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Honey	is	a	complex	and	challenging	product	to	analyze	due	mainly	to	its	composition	consisting	on	various	botanical	sources.	
The	discrimination	of	the	origin	of	honey	is	of	prime	importance	in	order	to	reinforce	the	consumer	trust	in	this	typical	food	
product.	But	this	is	not	an	easy	task	as	usually	no	single	chemical	or	physical	parameter	is	sufficient.	The	aim	of	our	paper	is	
to	investigate	whether	FT-Raman	spectroscopy	as	spectroscopic	fingerprint	technique	combined	with	some	chemometric	tools	
can	be	used	as	a	rapid	and	reliable	method	for	the	discrimination	of	honey	according	to	their	source.	In	addition	to	that,	different	
chemometric	models	are	constructed	in	order	to	discriminate	between	Corsican	honeys	and	honey	coming	from	other	regions	
in	France,	Italy,	Austria,	Germany	and	Ireland	based	on	their	FT-Raman	spectra.	These	regions	show	a	large	variation	in	their	
plants.	The	developed	models	include	the	use	of	exploratory	techniques	as	the	Fisher	criterion	for	wavenumber	selection	and	
supervised	methods	as	Partial	Least	Squares-Discriminant	Analysis	(PLS-DA)	or	Support	Vector	Machines	(SVM).	All	these	
models	showed	a	correct	classification	ratio	between	85%	and	90%	of	average	showing	that	Raman	spectroscopy	combined	
to	chemometric	treatments	is	a	promising	way	for	rapid	and	non-expensive	discrimination	of	honey	according	to	their	origin.
Keywords.	Discrimination,	FT-Raman,	typical	food	product,	honey,	chemometrics,	SVM,	PLS-DA.

Discrimination du miel de Corse par spectroscopie FT-Raman et chimiométrie. Le	miel	est	un	produit	complexe	à	analyser,	
principalement	du	fait	de	sa	composition	basée	sur	diverses	origines	botaniques.	La	discrimination	basée	sur	l’origine	du	miel	
est	d’une	très	grande	importance	pour	renforcer	la	confiance	du	consommateur	pour	ce	produit	alimentaire	typique.	Mais	ce	
n’est	pas	une	tâche	facile	parce	qu’en	général,	un	seul	paramètre	chimique	ou	physique	n’est	pas	suffisant.	L’objectif	de	cet	
article	est	d’investiguer	si	la	spectroscopie	FT	Raman,	comme	technique	de	spectroscopie	dite	de	fingerprinting,	combinée	
à	quelques	outils	de	chimiométrie	peut	être	utilisée	comme	une	méthode	rapide	et	fiable	pour	la	discrimination	du	miel	en	
fonction	de	son	origine.	De	plus,	des	modèles	de	chimiométrie	sont	construits	pour	discriminer	le	miel	de	Corse	et	le	miel	
issu	d’autres	régions	en	France,	Italie,	Autriche,	Allemagne	et	Irlande	en	se	basant	sur	ses	spectres	de	FT-Raman.	Les	modèles	
développés	incluent	l’emploi	de	techniques	exploratoires	comme	le	critère	de	Fisher	pour	la	sélection	de	longueurs	d’onde	
et	des	méthodes	supervisées	comme	la	Partial Least Squares-Discriminant Analysis	(PLS-DA)	ou	Support Vector Machines	
(SVM).	Tous	ces	modèles	ont	montré	une	proportion	de	classification	correcte	entre	85	%	et	90	%	en	moyenne,	montrant	que	
la	spectroscopie	Raman	combinée	aux	traitements	de	chimiométrie	est	une	manière	prometteuse	pour	la	discrimination	rapide	
et	peu	couteuse	du	miel	selon	son	origine.
Mots-clés.	Discrimination,	FT-Raman,	produit	alimentaire	typique,	miel,	chimiométrie,	SVM,	PLS-DA.

