two categories: filter (or univariate) methods and wrapper (or mul- 48

tivariate) methods. Nagatani and Abe [1] define the filter methods 49

as those that estimate the generalization ability for the selected 50

subset of input variables by some indirect estimator that relies 51

solely on properties of the data (for instance the correlation coeffi- 52

cient) and the wrapper methods as those that directly estimate the 53

generalization ability using a learning algorithm, i.e. the regression 54

equation. 55

As explained by Talavera [3], wrapper methods are a good 56

alternative in supervised learning problems, since by employing 57

the learning algorithm to evaluate the selected subset of input 58

variables they have into account the particular biases of the algo- 59

rithm. However, this kind of methods requires a high computational 60

cost. 61

Classical wrapper methods include also sequential techniques, 62

i.e. the use of forward selection and its counterpart backward selec- 63

tion or a combination of both. Forward selection methods start 64

with one variable and then building up a model by adding variables 65

whereas backward selection methods start with all available vari- 66

ables, and then removing the unnecessary variables step-by-step. 67

Both methods have their drawbacks. When working with forward 68

selection, weaker subsets are obtained because the importance of 69

a certain variable is not assessed in the context of other variables 70

that are not included yet. When working with backward selection, 71

sometimes the variables that are removed would be significant 72

when added to the final reduced models. 73
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Fig. 1. BVSPLS algorithm.

