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  ABSTRACT 

  Increasing consumer concern exists over the relation-
ship between food composition and human health. 
Because of the known effects of fatty acids on human 
health, the development of a quick, inexpensive, and 
accurate method to directly quantify the fatty acid 
(FA) composition in milk would be valuable for milk 
processors to develop a payment system for milk perti-
nent to their customer requirements and for farmers to 
adapt their feeding systems and breeding strategies ac-
cordingly. The aim of this study was (1) to confirm the 
ability of mid-infrared spectrometry (MIR) to quantify 
individual FA content in milk by using an innovative 
procedure of sampling (i.e., samples were collected from 
cows belonging to different breeds, different countries, 
and in different production systems); (2) to compare 
6 mathematical methods to develop robust calibration 
equations for predicting the contents of individual FA 
in milk; and (3) to test interest in using the FA equa-
tions developed in milk as basis to predict FA content 
in fat without corrections for the slope and the bias 
of the developed equations. In total, 517 samples se-
lected based on their spectral variability in 3 countries 
(Belgium, Ireland, and United Kingdom) from various 
breeds, cows, and production systems were analyzed 
by gas chromatography (GC). The samples presenting 
the largest spectral variability were used to calibrate 
the prediction of FA by MIR. The remaining samples 
were used to externally validate the 28 FA equations 
developed. The 6 methods were (1) partial least squares 
regression (PLS); (2) PLS + repeatability file (REP); 
(3) first derivative of spectral data + PLS; (4) first 
derivative + REP + PLS; (5) second derivative of spec-
tral data + PLS; and (6) second derivative + REP + 

PLS. Methods were compared on the basis of the cross-
validation coefficient of determination (R2cv), the ratio 
of standard deviation of GC values to the standard 
error of cross-validation (RPD), and the validation co-
efficient of determination (R2v). The third and fourth 
methods had, on average, the highest R2cv, RPD, and 
R2v. The final equations were built using all GC and 
the best accuracy was observed for the infrared predic-
tions of C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, 
C18:0, C18:1 trans, C18:1 cis-9, C18:1 cis, and for some 
groups of FA studied in milk (saturated, monounsatu-
rated, unsaturated, short-chain, medium-chain, and 
long-chain FA). These equations showed R2cv greater 
than 0.95. With R2cv equal to 0.85, the MIR prediction 
of polyunsaturated FA could be used to screen the cow 
population. As previously published, infrared predic-
tions of FA in fat are less accurate than those developed 
from FA content in milk (g/dL of milk) and no better 
results were obtained by using milk FA predictions if no 
corrections for bias and slope based on reference milk 
samples with known contents of FA were used. These 
results indicate the usefulness of equations with R2cv 
greater than 95% in milk payment systems and the 
usefulness of equations with R2cv greater than 75% for 
animal breeding purposes. 
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  INTRODUCTION 

  Traditionally, milk quality from dairy cattle refers 
to fat and protein content or the number of somatic 
cells or total bacteria in the milk. However, increasing 
consumer concern exists over the relationship between 
food composition and human diseases such as cardio-
vascular disease and cancer. Therefore, the subject of 
milk quality should be expanded to include character-
istics with proven associations with human health. The 
nutritional quality of bovine milk is largely related to 
the milk fat content and composition. Bovine milk fat 
is composed of, on average, 96% triacylglycerols made 
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up of a molecule of glycerol and 3 esterified fatty acids 
(FA; Jensen, 1995). Three classes of FA exist, based on 
the number of double bonds present in their chemical 
structure: saturated fatty acids (SFA, no double bond), 
monounsaturated fatty acids (MUFA, one double 
bond), and polyunsaturated fatty acids (PUFA, more 
than one double bond). The latter 2 classes (MUFA and 
PUFA) make up the unsaturated group of FA (UFA). 
Many studies have documented the potential effects 
of dietary FA on human health (e.g., Williams, 2000). 
Therefore, quick, inexpensive, and accurate methods to 
quantify the FA composition of milk would be valu-
able for milk processors to develop a payment system 
for milk pertinent to their customer requirements and 
for farmers to adapt their feeding systems accordingly. 
Such tools would also be useful to animal breeders in 
a long-term strategy of breeding for milk with a FA 
composition sought by consumers.

Until recently, the only method used to quantify 
FA content in milk was a method based on GC after 
a step of extraction, followed by saponification and 
transmethylation. Although this method is accurate 
and yields detailed information about the FA of milk 
samples (Collomb and Bühler, 2000), it is expensive 
and time consuming and therefore not feasible for 
routine analysis of the large number of samples nec-
essary for management or breeding purposes. Several 
studies (Soyeurt et al., 2008a,b; Rutten et al., 2009) 
have documented the potential of using mid-infrared 
(MIR) spectrometry to quantify the major FA in cow 
milk. The MIR spectrum represents the absorptions of 
infrared rays at frequencies correlated to the vibration 
of specific chemical bonds within a molecule. Therefore, 
the MIR milk spectrum represents the chemical com-
position of milk. The approach proposed by Soyeurt 
et al. (2008a,b) to quantify the milk FA contents used 
milk samples from multiple breeds based on the as-
sumption that changes in the milk MIR regions related 
to FA were proportional to the contents of FA in milk 
and that these relationships were similar across breeds. 
Rutten et al. (2009) hypothesized that the changes in 
the spectral data related to the FA profile (i.e., the re-
lationship among FA) could be different during winter 
and summer, and they developed calibration equations 
within season to improve the accuracy of prediction. 
However, they concluded that these equations did not 
improve the predictive ability of milk FA from MIR 
spectrometry.