1. InTRoDuCTIon 

Honey	is	a	natural	biological	product	used	as	food	and	
medicine	 since	 ancient	 times	 (Ransome,	 2004).	 It	 is	
a	 complex	 and	 challenging	 product	 highly	 linked	 to	
the	botanical	 sources	 it	 is	made	 and	by	 consequence	
to	 the	 production	 area.	 The	 different	 proportions	 of	
nectar	 incorporated	 in	 honey	 vary	 depending	 on	 the	
geographic	 zone,	 the	 vegetation	 type	 as	 well	 as	 the	
flowering	period	of	the	plants	(Hewitson,	2009).	This	
great	variety	of	combinations	of	these	criteria	impacting	

on	 the	 honey	 composition	 offers	 to	 the	 consumer	 a	
number	of	typical	products	with	defined	characteristics.	
The	 control	 of	 quality	 and	 the	 assessment	 of	 the	
geographical	origin	of	honey	which	is	associated	to	the	
producing	vegetation	are	of	prime	importance	in	order	
to	 reinforce	 the	 consumer	 trust	 in	 such	 typical	 food	
products.	 In	 fact,	 the	 consumer	 is	 always	 asking	 for	
a	certainty	of	 the	geographic	zone	of	honey	product.	
The	assessment	of	the	origin	of	a	food	product	is	not	
an	easy	task	as	usually	no	single	chemical	or	physical	
parameter	 is	 sufficient.	 In	 fact,	 due	 to	 its	 complex	



76 Biotechnol. Agron. Soc. Environ. 2011	15(1),	75-84 Fernández	Pierna	J.A.,	Abbas	O.,	Dardenne	P.	et	al.

and	variable	composition,	it	became	necessary	to	use	
global	 analytical	 approaches	 like	 fingerprinting	 and	
profiling	 methods.	 In	 recent	 years,	 characterization	
of	 honey	 has	 received	 an	 increased	 attention.	 Many	
works	have	been	carried	out	in	order	to	determine	the	
composition	of	honey	(Ha	et	al.,	1998;	de	Oliveira	et	
al.,	2002),	physical	and	chemical	properties	(Cho	et	al.,	
1998;	Cozzolino	et	 al.,	 2003),	 to	detect	 and	quantify	
honey	adulteration	with	different	kinds	of	syrups	(i.e. 
cane,	 beet	 or	 high-fructose	 syrups)	 (Paradkar	 et	 al.,	
2002;	Downey	et	al.,	2003;	Kelly	et	al.,	2006;	Toher	
et	al.,	2007),	to	specify	the	main	floral	sources	(Tewari	
et	 al.,	 2005;	 Bartelli	 et	 al.,	 2007)	 and	 to	 assess	 the	
authentication	of	unifloral	or	multifloral	types	of	honey	
(Ruoff	et	al.,	2006b;	2006c).

In	recent	years,	coupling	spectroscopic	techniques	
and	chemometric	methods	is	one	of	the	tools	used	and	
proposed	for	food	origin	discrimination	(Baeten	et	al.,	
2008;	Karoui	et	al.,	2008;	Manley	et	al.,	2008).	Many	
studies	 have	 been	 performed	 in	 order	 to	 assess	 the	
botanical	origin	of	honey.	 It	has	 to	be	mentioned	 the	
use	 of	 front-face	 fluorescence	 spectroscopy	 coupled	
to	 Principal	 Component	Analysis	 (PCA)	 and	 Linear	
Discriminant	Analysis	(LDA)	(Ruoff	et	al.,	2006a)	or	
Factorial	Discriminant	Analysis	(FDA)	(Karoui	et	al.,	
2007);	 the	 application	of	mid	 infrared	 (Tewari	 et	 al.,	
2005;	Ruoff	et	al.,	2006c)	and	near	infrared	spectroscopy	
with	PCA;	Canonical	Variate	Analysis	(CVA)	(Davies	
et	 al.,	 2002)	 and	 discriminant	 methods	 like	 partial	
least	 squares	 discrimination	 and	 LDA	 (Corbella	 et	
al.,	 2005;	Ruoff	 et	 al.,	 2006b);	 as	well	 as	 the	 use	 of	
Dispersive	Raman	 spectroscopy	 coupled	with	 cluster	
analysis	 and	 artificial	 neural	 networks	 (Goodacre	 et	
al.,	 2002).	All	 these	 investigations	 concerned	mainly	
the	discrimination	and	classification	of	honey	in	terms	
of	the	botanical	origin	and,	only	little	study	has	been	
done	 to	 define	 its	 geographical	 provenance.	 Davies	
et	 al.	 (2002)	 have	 mentioned	 that	 the	 distinction	 of	
honey	samples	in	terms	of	their	geographic	regions	is	
less	obvious	than	that	is	for	floral	origins	but	it	might	
be	 possible	 with	 large	 sample	 sets.	 Ruoff	 and	 his	
collaborators	have	shown	that	front-face	fluorescence	
(Ruoff	 et	 al.,	 2006a)	 and	mid	 infrared	 (Ruoff	 et	 al.,	
2006c)	 spectroscopic	 techniques	 combined	 with	
chemometric	 treatments	 as	 PCA	 and	 LDA	 may	 be	
useful	to	determine	the	geographical	origin	within	the	
same	unifloral	 type.	Recently,	Donarski	 et	 al.	 (2008)	
have	 been	 working	 to	 characterize	 the	 resonance	
peaks	relating	to	specific	biomarkers	of	botanical	and	
geographical	origin	using	linear	discriminant	analysis	
(LDA)	 and	 genetic	 programming	 (GP)	 techniques	
applied	 to	 one-dimensional	 proton	 nuclear	 magnetic	
resonance	(1H	NMR)	spectroscopic	data.	The	potential	
of	near-infrared	 (NIR)	 spectroscopy	 to	determine	 the	
geographical	 origin	 of	 honey	 samples	was	 evaluated	
by	Woodcock	 et	 al.	 (2007;	 2009)	 by	 using	 different	

