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A
s part of the many activities 
proposed to attendees of the 
 International Diffuse Refl ectance 
Conference (IDRC) taking place 

biennially in Chambersburg, Pennsylvania, 
USA, the software shoot-out is always a 
great occasion to listen to and interact with 
experienced chemometricians presenting 
their approach to a common problem. This 
2010 IDRC challenge asked participants to 
develop calibration models for three human 
blood constituents: haemoglobin, glucose 
and cholesterol. This biomedical challenge, 
a cutting edge research area for numer-
ous laboratories throughout the world, was 
made possible by the help of Karl Norris 
and Dr J. Todd Kuenstner (Charleston Area 
Medical Center, West Virginia, USA) who 
generously donated the data.1–4

Blood samples were analysed during the 
period from 1990 to 1992 with a NIRSys-
tems 6500 spectrometer (Foss NIRSys-
tems, Laurel, MD, USA) equipped with a 
transmission amplifi er mounted in the sam-
ple transport accessory. The instrument 
was confi gured to a vertical light-path mode 
using a platform supplied by the manufac-
turer. This made it possible to use a simple 
sample presentation for either transmission 
or refl ection measurements. The sample cell 
was a 2 cm diameter stainless steel cylin-
der with a quartz window. For transmission 
measurements, 200 µL of whole blood was 
transferred from a pipette to the sample cell, 

providing a sample thickness of 0.6 mm. 
For refl ection measurements, the cell was 
fi lled to a sample thickness of at least 2 mm 
to provide a sample of infi nite thickness for 
the NIR spectral region. The empty cell was 
used as a reference for transmission meas-
urements and a ceramic reference standard 
for refl ection measurements.

Participants were provided with three 
data sets for each measurement geometry 
(calibration, validation and test). Reference 
measurements were available for calibration 
and validation sets only. Participants were 
to develop the best prediction models with 
the available data and send their predictions 
of the test set to the shootout chair prior to 
the beginning of the conference. Criteria for 
deciding winners included overall predic-
tion statistics of the test sets (both refl ection 
and transmission), novelty and uniqueness 
of the approach, and clarity of the presen-
tation.

All spectra (refl ection and transmis-
sion) had 700 variables, from 1100 nm 
to 2498 nm, with a 2 nm interval. Table 1 
describes calibration and validation sample 
statistics.

The trained chemometrician would notice 
that calibration and validation sets were 
suspiciously similar in terms of their distribu-
tions. Both sets were actually created from 
the same data set (fresh blood) while spec-
tra of the test sets were samples frozen for 
storage and thawed before analysis. This 

choice was made to test participants’ mod-
els for robustness. Figure 1 shows spectral 
data and score plot of all three sets for the 
transmission data.

Because the data sets were primarily 
designed for the study of the ability of NIR 
spectroscopy to predict haemoglobin, only 
haemoglobin predictions on the test sets 
were considered when judging calibration 
model statistics. The approaches taken by 
the four participants are presented here.

Participant 1
The study of the structure of the data was at 
the centre of the strategy used by this par-
ticipant. After recognising that the calibra-
tion and validation samples came from the 
same data set and, more particularly, that 
some samples were present in duplicate or 
even triplicate, a reorganisation of the data 
was performed. Calibration and validation 
sets were reorganised: for calibration and 
validation, unique samples and one of the 
repeated scans for a given sample were 
used in their respective set while repeated 
samples were used in a repeatability fi le 
(combining calibration and validation).5 The 
purpose of this fi le is to develop an equation 
that gives the same predicted value across 
all the conditions represented in the scans.

An automatic screening of the most 
effi cient pre-treatment was carried out by 
searching six wavelengths for the devel-
opment of stepwise multiple linear regres-
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n Min Max Mean Std

Refl . Trans. Refl . Trans. Refl . Trans. Refl . Trans. Refl . Trans.

Haemo.
(g dL–1)

Cal. 173 143 10.3 10.6  17.3  17.3  13.8  13.6  1.7  1.6

Val.  58  47 10.6 10.3  17.6  17.3  13.6  13.9  1.4  1.6

Gluc.
(mg dL–1)

Cal. 173 143 46.0 46.0 457.0 457.0  92.0  90.9 56.6 54.2

Val.  58  47 46.0 46.0 159.0 303.0  82.0  96.4 21.2 44.0

Cholest.
(mg dL–1)

Cal. 173 143 99.0 99.0 358.0 358.0 209.3 210.8 48.5 45.7

Val.  58  47 99.0 99.0 358.0 358.0 216.3 223.0 46.2 49.9

Table 1. Calibration and test sets statistics.
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sion (MLR) models using 60 different pre-
processing techniques. This regression 
method was chosen to further enhance 
model robustness and extrapolation abili-
ties. The combination standard normal 
variate6 + detrend6 + Norris derivative7 was 
found as the best pre-treatment on the 
validation set. The selected wavelengths 
were tuned by “manual” step-up MLR using 
permutations of the terms and by looking 
not only at the minimum SEP but at the 
highest F-test of the B coeffi cients: those 
selected were 1286 nm, 1626 nm, 2042 nm, 
2058 nm, 2182 nm and 2222 nm. None of 
the selected wavelengths belonged to water 
bands. This strategy was applied for both 
refl ectance and transmittance geometries.

Participant 2
After pre-processing the spectral data using 
harmonisation (Perten Instruments proprie-
tary method), it was noted that for refl ection 
data, an instrumental effect was most likely 
responsible for distorting the water peak at 
1930 nm, compared to the 1450 nm water 
band. This squashing was not as severe 
for transmission data. To avoid these dis-
tortions, spectral data were limited to the 
range 1100–1828 nm.