The method of choice currently used for relating MIR 
spectra to milk fatty acid is partial least squares (PLS) 
without any pretreatment of the spectral data (Soyeurt 
et al., 2006, 2008a,b; Rutten et al. 2009). Equations 
with improved predictive ability for milk FA compo-

sition developed using different statistical approaches 
such as pretreatment of spectral data are lacking.

The objectives of this study were (1) to confirm the 
ability of MIR to quantify individual FA content in 
milk by using an innovative procedure of sampling 
across multiple breeds, multiple countries, and multiple 
production systems; (2) to compare 6 mathematical 
methods to improve the robustness of calibration equa-
tions for predicting the contents of individual FA in 
milk; and (3) to show interest in using the FA equations 
developed in milk basis to predict FA content in fat 
without corrections of slope and bias based on reference 
milk samples with known contents of FA.

MATERIALS AND METHODS

Collected Samples

Samples of milk (40 mL) available for this study 
contained bronopol preservative (0.5 mL) and were 
collected between March 2005 and December 2009 in 
Belgium, between April 2009 and August 2009 in Ire-
land, and in August 2009 in the UK. All milk samples 
were analyzed using MilkoScan FT6000 spectrometers 
(Foss, Hillerød, Denmark), which output 1 spectrum 
for each milk sample analyzed, containing 1,060 data 
points in the infrared range from 900 to 5,000 cm−1. 
Belgian milk samples were analyzed in the milk labora-
tory “Comité du lait” (Battice, Belgium) and the other 
samples were analyzed at Moorepark (Fermoy, Cork, 
Ireland). All spectra were generated directly without 
using the calibration mode of the spectrometer because 
direct access to the spectral data was available in the 2 
milk laboratories.

A total of 1,609 milk samples were collected from 8 
herds in the Walloon Region of Belgium between March 
2005 and May 2006 during routine milk recording and 
frozen at −26°C. These milk samples, containing 50% 
morning milk and 50% evening milk, were from 475 
cows representing 6 dairy breeds (dual-purpose Belgian 
Blue, Holstein, Jersey, Normande, Montbeliarde, and 
Red and White). Herds were chosen based on their vari-
ability in milk fat content, their geographical location, 
and the number of breeds in each herd. Because it was 
not feasible to undertake GC on all samples, a selection 
of 78 samples were chosen based on maximizing the 
spectral variability of the samples, determined using a 
principal component analysis (PCA) approach. This 
approach identifies the spectra that are most useful in 
development of prediction equations.

To further increase the variability of milk samples 
with different MIR spectra, additional samples were 
collected from the Walloon Region of Belgium be-
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tween June 2006 and December 2009. Using PCA, the 
MIR spectra of bulk milk samples and individual cow 
samples (a mix of 50% morning milk and 50% evening 
milk), routinely collected and analyzed in the Belgian 
milk laboratory (Comité du Lait), were compared with 
the spectra of the 78 initially selected samples. Milk 
samples whose MIR spectra differed, based on the PCA, 
from the previously collected samples were retained. In 
total, an additional 210 samples were selected using 
this method and frozen pending GC analysis.

The MIR spectra of weekly milk samples from Tea-
gasc research herds in Ireland and monthly milk samples 
from the Langhill lines of dairy cattle kept in the Crich-
ton research herd (Scotland) were also compared, using 
PCA, with the samples previously stored in Belgium. 
The number of milk samples chosen to further increase 
the variability within the data set of MIR spectra was 
144 in Ireland and 106 in Scotland. All of these samples 
(morning or evening milks) were frozen at −20°C pend-
ing the GC analysis. The cows sampled in the Irish 
research herds were fed predominantly grazed grass 
and consisted of animals of different breeds (Prendiville 
et al., 2010) and different strains of Holstein-Friesian 
(Coleman et al., 2009). Cows from Scotland were from 
2 genetically divergent lines (divergent for milk solids) 
and were fed 2 different diets (Coffey et al., 2004). Ap-
proximately half were fed a predominantly forage only 
diet and the other half a diet consisting of approxi-
mately 60% silage and 40% concentrates.

The multiple breed, multiple countries, and multiple 
production approach proposed in this study to collect 
the samples used to develop the calibration equations 
allowed us to cover the natural variability of fatty acids 
in bovine milk.

Measurement of FA

In total, 538 frozen milk samples from Belgium, Ire-
land, and Scotland with MIR spectral data were ana-
lyzed by GC. The contents of FA in each milk sample 
were quantified by GC with a methodology similar to 
that described by Soyeurt et al. (2008a); analyses of 
all 538 samples were undertaken by the Agricultural 
Walloon Research Centre (Gembloux, Belgium). The 
milk fat was extracted according to ISO standard 
14156:2001 (ISO, 2001). Preparation of FA methyl es-
ters was made following ISO standard 15884:2002 (ISO, 
2002). These milk fat samples were analyzed using GC 
from the method developed by Collomb and Bühler 
(2000). The gas chromatograph (model 6890N, Agilent 
Technologies Inc., Palo Alto, CA) was equipped with 
a CPSil-88 capillary column (Varian Inc., Palo Alto, 
CA) with a length of 100 m, an internal diameter of 
0.25 mm, and a film thickness of 0.20 μm. The condi-

tions for the chromatographic analyses were as follows: 
carrier gas, helium; average velocity, 19 cm/s; cold 
on-column injector; flame-ionization detector at 255°C; 
and a temperature program from 60°C (5 min) to 165°C 
(at 14°C/min) for 1 min, and then 165°C to 225°C (at 
2°C/min) for 17 min. The volume injected was 0.5 μL. 
An anhydrous milk fat with a certified FA composi-
tion (reference material BCR-164, obtained from the 
Commission of the European Communities, Brussels, 
Belgium) was used to determine the FA methyl ester 
response factors, the repeatability, and the accuracy 
of this method. For all studied FA, the coefficient of 
variation [(SD/mean) × 100] was <3.5%, suggesting 
good repeatability of GC data.