chemometric	 tools	 as	 SIMCA	 or	 PLS-DA	 giving	
encouraging	results.

Raman	 spectroscopy,	 like	 mid	 infrared	
spectroscopy,	 probes	molecular	 vibrations.	 However,	
the	 principle	 underpinning	 the	 phenomenon	 is	 rather	
different.	Raman	scattering	arises	from	the	changes	in	
the	polarisability	or	shape	of	the	electron	distribution	
in	 the	 molecule	 as	 it	 vibrates.	 In	 contrast,	 infrared	
absorption	 requires	 a	 change	 of	 the	 intrinsic	 dipole	
moment	 with	 the	 molecular	 vibration.	 Asymmetric	
vibrational	modes	 and	vibrations	of	polar	groups	 are	
more	 likely	 to	exhibit	prominent	 infrared	absorption,	
while	symmetric	vibrational	modes	generally	give	rise	
to	strong	Raman	scattering.	Although,	the	mechanism	
of	Raman	scattering	is	different	from	that	of	 infrared	
absorption,	 Raman	 and	 infrared	 spectra	 provide	
complementary	 information	 about	 the	 vibrations	 of	
molecules	 and	 in	 consequence	 about	 the	 functional	
groups	 that	 constitute	 the	 product	 (Yang	 et	 al.,	
2005).	 Typical	 applications	 of	 this	 technique	 are	 in	
structure	 determination,	 multicomponent	 qualitative	
and	 quantitative	 analysis.	 FT-Raman	 spectroscopy	
is,	 among	 other	 recent	 analytical	 techniques,	 more	
and	more	used	 for	 the	assessment	of	 the	authenticity	
of	 food	 products	 like	 edible	 oils	 and	 fats	 (Baeten	
et	al.,	 1996;	 1998;	 2000a;	 2000b;	 2005;	 Kizil	 et	 al.,	
2008).	The	increasing	use	of	Raman	technique	in	the	
food	area	is	due	to	the	recent	advances	in	instrument	
technology	 (Duda	 et	 al.,	 1973;	 Baeten	 et	 al.,	 2002;	
Yang	et	al.,	2005)	like	the	interferometer	methodology	
that	 leads	 to	FT-Raman	spectrometer	 type	and	which	
makes	 it	 possible	 to	 monitor	 many	 wavenumbers	
simultaneously.	 Doing	 so,	 the	 total	 optical	 signal	
reaching	the	detector	may	be	increased	above	detector	
noise.	 An	 important	 advantage	 of	 the	 technique	 is	
new	sampling	presentation	which	permits	to	examine	
samples	without	any	preparation	in	the	whole	range	of	
physical	states	and	 inside	classical	glass	vials.	Major	
advantages	 of	 FT-Raman	 spectroscopy	 comprise	
also	 its	 simplicity,	 rapidity,	 cost-effective,	 and	 non-
destructive	characteristics.	