Several wrapper selection methods can be found in the litera-74

ture [4,5]. In this paper, we apply a backward iterative step-by-step75

PLS-oriented method for the selection of spectral variables (the76

‘Backward Variable Selection method for PLS regression’ or BVS-77

PLS). A similar algorithm has been proposed by Abe [6] using78

Support Vector Machines [7] and applied to some benchmark data79

sets. In his paper, Abe showed that the number of variables can be80

drastically reduced without deteriorating the generalization abil-81

ity of the constructed models. Here a similar algorithm is applied82

but working with PLS as regression technique. The objective is to83

build a correct model with only few variables and to show that84

we can get similar results or even improve its prediction perfor-85

mance as well as an improvement in the stability of the models86

and a clear interpretation of the relationship between model and87

sample composition and/or properties.88

2. Theory89

The idea of the BVSPLS method is simple and the algorithm is90

defined in Fig. 1. Here it is explained for NIR spectroscopic data but91

it could be generalized to other kind of data.92

It is a wrapper method that relies on PLS as regression algo-93

rithm and works in an iterative way based in backward selection.94

We use the root-mean-square error of prediction (RMSEP) as good-95

ness measure, i.e. as selection criterion to quantify the gain obtained96

using the selected range of variables. In the first step the method97

starts by fitting a model with all the initial set of variables and then98

a leave-one-variable-out (deleting one variable at a time) is per-99

formed. In such a way and in order to avoid overfitting, each time a100

variable is removed, a new model is constructed using a training set101

(cal) and applied to an independent dataset (stop set) calculating its102

RMSEP, used as selection criterion. The minimum RMSEP is selected103

indicating that the particular variable, when it is not included in the104

construction of the model, drives to an improvement of the model105

performance. Then the selected variable is considered as not signif-106

icant and then removed. The procedure is repeated again X (number 107

of variables) times by successively re-fitting reduced models. All 108

the RMSEP are kept and a graphic showing each RMSEP versus the 109

number of iterations can be constructed. Based on this plot, the min- 110

imum RMSEP is selected. And the final model is constructed with 111

the variables which remain at the stage when the RMSEP starts to 112

increase. In order to test the ability of the constructed models to 113

generalize, a set of independent data is needed (test set). 114

3. Experimental 115

3.1. Data 116

Different samples have been used in this study. In all the cases 117

the datasets consist on NIR spectra of different agronomical prod- 118

ucts in order to model certain properties. The first data set consists 119

on complete feed spectra in order to model the fat, protein, mois- 120

ture and starch content. The second set of data consists on maize 121

samples that have been cut and dried (not fermented) to model 122

the protein, starch, cellulose and ndf (neutral detergent fibre) con- 123

tent. In all the cases the data have been pre-processed by SNV 124

(Standard Normal Variate) [8], Detrend [9] and Savitsky–Golay (SG) 125

first derivative (9:2:1) [10]. SNV corrects spectra for spectral noise 126

and background effects which cause baseline shifting and tilting; 127

Detrend removes linear trends and the SG first derivative removes 128

baseline offsets. 129

3.2. Software 130

All computations, chemometric analyses, and graphics were 131

executed with programs developed in Matlab v7.4 (The Mathworks, 132

Inc., Natick, MA, USA). PLS calibrations were derived using the 133

SIMPLS algorithm [11] included in the PLS Toolbox (Eigenvector 134

Research, Inc., Manson, WA, USA). 135

4. Results 136

The method has been applied to the different data sets in order 137

to compare the prediction ability before and after variable selection 138

for the models constructed for each of them. One of the simplest 139

mean of avoiding overfitting is to split the data into three subsets: a 140

calibration set, used to build the model, a stop set, used to optimize 141

the model (minimize the RMSEP useful for the selection of vari- 142

ables) and a test set, used to validate in a completely independent 143

way the constructed model. This test set is needed because the stop 144

set is used to decide when to stop training, and thus the constructed 145

model is no longer entirely independent of the stop set. The split of 146

the data has been performed using the duplex method [12], which is 147

a modification of the Kennard–Stone method. In the first step, the 148

two points which are furthest away from each other are selected 149

for a first set. From the remaining points, the two objects which are 150

furthest away from each other are included in a second set. In the 151

Table 1
Results obtained for all the datasets with and without application of BVSPLS.Q3

Samples Property Number of samples Model
dimensionality

RMSEP test samples Number of original
variables

Number of retained
variables

Cal Stop Test Before BVSPLS After BVSPLS

Complete feed Fat 362 518 3043 8 3.03 1.16 700 58 (8%)
Complete feed Protein 336 873 6182 3 1.68 1.57 700 62 (9%)
Complete feed Moisture 337 1010 5920 4 0.84 0.70 700 224 (32%)
Complete feed Starch 156 200 1000 9 2.52 2.03 700 226 (32%)
Maize Protein 272 338 3869 3 0.63 0.54 700 260 (37%)
Maize Starch 165 331 4558 3 2.84 2.41 700 122 (17%)
Maize Cellulose 175 355 3526 9 1.37 1.35 700 110 (16%)
Maize Neutral detergent fibre 264 279 3354 6 2.44 2.99 700 95 (14%)
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Table 2

Samples Property Range property (min–max) Skill score test samples R-square

Before BVSPLS After BVSPLS Before BVSPLS After BVSPLS

Complete feed Fat 0.66–33.87 0.447 0.7885 0.8616 0.9684
Complete feed Protein 8.04–61.74 0.7832 0.7978 0.954 0.9673
Complete feed Moisture 1.65–17.94 0.5782 0.6487 0.8395 0.8811
Complete feed Starch 0.0009–64.76 0.5902 0.6714 0.9242 0.9473
Maize Protein 4.02–13.67 0.4797 0.5562 0.7364 0.809
Maize Starch 0.001–53.17 0.7121 0.756 0.936 0.9438
Maize Cellulose 9–38.56 0.6559 0.6602 0.883 0.886
Maize Neutral detergent fibre 24.25–67.30 0.6231 0.5374 0.866 0.837