The FA contents were expressed in grams per deci-
liter of milk using the content of fat predicted by the 
MilkoScan FT6000 (Foss). This prediction was consid-
ered in this publication as the reference fat content for 
2 reasons. The ability of MIR to quantify the content 
of fat is high and the accuracy of the fat prediction is 
regularly checked by the milk laboratory using reference 
samples with known fat content. The error of predic-
tion of fat content on the Belgian MilkoScan FT6000 
spectrometers used from the data collected in 2009 from 
179 spectra was equal to 0.2 g/dL of milk. The group 
of short-chain FA (SCFA) included FA with between 
4 and 10 carbons (C) in their structure. Medium-chain 
FA (MCFA) included FA whose structures contained 
between 12 and 16 C, whereas long-chain FA (LCFA) 
included FA with structures containing between 17 and 
22 C.

A PCA was undertaken across all FA, and the Ma-
halanobis distance was calculated. As described by 
Williams (2007), an outlier sample or spectrum is a 
sample or spectrum that differs from the mean of the 
population by 3 or more times the Mahalanobis dis-
tance. Using this threshold, 21 samples were deemed 
outliers and discarded. The final data set contained 517 
samples.

Calibration and Validation Set

An initial calibration data set of 220 samples was 
generated using only the samples from the Walloon re-
gion of Belgium. To augment the variability of the MIR 
spectra in this data set, 47 samples from Belgium (n = 
31), Ireland (n = 12), and Scotland (n = 4) were identi-
fied using PCA and added to the calibration data set. 
The samples from each country were not balanced in 
the calibration set because the majority of milk samples 
collected in Ireland and Scotland showed a spectral vari-
ability already existing in the Walloon data set. Only 
informative samples were added. Therefore, the calibra-
tion data set used in this study contained 267 samples 
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and the remaining 250 samples were included in the 
external validation data set (16 samples from Belgium, 
132 from Ireland, and 102 samples from Scotland).

Development of Prediction Equations

In this study, 6 approaches were used to develop the 
most accurate prediction equations:

Method 1: PLS and no pretreatment on the spec-
tral data;
Method 2: PLS + the use of a repeatability file;
Method 3: PLS + the use of a first-derivative pre-
treatment on the spectral data;
Method 4: PLS + the use of a first-derivative pre-
treatment + repeatability file;
Method 5: PLS + the use of a second-derivative 
pretreatment;
Method 6: PLS + the use of a second-derivative 
pretreatment + repeatability file.

To make the spectral data linear, the initial spec-
tral data expressed in transmittance were converted 
in absorbance by taking the log10 of the reciprocal of 
transmittance.

An equation developed for one spectrometer could 
provide results slightly biased on another instrument. 
To improve the repeatability across instruments, a file 
referred to throughout this paper as the “repeatability 
file” was generated by recording the MIR spectrum 
of several milk samples provided by different spec-
trometers. In the present study, the MIR spectra of 
108 samples were determined on at least 2 different 
spectrometers. A total of 5 different MilkoScan FT6000 
(Foss) were used: 3 located in a Belgian milk laboratory 
(Comité du Lait), 1 located in Luxembourg (Convis 
Herdbuch, Ettelbruck, Luxembourg) and 1 located in 
Ireland (Teagasc Moorepark, Co. Cork, Ireland). The 
approach taken to use the repeatability file in the de-
velopment of equations was similar to that described 
by Westerhaus (1990). As explained by Westerhaus 
(1990), each spectrum was centered by subtracting 
the average of all spectra for the samples included in 
the repeatability file (i.e., 108 selected samples). The 
reference GC values for these centered samples (i.e., 
composition of FA) were equal to zero. The samples 
in the repeatability file were then used to extend the 
initial calibration set. This method creates a decrease 
in the repeatability error. The repeatability of spectral 
data for the infrared regions considered was on average 
lower than 2%.

The derivative of the spectral data was obtained to 
“sharpen” the absorption bands. First and second de-
rivatives were obtained using the following formula:

 dx x xk
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where dxk is the value of the derivative for the spectral 
data point k, and g is an odd integer strictly positive 
titled “gap” (i.e., 5 consecutive spectral data points in 
this study; Hruschka, 1987). The second derivative used 
the absorbance obtained for the first derivative instead 
of the absorbance of spectra.

A cross-validation approach using 20 groups of sam-
ples from the calibration set was used to determine the 
most appropriate number of factors for the prediction 
equation of each FA and to assess the robustness of 
calibration. Cross-validation leaves out one group at 
a time and performs a calibration with the remaining 
19 groups. Then, the calibration was applied to the 
one group left out and then repeated 20 times with 
a different group left out each time. Therefore, cross-
validation is an internal validation because it uses the 
same samples for validation and calibration. The maxi-
mal number of factors per equation was 16.