This	 paper	 aims	 to	 present	 the	 potential	 of	 FT-	
Raman	 spectroscopy	 combined	 to	 chemometric	 tools	
as	Partial	Least	Squares-Discriminant	Analysis	(PLS-
DA)	and	Support	Vector	Machines	(SVM)	to	develop	
a	 method	 suitable	 for	 the	 discrimination	 of	 honey	
from	 different	 origins.	The	 quality	 of	Corsica	 honey	
is	recognized	by	a	DO	(Denomination	of	Origin).	This	
DO	 authenticates	 the	 knowledge	 to	 make	 ancestral	
and	 specificities	 of	 a	 honey	which	 benefits	 from	 the	
richness	of	the	Corsica	flora.

This	work	was	undertaken	in	the	framework	of	the	
European	 project	 TRACING	 Food	 Commodities	 in	
Europe	(TRACE)	started	in	2004	(www.trace.eu.org).	
TRACE	project	is	funded	by	the	European	Commission	
through	the	6th	Framework	Programme	under	the	Food	
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Quality	and	Safety	Priority.	The	objective	is	to	develop	
traceability	 methods	 and	 systems	 that	 will	 provide	
consumers	with	 added	 confidence	 in	 the	 authenticity	
of	European	food.	Honey	is	one	of	the	focused	foods	
that	 we	 have	 investigated	 to	 develop	 methodologies	
based	on	 spectroscopic	fingerprint	 techniques	 for	 the	
assessment	of	European	geographic	origin	of	food.	

2. TheoRy

2.1. FT-Raman analysis

FT-Raman	spectra	were	acquired	on	a	Vertex	70	–	RAM	
II	Bruker	FT-Raman	spectrometer.	This	 instrument	 is	
equipped	 with	 a	 Nd:YAG	 laser	 (yttrium	 aluminium	
garnet	 crystal	 doped	with	 triply	 ionised	neodymium)	
with	 an	 output	 at	 1,064	nm	 (9,398.5	cm-1).	 The	
maximum	of	 laser	power	 is	1.5	W.	The	measurement	
accessory	is	pre-aligned,	only	the	Z-axis	of	the	scattered	
light	 is	 adjusted	 to	 set	 the	 sample	 in	 the	 appropriate	
position	 regarding	 the	 local	 point.	 The	 RAM	 II	
spectrometer	is	equipped	with	a	liquid-nitrogen	cooled	
Ge	detector.	The	OPUS	6.0	software	was	used	for	the	
spectral	acquisition,	manipulation	and	transformation.

Samples	were	 presented	 in	 the	 liquid	 form	 to	 the	
spectrometer	 in	 classical	 glass	 tubes	 of	 an	 internal	
diameter	 of	 12	mm	 and	 a	 length	 of	 75	mm	 (Schott	
Duran®).	 Tubes	 were	 introduced	 into	 a	 dedicated	
sample	holder	developed	at	the	CRA-W	and	made	of	
aluminium	to	assure	repeatable	position	of	the	sample	
in	 front	 of	 the	 laser	 beam.	 The	 sample	 holder	 was	
placed	 in	 the	 sample	 compartment.	 The	 laser	 power	
was	 set	 at	 800	mW,	 the	 resolution	 at	 4	cm-1	 and	 the	
number	of	 co-added	 scans	 at	 128	 for	 each	 spectrum.	
Each	 spectrum	 is	 then	 collected	 in	 4	min.	Analyses	
were	performed	in	duplicate.	

2.2. Chemometric analysis

Different	chemometric	methods	have	been	applied	in	
order	 to	 extract	 the	 maximum	 of	 information	 in	 the	
honey	data.	In	a	first	step	a	simple	exploratory	analysis	
has	been	performed:	the	Fisher	criterion.	This	method	
has	been	used	in	order	to	decide	which	original	variables	
have	an	 important	discriminating	power	according	 to	
the	 origin	 (Corsican/non-Corsican).	 Fisher	 describes	
the	ratio	of	the	between-class	variance	and	the	within-
class	variance.

For	each	variable	(scattering	intensity) j:

FCj =	Hj /	Ej

	 							k
where	Hj	=	∑ ni(xij-x.j)

2				is	the	between-class	variance
	 					i = 1

	 	 K
and	Ej	=	∑ (ni-1)s

2
ij is	the	within-class	variance,	where

	 i = 1

ni	 is	 the	number	of	objects	 in	class	 i,	xij	 is	 the	mean	
scattering	 intensity	 of	 the	 objects	 belonging	 to	 class	
i	 at	 the	 j-th	 wavenumber,	 x.j	 is	 the	 mean	 scattering	
intensity	of	the	objects	belonging	to	all	classes	at	the	
j-th	wavenumber	 and	 sij	 is	 the	 standard	 deviation	 of	
the	 scattering	 intensities	 of	 the	 objects	 belonging	 to	
class	i	at	the	j-th	wavenumber	(Massart	et	al.,	1988).