third step, the remaining point which is furthest away from the two152

previously selected for the first set is included in that set. Following153

the same procedure, points are added alternately to each set [13].154

This splitting has been performed after removing of all the extreme155

samples that have been included by default in the test set.156

In all cases, two models, before and after variable selection, have157

been constructed and applied to the independent test set. Table 1158

shows a summary of the results obtained for all the datasets. The159

first and second columns represent the kind of samples used and the160

property to model, the three next columns the number of samples161

used as calibration, stop and test sets respectively for each data,162

the next column represents model dimensionality and then, the163

next two columns show the RMSEP for the independent test set164

before and after variable selection respectively. Last columns show165

the number of original variables as well as the retained number166

of variables including the percentage. In order to have more infor-167

mation concerning model prediction, another parameter has been168

used, the skill score. The skill score is defined as one minus the169

RMSEP divided by standard deviation of the observed data. This170

function interprets model predictability using residual error and171

observed variability in the data. A skill score of 1 means a per-172

fect fit and a skill score less than 0 means that the model error173

is larger than the variability of the data. The results are shown in174

Table 2.175

The first example is based on a NIR data set of complete feed176

spectra to model the fat content. The data set contains 3923 sam-177

ples measured at 700 wavelengths (1100:2:2498 nm). As previously178

explained the data set has been split into a calibration (362 sam-179

ples), stop (518 samples) and test set (3043 samples). The classical180

PLS model on the raw data led to a RMSEP for the test set of 3.03.181

The application of the Backward Variable Selection for PLS regres-182

sion method drove to the selection of 58 variables (instead of 700,183

i.e. only around 8% of the variables are retained) as being important184

for the determination of the fat content and a RMSEP of 1.16. Fig. 2185

shows the evolution of the RMSEP for all the subsets versus the186

number of iterations, the process is stopped when the minimum187

RMSEP is obtained for the stop set as indicated in the figure. A large188

bias can be observed in the figure mainly between the test and the189

other data sets. This can be easily explained by the fact that all the190

extreme samples have been included in the test set previous the191

duplex selection.192

Fig. 3 shows the variables selected after BVSPLS. This method193

allows obtaining dispersed variables rather than regions, but as194

it can be observed in the figure, these dispersed variables could195

be grouped into spectroscopically logical regions, which are eas-196

ier to interpret [14]. The broad band between 1100 and 1200 nm197

presents intensities at 1134, 1158, and 1176 nm associated to the198

second overtones of C–H while the peak at 1418 nm and the shoul-199

der at 1352 nm correspond to C–H combinations. Smaller peak200

observed at 1564 nm can be attributed to N–H stretch first over-201

tones. The region at 1686 nm, showing a shoulder at 1712 nm and202

very weak peaks at 1752 and 1782 nm, is generally associated to203

the C–H stretch first overtones [15]. An intense peak at 1900 nm is204

Fig. 2. Evolution of the RMSE for all the subsets for the complete feed when mea-
suring the fat content.

observed. It can be associated to the combination of O–H and C–O 205

stretch or C O stretch second overtones. 206

It is important to note that the combination band of OH asso- 207

ciated to water usually observed in near infrared spectra of feed 208

shows intensity at 1940 nm, and it was indicated by the programme 209

as a retained variable. 210

The region above 2000 nm is characterized by combination 211

bands of different groups. Band at 2044 nm represents a combi- 212

nation of N–H stretch and amide bond while the band pointed at 213

2258 nm indicates the combination band of O–H characteristic of 214

starch [15]. In addition, intensities at 2300, 2340, and 2448 nm can 215

be affected to C–H combination bands [16]. 216

Fig. 3. Selected variables by backward selection for the compound feed data set for
the fat content.

dx.doi.org/10.1016/j.aca.2008.12.002
Original text:
Inserted Text
SkillScore 

Original text:
Inserted Text
min–maxbefore bvsplsafter 

Original text:
Inserted Text
protein

Original text:
Inserted Text
moisture

Original text:
Inserted Text
starch

Original text:
Inserted Text
protein

Original text:
Inserted Text
starch

Original text:
Inserted Text
cellulose

Original text:
Inserted Text
neutral 

Original text:
Inserted Text
number of retained variables

Original text:
Inserted Text
Standard Deviation 

Original text:
Inserted Text
zero 

Original text:
Inserted Text
C-H 

Original text:
Inserted Text
C-H 

Original text:
Inserted Text
N-H 

Original text:
Inserted Text
C-H 

Original text:
Inserted Text
O-H and C-O stretch or C=O 

Original text:
Inserted Text
N-H 

Original text:
Inserted Text
O-H 

Original text:
Inserted Text
C-H 

Fernandez
Cross-Out

Fernandez
Replacement Text
J.A.