The calibration coefficient of determination (R2c) was 
calculated as the square of the correlation coefficient 
between the reference GC data and their corresponding 
predicted values calculated from the final model based 
on all samples included in the calibration set. The stan-
dard error of calibration (SEC) was calculated as
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where ŷi  was the predicted values obtained for the 
sample i included in the calibration set; yi was the refer-
ence GC value of the sample i; N was the number of 
samples in the calibration set; and p was the number of 
factors used to build each calibration equation. The 
standard error of cross-validation (SECV) was calcu-
lated as
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where ˆ ,yi j  was the predicted values obtained for the 

sample i in the group of cross-validation j; yi,j was the 
reference GC value the for the sample i in the group of 
cross-validation j; N was the number of samples in each 
group of cross-validation; and Z was the number of 
cross-validation groups.
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The cross-validation coefficient of determination 
(R2cv) was calculated as the square of the correlation 
coefficient between the reference GC data and their 
corresponding predicted values calculated from the 
results obtained by the 20 models developed during the 
cross-validation.

The mean and SD for each FA measured using GC 
were calculated for the validation and calibration sets. 
The best calibration equation should have the larger 
SD for GC data (to cover the natural range of FA vari-
ability) and the smallest SECV. Therefore, the ratio 
of SD from GC data to SECV was calculated (RPD; 
Williams and Sobering, 1993). If this ratio is greater 
than 3, the prediction given by the developed calibra-
tion equation can be considered good.

By observing the spectral variation (Soyeurt et al., 
2010), we decided to develop the calibration from 3 
specific regions located between 926 and 1,600 cm−1, 
1,712 and 1,809 cm−1, and 2,561 and 2,989 cm−1. The 
selection of MIR regions for calibration is less important 
with the use of a repeatability file because the use of 
this file will permit a decrease in the PLS coefficient for 
wavelength with poor repeatability (Hruschka, 1987).

External Validation

The equations developed by the 6 proposed methods 
were also externally validated using the 250 independent 
samples. The validation coefficient of determination 
(R2v) was calculated using the same formula shown 
to calculate R2c except that the values were calculated 
from the validation set. The 6 studied methods were 
compared based on R2cv, RPD, and R2v.

Accuracy of Calibration

To assess the accuracy of mid-infrared prediction of 
FA, all samples with FA content data available were 
combined in a final data set (n = 517 samples) and the 
equations were rebuilt using the best method derived 
from the results obtained with the calibration and vali-
dation data. To improve the robustness of equations, 
the critical T outlier value (Winisi software, Foss) was 
set to 2.5 (i.e., recommended default value). If the dif-
ference between the predicted and reference FA values 
was greater than 2.5 times the SEC, the sample was 
considered to be an outlier and deleted. This methodol-
ogy was iterated twice. To ensure a good comparison of 
methods, this methodology of outlier detection was not 
used in the first part of this study because the samples 
considered as outliers were not the same for the 6 
studied methods. It is logical, because this method is 
based on differences between predicted and reference 
values. So, this method is influenced by the accuracy 

of developed equations. As shown later, the 6 methods 
gave different error values.

RESULTS AND DISCUSSION

Descriptive Statistics

Forty-seven samples were selected based on their 
spectral variability from the Irish and Scottish samples 
and the 49 remaining Belgian samples. This low number 
of additional selected samples (i.e., 47) demonstrated 
the high natural spectral variability already covered by 
the initial Belgian calibration set, which comprised 221 
milk samples. This was expected, because the initial 
data set included milk samples representative of vary-
ing seasons, years, and geographical location from cows 
of different parity, stage of lactation, and breed.

Mean, SD, minimal and maximal values, and the 
coefficient of variation (CV) of the GC data used in the 
calibration and validation sample sets are presented in 
Table 1. The variability of FA profile in the calibration 
set used in this study can be considered as high based 
on the values of CV calculated for each studied FA. 
CV ranged from 8.97 to 60.05%. The CV, minimal, 
and maximal values shown in Table 1 for the external 
validation set demonstrate that the variability of GC 
data in this set was lower than that shown in the cali-
bration set except for the group of C18:2, and branched 
FA, C18:2 cis-9,cis-12, and C18:2 cis-9,trans-11. These 
figures confirm the high range of natural variability of 
FA present in the sample set used to build the cali-
bration equations. This variation, which is larger than 
previously published estimates (Rutten et al., 2009), re-
sulted from the careful selection of samples for entry to 
the calibration data set based on spectral variability.

Comparison of Methods to Develop  
Calibration Equations for FA in Milk

Table 2 summarizes the R2cv, RPD, and R2v calcu-
lated for each calibration equation built from all studied 
methods and FA contents in milk (g/dL of milk). The 
RPD ratio is useful to compare the methods studied 
because, by definition, RPD considers SECV and the 
variability of the calibration set simultaneously. There-
fore, RPD is more sensitive than R2cv. For instance, the 
R2cv for fat and SFA calibration equations were equal 
but RPD were different.

The best calibration equation has to have the highest 
R2cv, RPD, and R2v. Method 4 (PLS + first derivative 
+ repeatability file) gave the best prediction results 
for the majority of studied FA (see results in bold 
face in Table 2) because this method has simultane-
ously more often the highest values for R2cv, RPD, 
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and R2v. This conclusion was expected. Inclusion of 
spectra provided by separate spectrometers from milk 
samples of individual cows of different breeds and coun-
tries on varying feeding systems resulted in increased 
noise (e.g., baseline drift) and explains the need for 
pretreatment of the data before the development of 
the calibration equations. As explained previously, the 
repeatability file used in method 4 allows us to account 
for the repeatability of each spectral data point. Even 
if differences between the use of a repeatability file and 
no repeatability file (methods 3 and 4, Table 2) were 
not very large (the P-values between methods using a 
repeatability file and the others were <5%), the use 
of the first derivatives improved the accuracy of MIR 
prediction for FA (comparison between methods 2 and 
4, Table 2). The first derivatives corrected for the base-
line drift evident in the spectra file (Figure 1). The use 
of the first derivative was also suggested by Dal Zotto 
et al. (2008). These authors noted that the use of the 
first derivative on spectral data improved the accuracy 
of the equations predicting milk rennet coagulation 
time and curd firmness. The second derivative, which 
removes the linear trend from the spectral data, did not 
have a statistically significant effect in this study.