In	 a	 second	 step,	 different	 chemometric	
discriminant	 supervised	 algorithms	 to	 predict	 the	
origin	of	a	honey	sample	are	applied	during	this	study:	
Partial	 Least	 Squares-Discriminant	 Analysis	 (PLS-
DA)	and	Support	Vector	Machines	 (SVM).	PLS-DA	
and	SVM	algorithms	have	been	described	elsewhere	
(Fernández	Pierna	et	al.,	2004).

3. MaTeRIals anD MeThoDs

3.1. samples

honey samples.	 Different	 honey	 samples	 have	
been	 received	 from	 a	 number	 of	 countries	 located	
in	 the	Mediterranean	 region	 and	 from	 two	 different	
harvest	 years	 (2006	 and	 2007).	 The	 aim	 of	 this	
work	 was	 to	 study	 the	 potential	 of	 fingerprinting	
and	 profiling	 to	 discriminate	 Corsican	 samples	
from	 other	 geographical	 origins	 (i.e.	 France,	 Italy,	
Austria,	 Germany	 and	 Ireland).	 A	 total	 of	 182	 and	
192	samples	 have	 been	 selected	 respectively	 for	 the	
first	 and	 second	 year.	 Table 1	 presents	 a	 summary	
of	the	samples	used	in	this	study.	As	indicated	in	the	
table,	most	of	 the	samples	have	been	taken	from	the	
island	of	Corsica	in	order	to	cover	as	much	as	possible	
the	natural	 composition.	The	data	 set	 include	a	 total	
of	374	samples,	from	which	219	and	155	samples	are	
coming	respectively	from	Corsican	and	non-Corsican	
origin.	 For	 the	 Corsican	 samples,	 products	 from	
spring,	 autumn	 and	 non-specified	 origin	 as	 well	 as	
from	various	botanical	origins,	maquis,	bushes,	sweet	
chesnut,	 strawberry-tree	 and	 Clémentinier	 (Citrus 
reticulata),	are	included	in	the	set.	Each	honey	sample	
was	diluted	with	distilled	water	in	order	to	get	a	BRIX	
value	of	to	70°.

Chemicals.	Crystalline	standard	saccharides	fructose	
(Fluka),	 glucose	 (Riedel-de-Haën	 AG	 Seelze-
Hannover)	 and	 sucrose	 (Janssen	 Chimica)	 were	
analyzed.	 An	 aqueous	 mixture	 constituted	 of	 39%	
of	 fructose,	34%	of	glucose,	and	1%	of	sucrose	was	
prepared	(Twardowsky	et	al.,	1994).	Percentages	were	
chosen	 to	 simulate	 the	 average	 real	 concentration	 in	
honey.	Saturated	solutions	were	also	prepared	for	each	
saccharide.
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3.2. Chemometrics

Based	on	the	results	obtained	in	the	exploratory	analysis	
(Fisher	criterion),	two	different	chemometric	models	to	
predict	the	origin	of	a	honey	sample	as	either	Corsican	
or	 non-Corsican	 were	 generated	 using	 PLS-DA	 and	
SVM.	The	study	includes:	
–	 Construction	 of	 individual	 models	 (PLS-DA	 and	
	 SVM)	for	each	year.	For	these	models,	the	validation	
	 procedure	used	is	the	leave-one-out	cross-validation;
–	 Construction	of	global	models	(PLS-DA	and	SVM)	
	 using	both	years	 together	using	 the	data	 randomly	
	 split	 into	 training	 (274	samples)	 and	 test	
	 (100	samples).	 All	 models	 were	 generated	 using	
	 only	the	training	set	and	validated	with	the	test	set;
–	 Construction	of	global	models	(PLS-DA	and	SVM)	
	 using	both	years	together	based	on	the	wavenumbers	
	 selected	by	 the	Fisher	 criterion	 and	using	 the	data	
	 split	into	training	and	test	as	in	the	previous	case.