Fernandez
Cross-Out

Fernandez
Replacement Text
J.A.

Fernandez
Inserted Text
Results obtained for all the datasets with and without application of BVSPLS



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

Please cite this article in press as: T.A. Fernández Pierna, et al., A Backward Variable Selection method for PLS regression (BVSPLS), Anal. Chim.
Acta (2008), doi:10.1016/j.aca.2008.12.002

ARTICLE IN PRESSG Model
ACA 229638 1–5

4 T.A. Fernández Pierna et al. / Analytica Chimica Acta xxx (2008) xxx–xxx

Fig. 4. Prediction of fat content for the compound feed data set. Results for the test
set (a) before variable selection and (b) after BVSPLS.

A model constructed for the fat content in the complete feed217

using only the retained variables, indicated in Fig. 3, decreases the218

RMSEP to 1.16 for the test set. Fig. 4 shows, for the same data set, the219

prediction results for the test set before (4a) and after (4b) variable220

selection. The same conclusions can be obtained when looking at221

the skill score values. The application of an F-test [17] (not shown)222

at the 95% confidence level to the RMSEP and the skill scores before223

and after variable selection have shown that the results after vari-224

able selection are significantly better than before selection for this225

property.226

For the rest of the properties for the complete feed also an227

improvement in the error is obtained as it can be observed in228

Tables 1 and 2. In these cases, an F-test has shown that there are no229

significant differences in both the RMSEP and the skill score at the230

95% confidence level. Then, in all cases similar results are obtained231

with a 20% of number of retained variables in average.232

The second example is based on a NIR data on maize samples. As233

in the previous data set an average of 21% of number of retained vari-234

ables is obtained. These dispersed variables grouped into regions,235

drive to similar spectroscopically logical conclusions as for the com-236

plete feed. For all the studied properties, except for the ndf, also 237

an improvement in the error, expressed as RMSEP or skill score, 238

is obtained. An F-test applied has shown no significant differences 239

before and after variable selection in terms of error. But, in all cases 240

and in general, a mean reduction in the number of variables of 241

79% is obtained, which is useful for an easy interpretation of the 242

calibration models. 243

5. Conclusion 244

The objective of this technique was mainly to construct and 245

select subsets of variables that are useful to build a good predic- 246

tor, i.e. to construct a suitable model with only few variables. In all 247

the cases studied, except for the ndf in maize, the RMSEP and the 248

skill score we obtain improved. In most of the cases; there are no 249

significant differences in the RMSEP or the skill values at the 95% 250

confidence level, but in all the cases a mean reduction of variables 251

about 79% is obtained. 252

The splitting of the data sets into calibration, stop and test sets 253

was done to emphasize the effect of the variable selection on the 254

model performance. The variable selection is all the more important 255

that the number of samples is low. 256

With this study we prove that one can improve or at least keep 257

constant the prediction performances by providing correct predic- 258

tors as well as an improvement in the stability of the PLS models 259

and an easier interpretation of the relationship between model and 260

sample composition and/or properties. This shows the possibility 261

of constructing fast spectrometers based on a reduced number of 262

variables aiming to a reduction of training and utilization times 263

to be used, for instance, in a conveyer belt. Moreover, the fact of 264

grouping the different selected variables in regions allows an easy 265

chemical interpretation of the spectra. The main advantage is a bet- 266

ter accuracy in prediction mode (routine analyses) especially when 267

the calibration set is limited (few samples). 268

The aim of this paper was not to compare different feature selec- 269

tion methods. This kind of studies has been done intensively at 270

the literature. With this paper, our objective was to demonstrate 271

that the predictive ability of the models obtained with the wave- 272

lengths selected by the algorithm is in most of the cases better or 273

at least similar than the predictive ability of the full spectrum. In 274

a further study this method could be compared to other variable 275

selection techniques as genetic algorithms and applied to differ- 276

ent data sets. The next step is the application in the framework 277

of the SAFEED-PAP EU project (FOOD-CT-2006-036221) aiming the 278

species-specific determination in feed using NIR microscopic data. 279
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