The PLS method without pretreatment (method 1) 
did not give the best predictions except for predictions 

of C17:0 and n-3 FA (Table 2). However, these equa-
tions had R2cv and RPD values that were too low to 
be considered useful. In fact, for potential qualitative 
and quantitative applications, a calibration equation 
should have R2cv and RPD >0.80 and >3, respectively 
(Williams, 2007). This was the case for the most indi-
vidual FA and groups of FA: C6:0, C8:0, C10:0, C12:0, 
C14:0, C16:0, C18:1 cis-9, C18:1 cis, SFA, MUFA, 
UFA, SCFA, MCFA, and LCFA. However, in previous 
studies (Soyeurt et al., 2006, 2008a,b; Rutten et al., 
2009), calibration equations were developed using just 
a PLS approach without pretreatment of spectral data. 
Even if the conclusion about the efficiency of calibra-
tion equations to predict the contents of FA shown by 
Rutten et al. (2009) was similar, this study showed the 
better fitting given by the PLS method including de-
rivative pretreatment on spectral data compared with 
the PLS method used alone.

Generally, the highest R2cv and RPD were observed 
for the studied groups of FA (Table 2). Therefore, as 
shown by Soyeurt et al. (2006) and Rutten et al. (2009), 
the efficiency of MIR prediction of FA depends on the 
concentrations of FA in milk. The correlation between the 
average concentration of FA in the calibration set and the 
corresponding R2cv was positive and equal to 0.59. More-
over, the calibration set for each studied trait should also 
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Table 1. Descriptive statistics of gas chromatographic data for the calibration and validation sample sets 

Constituent1  
(g/100 g of fat)

Calibration set (n = 267)

 

Validation set (n = 250)

Mean SD Minimum Maximum CV Range Mean SD Minimum Maximum CV Range

C4:0 2.67 0.51 1.26 4.18 19.24 2.92  2.64 0.49 1.26 4.28 18.41 3.02
C6:0 1.87 0.34 0.90 2.97 17.97 2.07  1.79 0.30 0.86 2.47 16.58 1.62
C8:0 1.18 0.27 0.47 2.10 22.45 1.63  1.13 0.20 0.53 1.70 17.60 1.17
C10:0 2.70 0.73 0.79 5.43 26.93 4.64  2.66 0.53 1.44 4.57 20.02 3.14
C12:0 3.30 0.95 0.90 7.05 28.79 6.16  3.23 0.63 1.78 5.79 19.51 4.01
C14:0 10.94 2.08 4.69 16.59 18.97 11.90  11.00 1.42 6.97 14.53 12.88 7.56
C14:1 1.01 0.39 0.30 2.58 39.26 2.29  1.07 0.39 0.34 2.53 36.34 2.19
C16:0 29.13 4.95 20.00 46.03 17.00 26.03  28.03 4.70 18.99 40.20 16.77 21.21
C16:1 cis 1.79 0.61 0.24 5.25 34.35 5.01  1.96 0.48 1.09 3.51 24.27 2.42
C17:0 0.71 0.18 0.00 1.06 24.90 1.05  0.73 0.07 0.47 0.93 10.00 0.46
C18:0 10.50 2.77 1.93 18.67 26.35 16.74  9.89 2.48 4.00 17.39 25.03 13.39
C18:1 trans 3.28 1.47 1.11 8.95 44.72 7.83  4.58 1.70 1.07 9.41 37.22 8.34
C18:1 cis-9 20.10 4.94 8.80 36.36 24.57 27.56  20.39 2.94 12.62 28.28 14.45 15.66
Total C18:1 cis 21.76 5.06 9.84 38.41 23.24 28.57  21.70 3.11 13.44 30.10 14.35 16.66
Total C18:2 2.28 0.58 1.11 6.44 25.30 5.33  2.45 0.63 1.07 4.18 25.52 3.11
C18:2 cis-9,cis-12 1.53 0.49 0.63 3.93 31.93 3.31  1.47 0.64 0.47 2.92 43.33 2.45
C18:3 cis-9,cis-12,cis-15 0.58 0.22 0.18 1.32 38.31 1.14  0.57 0.16 0.02 1.09 28.56 1.07
C18:2 cis-9,trans-11 0.88 0.53 0.21 2.90 60.65 2.68  1.29 0.79 0.21 4.02 61.05 3.81
Saturated FA 67.01 6.01 51.08 79.31 8.97 28.22  65.20 4.35 53.02 77.97 6.67 24.95
Monounsaturated FA 28.57 5.32 17.80 43.94 18.62 26.14  29.92 3.77 19.03 39.98 12.59 20.95
Polyunsaturated FA 4.31 1.05 2.51 8.75 24.47 6.24  4.83 0.98 2.21 7.77 20.29 5.56
Unsaturated FA 32.88 5.89 20.69 48.89 17.91 28.20  34.75 4.47 22.30 46.98 12.87 24.68
Short-chain FA 8.75 1.58 4.73 13.82 18.11 9.09  8.51 1.29 4.33 12.25 15.16 7.92
Medium-chain FA 49.81 7.33 32.97 72.33 14.72 39.36  49.10 6.11 35.36 63.63 12.44 28.27
Long-chain FA 41.33 7.96 18.83 60.90 19.25 42.07  42.34 6.47 26.89 58.34 15.28 31.45
Branched-chain FA 2.56 0.50 1.15 4.51 19.58 3.36  2.59 0.70 1.23 5.47 26.88 4.25
n-3 FA 0.80 0.31 0.24 2.41 38.59 2.17  0.77 0.18 0.24 1.28 24.01 1.05
n-6 FA 2.63 0.64 1.34 7.38 24.39 6.04  2.77 0.67 1.32 4.69 24.07 3.37