In	all	the	models	Multiplicative	Scatter	Correction	
(MSC)	has	been	applied	as	pre-processing	technique.	
MSC	corrects	spectra	for	spectral	noise	and	background	
effects	which	cause	baseline	shifting	and	tilting.	Once	
the	 models	 have	 been	 constructed	 they	 have	 been	
validated	in	order	to	estimate	their	performance.	In	the	
case	of	classification	learning,	these	are	expressed	as	the	
misclassification	rate	as	well	as	the	sensitivity	and	the	
specificity.	The	sensitivity	is	defined	as	the	proportion	
of	 actual	 positives	 which	 are	 correctly	 identified	 as	
such,	 and	 the	 specificity	 measures	 the	 proportion	 of	
negatives	which	are	correctly	identified	as	such.

3.3. software

All	computations,	chemometric	analyses	and	graphics	
were	 carried	out	with	programs	developed	 in	Matlab	
v.7.0.	(The	Mathworks,	Inc.,	Natick,	MA,	USA).

4. ResulTs anD DIsCussIon

FT-Raman	 spectrum	 of	 honey	 (Figure 1)	 has	 a	 large	
band	 in	 the	 vicinity	 of	 3,234	cm-1	 characteristic	 of	
O-H	group	stretching	vibrations,	intense	peaks	centred	
around	 2,941	 and	 2,904	cm-1	 corresponding	 to	 C-H	
stretching	 vibrations	 and	 several	 sharp	 peaks	 in	 the	
200-1,500	cm-1	 region	 (also	 called	 the	 fingerprinting	
region)	 characteristic	 of	 several	 chemical	 groups.	
Honey	Raman	spectrum	is	considered	as	a	combination	
of	absorption	due	to	different	compounds	(Paradkar	et	
al.,	2002;	Batsoulis	et	al.,	2005);	the	major	compounds	
are	 carbohydrates.	 Honey	 contains	 small	 amounts	
of	 proteins,	 amino	 acids	 and	 organic	 acids	 but	 also	
vitamins	and	minerals	at	very	low	level	(Arvanitoyannis	
et	al.,	2005).	The	comparison	of	two	honey	FT-Raman	
spectra	 (Corsican	and	non-Corsican)	with	a	spectrum	
of	 a	 mixture	 of	 sugar	 shows	 a	 good	 similarity	
(Figure 1).	The	mixture	 is	 composed	 from	 the	major	
sugar	 specimens,	 fructose	 and	 glucose,	 and	 the	most	
common	disaccharide,	sucrose,	present	in	honey.

The	main	 vibrational	 bands	 of	 FT-Raman	 spectra	
presented	in	figure 1	and	their	respective	assignments,	
according	 to	 the	 literature	 (Paradkar	 et	 al.,	 2002;	 de	
Oliveira	et	al.,	2002;	Fernández	Pierna	et	al.,	2005),	are	
listed	in	table 2.

On	 the	 basis	 of	 FT-Raman	 band	 assignments	
(Table 2),	it	can	be	seen	that	the	chemical	information	
in	 a	 honey	FT-Raman	 spectrum	 is	mainly	 due	 to	 the	
saccharides.	 Their	 specific	 bands	 centered	 in	 the	
vicinity	 of	 3,319	 and	 3,234	cm-1	 correspond	 to	 O-H	
stretching	vibration	mode,	in	the	vicinity	of	2,941	and	
2,904	cm-1	 are	 associated	 to	C-H	 stretching	 vibration	
and	 in	 the	vicinity	of	 1,642	cm-1	 are	 characteristic	 of	
O-H	deformation	vibration.	In	the	fingerprinting	region	
it	 can	 be	 observed	 the	 scattering	 bands	 attributed	
to	 CH2	 group	 deformation	 vibration	 in	 the	 vicinity	
of	 1,460	 and	 1,367	cm-1,	 the	 deformation	 vibration	
of	 C-C-H,	 O-C-H,	 and	 C-O-H	 in	 the	 vicinity	 of	
1,266	cm-1,	 the	 C-O-H	 group	 deformation	 vibration	
in	 the	 vicinity	 of	 1,126	cm-1,	 the	 stretching	 vibration	
of	 C-O	 in	 the	 vicinity	 of	 1,077	 and	 1,064	cm-1,	 the	
deformation	vibration	modes	of	C-H	and	C-O-H	in	the	
vicinity	of	916	cm-1	and	ring	deformation	vibration	in	
the	vicinity	of	630	cm-1.	Scattering	bands	observed	in	
the	200	and	600	cm-1	region	are	attributed	mainly	the	
skeletal	 vibrational	motions	with	major	 contributions	
from	 the	deformation	modes	of	C-C-C,	C-C-O,	C-C,	
and	 C-O	 groups	 of	 saccharides	 (de	 Oliveira	 et	 al.,	