The calibration data were then regressed 
using the Honigs Regression technique as 
provided by Perten Instruments. The Hon-
igs Regression is a learning technique that 
adapts to trends or changes in sample 
spectra. In this particular case, there was not 
much difference between standard PLS and 
the Honigs regression technique, both in the 
specifi c equation generated and the predic-
tion results. The dominant error source in the 
data seemed to be the lab value accuracy 
or the preparation of the samples. When 

this is the case, every regression technique 
tends to give similar results. The other rea-
son the HR performs similarly to PLS is that 
the spectra are relatively simple and behave 
normally. Finally, the calibration set was static 
and used at one time. Under these condi-
tions the learning characteristics of the HR 
simply do not come into play.

Participant 3
Recognising the need to mitigate interfer-
ences from water on the spectra, partici-
pant 3 decided to fi rst investigate the use 
of Extended Multiplicative Scattering cor-
rection8 and several orthogonalisation tech-
niques [net analyte signal,9 orthogonal sig-
nal correction10 and region orthogonal signal 
correction (ROSC)11]. Second, an original 
calibration procedure was used to obtain 
the fi nal model; (1) a moving window-based 
PLS (MWPLS)12 was applied to select the 
optimal wavelength regions for subsequent 
PLS modelling; (2) separate PLS models 
were built for individually-selected wave-
length regions; (3) a stepwise linear regres-
sion was performed on the predicted con-
centrations from separate PLS models on 
individual wavelength regions to select the 
predicted concentrations showing the sig-
nifi cant correlation with the haemoglobin 
concentration; and (4) a fi nal MLR model 
was built based on previously selected pre-
dicted concentrations.

For refl ection spectra, EMSC was cho-
sen to mitigate water interferences. After 
combining EMSC with fi rst derivative, 
the MWPLS indicated three wavelength 
regions for ideal model performance on 
haemoglobin—these were 1120–1316 nm, 
1520–1920 nm and 2000–2390 nm. Based 
on stepwise linear regression, the predicted 

concentration from the wavelength region 
1520–1920 nm was rejected because of its 
insignifi cance (α = 0.05). The predicted con-
centrations from the remaining two wave-
length regions were retained in the fi nal 
MLR model.

For transmission spectra, ROSC with 10 
components removed was used as the opti-
mal pre-processing. After combining ROSC 
with SNV as the spectral pre-treatment, 
MWPLS indicated three optimal wavelength 
regions for modelling haemoglobin, similar 
to those found in refl ection. After building 
separate PLS models for individual wave-
length regions, the predicted concentra-
tions from all three wavelength regions were 
proved signifi cant by stepwise linear regres-
sion. A fi nal MLR model using the predicted 
concentrations from all three regions was 
established.

Participant 4
A variable selection approach was also 
chosen by participant 4. The goal was 
to develop models that would be simple 
enough to avoid overfi tting the calibration 
data, extrapolate well to the test set and 
yet be accurate enough to be useful. First, 
through a careful evaluation of the spectral 
data, participant 4 noticed that spectral 
offset and scale effects were responsible 
for much of the variability. Also, the use of 
third derivative showed non-random pat-
terns above 2430 nm. Finally, an instrumen-
tal effect resulting in squashing the water 
bands was observed. This squashing was 
not as severe for transmission data, but 
additional noise was observed between 
1870 nm and 2050 nm. Water bands and 
noisy regions were then removed from the 
spectral analysis.

A division approach was chosen to 
remove the scale effect. Since there was 
also an offset effect, a scale correction that 
was independent of the offset was also 
needed. The difference between two wave-
lengths was chosen as the divisor. For the 
numerator, three individual wavelengths 
were chosen. The numerator and denomi-
nator wavelengths were chosen to be close 
to each other because, through experience, 
such data are better suited for linear mod-
els. To select the wavelengths, a program 
to do an all possible combination of wave-
lengths search within 100 wavelengths win-
dows was created. The program targeted 
denominator differences suffi ciently far from 
zero and ensured that the numerator wave-
lengths were separated by at least three 

Figure 1. Visual depictions of the spectral data in transmission. Orange: the test set; green: valida-
tion set; blue: calibration set.
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wavelengths. Even though many potential 
models were evaluated (which is one way 
to overfi t data), they were all simple models. 
The lack of overfi tting was also supported 
by monitoring the wavelength search and 
seeing that similar models had similar accu-
racy. The model was fi nally enhanced by 
switching from three-wavelength MLR to 
three-factor PLS, and including neighbour-
ing wavelengths that improved the fi t. The 
idea here was that PLS would replace indi-
vidual wavelengths with small wavelength 
regions, providing the benefi ts of averaging 
or smoothing the data while maintaining the 
model accuracy.

Results
Figure 2 presents test results for each par-
ticipant. Root mean squared error of predic-
tion (RMSEP) and standard error of predic-
tion (SEP) values are presented along with 
prediction slopes as these three statistics 
indicated confl icting results for some of 
the approaches (good accuracy but large 
slope).

The four participants chose very different 
approaches to get overall results that were 
very similar. The more parsimonious models 
(MLR based models) seemed to be outper-
forming full spectrum methods in terms of 
accuracy and precision. However, the effect 
of the different approaches on the slopes 
varied greatly and was not always consist-
ent through sampling geometries. With 
overall best statistics and the public votes, 

participant 1 won the 2010 IDRC Shoot-
Out, followed by participant 4 and 2.

The data are available on the IDRC web-
site (http://www.idrc-chambersburg.org). 
The authors would like to thank the 2010 
IDRC chair Dr Charles Miller and the Council 
for Near-Infrared Spectroscopy for providing 
funding and support for the conference.
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Figure 2. Test statistics for both reflection and transmission geometries.