1Short-chain fatty acids (FA) = C4 to C10; medium-chain FA = C12 to C16; long-chain FA = C17 to C22.
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be variable. In a regression including the mean and SD of 
GC data expressed in milk, SD explained more than 36% 
of the variability of R2cv obtained. Consequently, the 
infrared prediction should be improved if the FA yield 
in milk is high and the content of the considered FA is 
variable within the calibration set. A similar correlation 
of 0.55 was obtained using the validation set.

The best method differed depending on the studied FA 
traits even if the use of the first derivative seemed to be 
the best approach with or without the repeatability file 
(see results in bold face in Table 2). Fat content, C6:0, 
C18:0, C18:1 trans, C18:1 cis-9, SFA, MUFA, PUFA, 
UFA, and SCFA seemed to be slightly better predicted 
by method 3. In contrast, C17:0 and the group of n-3 
FA were better predicted using method 2. Moreover, 
the predictions obtained for the total content of C18:2 
and C18:2 cis-9,cis-12 seemed to be more accurate from 
methods 5 and 6, respectively (i.e., greater R2v, RPD, 
and R2cv). However, these differences were slight and 
thus suggested that the use of method 4 could be the 
best for all studied FA traits.

Prediction of FA in Fat Based  
on FA Predictions in Milk

As shown in earlier studies (Soyeurt et al., 2006; Rut-
ten et al., 2009), the prediction of FA in fat by MIR 
spectrometry is not sufficiently accurate. However, some 
equations with relatively high accuracy were developed 
to quantify some FA contents in milk (Table 2). Table 
3 summarizes the accuracy of predicting FA content in 

fat from using equations developed to predict milk FA 
content in the milk and the total fat content. Three 
different measures of total fat content were considered: 
reference fat content obtained by the MIR spectrometer 
and corrected if needed by the bias and the slope, fat 
content predicted by method 4 (globally the best for 
all FA, Table 2), and method 3 (the best method to 
predict fat, Table 2). For each FA trait, 2 predictions 
were used: those given by method 4 and those given by 
the best method found based on the results presented 
in Table 2. Based on the results of the calibration set, 
it appears that this FA prediction in fat using FA pre-
dicted in milk gave better results than the one observed 
by the direct prediction in fat for C6:0, C12:0, C18:2 
cis-9,cis-12, SFA, and SCFA. It was neutral for C8:0, 
C10:0, C14:0, C18:2 cis-9,trans-11, MUFA, UFA, and 
branched FA.

For some groups of FA, it is possible to extend this 
approach. For instance, it is possible to estimate the 
content of UFA in fat using the content of SFA in fat 
or in milk and divided by the fat content. In the same 
way, PUFA can be predicted using MUFA and UFA or 
fat content, SFA, and MUFA. All of these possibilities 
were tested but the best results (i.e., highest R2cv) were 
those present in Table 4. The accumulation of errors 
could explain this observation.

Accuracy of Calibration

To give an idea of the accuracy of each infrared pre-
diction, Table 4 presents the best approach for each 

Journal of Dairy Science Vol. 94 No. 4, 2011
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Figure 1. Effect of first derivative on 2 mid-infrared milk spectra.
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Table 3. Coefficient of determination between the reference GC data and the prediction (Pred.) of fatty acid (FA) contents in fat (g/100 g of fat) obtained from the predictions 
of fatty acid in milk (g/dL of milk) 

Constituent  
(g/100 g of fat)1

Calibration set (n = 267) Validation set (n = 250)

Reference  
fat2

Pred. fat  
with 43

Pred. fat  
with 34 Pred.5

Reference  
fat

Pred. fat  
with 4

Pred. fat  
with 3 Pred.