Table 1. Characteristics	 of	 the	 samples	 analysed	 —
Caractéristiques des échantillons analysés.
Country year number of samples
France	(Corsica) 2006 111

2007 108
France	(other	than	Corsica) 2006 18

2007 28
Italy 2006 15

2007 15
Austria 2006 18

2007 23
Ireland 2006 2

2007 0
Germany 2006 18

2007 18
ToTal 2006 182
 2007 192



Discrimination	of	Corsican	honey	by	FT-Raman	spectroscopy	and	chemometrics	 79

2002).	It	is	important	to	notice	that	by	the	application	
of	Raman	spectroscopy,	the	other	constituents	of	honey	
like	 unknown	 carbohydrates,	 proteins,	 amino	 acids	
or	 organic	 acids	 may	 exhibit	 intensities	 with	 minor	
contribution	 in	 the	 vicinity	 of	 specific	 wavenumbers	
(351;	424;	1,077;	1,126;	1,266	and	1,460	cm-1).

In	order	to	distinguish	the	individual	contribution	of	
the	fructose,	glucose,	and	sucrose	in	a	honey	spectrum,	
we	have	collected	their	FT-Raman	spectra	(Figure 2).	
The	so-called	fingerprint	region	(200	and	1,500	cm-1)	is	
shown.	Matching	peaks	obtained	for	honey	and	sugars	
mixture	 with	 those	 of	 spectra	 of	 fructose,	 glucose	
and	sucrose	permit	 to	attribute	most	of	 the	scattering	
bands	of	honey	to	the	scattering	bands	of	the	individual	
carbohydrates.	FT-Raman	bands	in	the	vicinity	of	1,064;	
1,266;	 1,367	 and	 1,460	cm-1	 are	 found	 in	 the	 spectra	
of	all	studied	sugar	specimens;	the	scattering	bands	in	
the	vicinity	of	708	and	424	cm-1	are	associated	to	both	
fructose	and	glucose.	Scattering	band	in	the	vicinity	of	
519	cm-1	may	be	attributed	to	fructose	and	sucrose,	but	
due	 to	 the	 relative	 scattering	band	 intensities	 and	 the	
weak	concentration	of	sucrose	in	honey,	this	band	can	
be	mainly	 attributed	 to	 the	 fructose.	Other	 scattering	
bands	can	be	associated	 to	 fructose	 in	 the	vicinity	of	
979,	865,	822,	and	630	cm-1	while	scattering	bands	of	
glucose	can	be	observed	in	the	vicinity	of	1,126;	916;	
777	and	351	cm-1.

4.1. exploratory analysis

The	use	of	PCA	is	a	normal	procedure	when	working	
with	spectroscopic	data.	Here	PCA	did	not	show	clear	
pattern	concerning	the	different	groups	or	clear	outliers.	
However,	the	Fisher	criterion	showed	more	interesting	
results	 because	 it	 allows	 selecting	 original	 variables	
having	 an	 important	 discriminating	 power	 according	
to	the	origin	(Corsican/non-Corsican).	These	variables	
are	 indicated	 in	figure 3.	One	of	our	main	aims	 is	 to	
relate	 the	 spectroscopic	 information	 to	 the	 chemical	
one,	and	this	is	easier	by	using	Fisher	than	PCA.	The	
Fisher	 criterion	was	 used	 to	 select	 original	 variables	
having	 an	 important	 discriminating	 power	 according	
to	 the	 origin	 (Corsican/non-Corsican).	As	 previously	
explained,	the	idea	is	to	maximize	the	Fisher	(F)	ratio	
(ratio	of	between-group	to	within-group	variance)	for	
the	 dataset.	 As	 result	 15	variables	 are	 important	 as	
indicated	in	figure 3.