46 Best7 4 Best 4 Best 4 4 Best 4 Best 4 Best 4

C4:0 0.72 NA8 0.73 NA 0.73 NA 0.73  0.58 NA 0.57 NA 0.57 NA 0.45
C6:0 0.82 0.85 0.83 0.85 0.84 0.86 0.80  0.59 0.58 0.61 0.59 0.61 0.59 0.55
C8:0 0.82 NA 0.82 NA 0.83 NA 0.82  0.68 NA 0.70 NA 0.69 NA 0.61
C10:0 0.80 NA 0.80 NA 0.82 NA 0.83  0.73 NA 0.74 NA 0.75 NA 0.67
C12:0 0.85 NA 0.85 NA 0.85 NA 0.81  0.77 NA 0.78 NA 0.78 NA 0.72
C14:0 0.85 NA 0.85 NA 0.86 NA 0.86  0.65 NA 0.68 NA 0.68 NA 0.65
C14:1 0.41 NA 0.42 NA 0.43 NA 0.59  0.28 NA 0.28 NA 0.29 NA 0.39
C16:0 0.64 NA 0.64 NA 0.63 NA 0.72  0.48 NA 0.50 NA 0.52 NA 0.55
C16:1 cis 0.36 0.37 0.35 0.37 0.35 0.37 0.45  0.23 0.18 0.23 0.18 0.24 0.19 0.21
C18:0 0.66 NA 0.66 NA 0.66 NA 0.70  0.38 NA 0.39 NA 0.37 NA 0.35
C18:1 trans 0.67 NA 0.68 NA 0.69 NA 0.77  0.70 NA 0.69 NA 0.69 NA 0.65
C18:1 cis-9 0.79 NA 0.80 NA 0.82 NA 0.87  0.64 NA 0.66 NA 0.65 NA 0.65
Total C18:1 cis 0.80 NA 0.82 NA 0.83 NA 0.86  0.64 NA 0.67 NA 0.67 NA 0.66
Total C18:2 0.31 0.26 0.31 0.28 0.31 0.30 0.37  0.07 0.24 0.08 0.24 0.09 0.26 0.22
C18:2 cis-9,cis-12 0.43 0.45 0.45 0.32 0.45 0.45 0.42  0.25 0.31 0.26 0.22 0.28 0.34 0.37
C18:3 cis-9,cis-12,cis-15 0.21 0.18 0.22 0.20 0.24 0.22 0.44  0.24 0.36 0.24 0.35 0.23 0.34 0.30
C18:2 cis-9,trans-11 0.57 NA 0.57 NA 0.57 NA 0.56  0.54 NA 0.53 NA 0.53 NA 0.40
Saturated FA 0.84 0.90 0.85 0.92 0.82 0.90 0.87  0.74 0.72 0.79 0.77 0.78 0.77 0.74
Monounsaturated FA 0.88 NA 0.88 NA 0.89 NA 0.88  0.75 NA 0.77 NA 0.77 NA 0.77
Polyunsaturated FA 0.40 0.35 0.41 0.36 0.42 0.38 0.59  0.56 0.61 0.55 0.59 0.56 0.61 0.50
Unsaturated FA 0.87 0.86 0.89 0.88 0.90 0.90 0.89  0.78 0.79 0.80 0.81 0.81 0.81 0.78
Short-chain FA 0.85 0.83 0.85 0.85 0.85 0.85 0.81  0.66 0.64 0.69 0.66 0.68 0.66 0.61
Medium-chain FA 0.80 NA 0.81 NA 0.80 NA 0.82  0.62 NA 0.64 NA 0.65 NA 0.62
Long-chain FA 0.83 NA 0.84 NA 0.85 NA 0.85  0.73 NA 0.74 NA 0.73 NA 0.64
Iso-ante + iso 0.42 NA 0.43 NA 0.43 NA 0.42  0.18 NA 0.17 NA 0.16 NA 0.13
n-3 FA 0.09 0.08 0.10 0.08 0.11 0.10 0.27  0.23 0.40 0.23 0.38 0.22 0.38 0.38
n-6 FA 0.26 0.26 0.28 0.28 0.30 0.30 0.37  0.12 0.19 0.13 0.20 0.15 0.22 0.18

1The best methods chosen for C16:1 cis, C18:1 cis, C18:3 cis-9,cis-12,cis-15, and C18:2 cis-9,trans-11 were methods 5, 4, 6, and 4, respectively.
2Reference fat = fat content provided by the mid-infrared spectrometer and corrected if needed by the bias and the slope.
3Fat content predicted using method 4.
4Fat content predicted using method 3, the best method for fat prediction.
5Prediction = content of FA in fat predicted using the equation built from the method 4, the best for the majority of FA.
6FA content in milk predicted using method 4.
7FA content in milk using the best method for each FA based on the result of Table 3.
8NA = FA for which method 4 is the best.



studied FA using the entire data set (n = 517) together 
with the corresponding descriptive statistics, SECV, 
R2cv, and RPD. The RPD calculated using the entire 
data set was generally greater than the RPD shown 
in Table 2 (calculated using only the samples in the 
calibration data set). In contrast to Table 3, no differ-
ence was observed between methods 3 and 4. Method 
3 was the best predictor for the majority of FA (data 
not shown). The similarity of results obtained using 
method 3 and method 4 can be easily explained by 
the introduction of new samples in the calibration set. 
As explained previously, the samples included in the 
validation (and thus used in the calibration set) came 
mainly from Ireland and Scotland. The introduction of 
more spectra coming from other regions in the calibra-
tion set decreased the relevance of using the repeat-
ability file in the development of calibration equations. 
The larger data set resulted in an improved ability of 
MIR spectrometry to quantify the studied PUFA.

The second part of Table 4 shows the results for 
the new FA calibration equations built using outlier 
detection and method 3. The number of factors per 
equation ranged from 7 to 15. Following the removal 
of outliers, the RPD calculated for all or most FA was 

higher, indicating that the removal of outliers improves 
the accuracy. The same equation as the one isolated 
previously from Table 2 for potential quantitative and 
qualitative applications can be considered from Table 
4 and showed a greater RPD threshold (4 instead of 
3). Based on a RPD threshold equal to 3, 3 additional 
equations can be used: C4:0, C18:0, and C18:1 equa-
tions. With R2cv >0.75, the MIR predictions of PUFA, 
n-3 FA, and the group of branched FA could be used to 
screen the cow population. So for all of these equations, 
the 95% confidence interval of the population will be 
1.96 times SECV.

CONCLUSIONS

This study compared 6 methods used to develop cali-
bration equations for predicting the contents of FA in 
milk by using an innovative approach to collect milk 
samples combining multiple breeds, countries, and pro-
duction systems. Globally, the methods using a first-
derivative pretreatment of the spectral data gave the 
best predictions. The best accuracy was observed for 
infrared predictions of C4:0, C6:0, C8:0, C10:0, C12:0, 
C14:0, C16:0, C18:0, C18:1 trans, C18:1 cis-9, C18:1 cis, 
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Table 4. Accuracy of mid-infrared predictions for fatty acid (FA) in milk (g/dL of milk) using the entire data set1 

Constituent  
(g/dL of milk)

With supposed outliers

 

Without supposed outliers (method 3)

Method n Mean SD SECV R2cv RPD n Factor Mean SD SECV R2cv RPD

Fat 3 517 3.65 1.15 0.04 1.00 25.6  498 15 3.59 1.10 0.04 1.00 30.4
C4:0 4 517 0.10 0.03 0.01 0.89 3.0  490 13 0.10 0.03 0.01 0.94 4.1
C6:0 3 517 0.067 0.024 0.01 0.95 4.3  492 11 0.067 0.024 0.00 0.97 5.7
C8:0 4 517 0.042 0.016 0.00 0.93 3.8  490 14 0.042 0.016 0.00 0.97 6.1
C10:0 4 517 0.10 0.04 0.01 0.92 3.6  495 15 0.10 0.04 0.01 0.96 5.1
C12:0 4 517 0.12 0.05 0.01 0.92 3.6  495 15 0.12 0.05 0.01 0.96 5.2
C14:0 4 517 0.40 0.13 0.03 0.95 4.3  494 14 0.39 0.13 0.02 0.97 5.4
C14:1 4 517 0.037 0.016 0.01 0.61 1.6  493 11 0.036 0.014 0.01 0.68 1.8
C16:0 4 517 1.05 0.39 0.10 0.93 3.8  494 13 1.02 0.37 0.08 0.95 4.6
C16:1 cis 5 517 0.068 0.029 0.02 0.64 1.7  493 9 0.065 0.024 0.01 0.71 1.9
C17:0 2 517 0.026 0.010 0.01 0.61 1.6  484 11 0.026 0.009 0.00 0.89 3.1
C18:0 4 517 0.38 0.18 0.06 0.88 2.8  492 14 0.37 0.17 0.05 0.90 3.2
C18:1 trans 4 517 0.14 0.07 0.03 0.84 2.5  502 15 0.14 0.07 0.02 0.88 2.9
C18:1 cis-9 4 517 0.74 0.29 0.06 0.95 4.5  494 15 0.73 0.28 0.05 0.97 5.9
Total C18:1 cis 4 517 0.80 0.31 0.07 0.95 4.7  495 15 0.79 0.30 0.05 0.97 6.0
Total C18:2 6 517 0.085 0.029 0.02 0.70 1.8  503 7 0.084 0.028 0.01 0.73 1.9
C18:2 cis-9,cis-12 5 517 0.054 0.025 0.01 0.71 1.9  502 10 0.053 0.024 0.01 0.74 2.0
C18:3 cis-9,cis-12,cis-15 6 517 0.021 0.011 0.01 0.60 1.6  489 8 0.021 0.009 0.01 0.71 1.8
C18:2 cis-9,trans-11 4 517 0.037 0.023 0.01 0.63 1.6  488 12 0.036 0.021 0.01 0.74 2.0
Saturated FA 3 517 2.42 0.82 0.08 0.99 10.8  496 14 2.40 0.80 0.05 1.00 15.7
Monounsaturated FA 4 517 1.06 0.37 0.06 0.97 5.8  491 15 1.06 0.37 0.04 0.99 8.9
Polyunsaturated FA 3 517 0.16 0.05 0.02 0.81 2.3  499 11 0.16 0.05 0.02 0.85 2.6
Unsaturated FA 3 517 1.23 0.41 0.07 0.97 6.2  492 15 1.22 0.41 0.04 0.99 9.6
Short-chain FA 3 517 0.32 0.11 0.02 0.95 4.5  486 12 0.31 0.11 0.02 0.98 6.7
Medium-chain FA 4 517 1.80 0.62 0.12 0.96 5.1  496 14 1.78 0.60 0.09 0.98 6.5
Long-chain FA 4 517 1.53 0.57 0.12 0.96 4.8  495 14 1.52 0.57 0.09 0.98 6.5
Branched-chain FA 4 517 0.09 0.03 0.02 0.73 1.9  492 12 0.09 0.03 0.01 0.83 2.4
n-3 FA 2 517 0.029 0.015 0.01 0.55 1.5  485 8 0.028 0.012 0.01 0.75 2.0
n-6 FA 6 517 0.10 0.03 0.02 0.72 1.9  504 7 0.10 0.03 0.02 0.74 2.0

1SECV = standard error of cross-validation; R2cv = cross-validation coefficient of determination; RPD = ratio of SD of GC data from the 
calibration set to the SECV.



and for the majority of studied groups of FA studied in 
milk. With R2cv >0.75, the MIR predictions of PUFA, 
n-3 FA, and the group of branched FA could be used 
to screen the cow population. As already published, the 
infrared predictions of FA in fat are less accurate and 
no improvement was obtained by using the developed 
equations for fat and for FA in milk without corrections 
of slope and bias based on milk samples with known 
contents of FA. The large number of samples, specifi-
cally chosen to cover the natural variation in milk FA 
present, coupled with the high accuracy of selection for 
some FA, indicates the usefulness of these equations 
in milk payment systems (if R2v is >95%) and animal 
breeding (if R2cv is >75%).
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