Comparing	 the	 frequencies	 of	 the	 maximum	
values	 of	 the	 Fisher	 plot	 with	 those	 of	 the	 honey	
sample	spectrum,	a	high	similarity	between	both	can	
be	 observed.	 This	 is	 explained	 by	 the	 fact	 that	 the	
scattering	bands	of	sugars	and	unknown	carbohydrates	
and	proteins	contribute	to	the	discrimination	between	
the	two	groups	of	honeys.	In	fact,	the	assignments	of	
scattering	bands	of	the	Fisher	plot	according	to	table 2	

Figure 1.	Example	of	sugar	mixture,	Corsican	and	non-Corsican	honey	FT-Raman	spectra	—	Exemple de spectres FT-Raman 
de mélange de sucre, de miels de Corse et de miels non originaires de Corse.
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confirm	 the	 role	 played	 by	 these	 components	 in	 the	
discrimination	of	honey	samples	according	to	the	origin.

4.2. supervised analysis

Different	models	between	Corsican	samples	and	the	rest	
(including	all	the	other	French	honeys,	Italian,	Austrian,	
German	and	Irish	honeys)	have	been	constructed	using	
PLS-DA	and	SVM:	
–	 discriminating	models	for	each	year	individually;
–	 discriminating	 models	 including	 samples	 of	 both	
	 years;
–	 discriminating	 models	 using	 only	 the	 15	variables	
	 selected	by	the	Fisher	criterion.	

In	 all	 cases	 the	 results	 are	 shown	 in	 tables	where	
the	success	rates	obtained	for	the	training	and	test	sets	
are	summarized.	For	the	individual	models,	it	concerns	
the	confusion	matrix	for	the	Corsica	vs	the	rest	model	
applied	 to	 the	 training	 set	 and	 using	 leave-one-out	
cross	 validation	 (LOOCV).	 For	 the	 global	models,	 it	
corresponds	to	the	confusion	matrix	for	the	training	set	

and	the	independent	test	set.	In	both	tables	the	results	
are	expressed	as	 the	percentage	of	correctly	classified	
samples	as	well	as	the	sensitivity	and	the	specificity	(in	
%).	

Table 3	 shows	 the	 results	 for	 the	 individual	
models.	 For	 year	1	 when	 the	 constructed	 PLS-DA	
model	 (9	factors)	 is	 applied	 to	 the	 training	 set,	 100%	
of	 samples	 are	 correctly	 classified;	 when	 performing	
LOOCV,	 87.2%	 of	 Corsican	 samples	 are	 correctly	
classified	 as	 Corsican	 and	 91.5%	 of	 non-Corsican	 as	
non-Corsican.	 This	 drives	 to	 a	 sensitivity	 of	 91.12%	
and	 a	 specificity	 of	 87.73%.	For	 year	2	 the	 values	 of	
83.24%	and	85.86%	are	obtained	for	the	sensitivity	and	
the	 specificity	 respectively	 using	PLS-DA	 (8	factors).	
SVM	 (C	=	1000000,	 σ	=	10)	 shows	 slightly	 larger	
values	 than	 PLS-DA,	 with	 a	 sensitivity	 of	 91.31%	
and	83.64%	and	 a	 specificity	 of	 88.67%	and	86.69%	
for	year	1	 and	year	2,	 respectively.	For	 the	 individual	
models	in	general	better	results	are	obtained	for	year	1	
than	 for	 year	2	 in	 terms	 of	 sensitivity	 and	 specificity	
and	SVM	shows	only	a	small	improvement	compared	
to	PLS-DA.	

Table 2.	Main	scattering	bands	of	honey	and	their	respective	assignments	—	Bandes importantes du miel et leurs affectations.
Wavenumber (cm-1) Intensity Type of vibration
3312-3334 medium Stretching	of	O-H
2938-2944 very	strong Asymmetric	stretching	of	CH2

2900-2907 shoulder Stretching	of	C-H
1636-1642 weak Deformation	of	O-H	of	water
1458-1461 strong Symmetric	deformation	in	the	plane	of	CH2

1364-1369 medium Asymmetric	deformation	in	the	plane	of	CH2

1265-1267 strong Deformation	of	C-C-H,	O-C-H	and	C-O-H;	vibration	of	Amide	III	(peptide	bond)
1126-1127 strong Deformation	of	C-O-H;	Vibration	of	C-N	(protein	or	amino	acid)
1077 strong Stretching	of	C-O
1064-1069 strong Stretching	of	C-O
979 very	weak Unknown
916-918 weak Deformation	of	C-H	and	C-O-H
904 shoulder Deformation	of	C-H
865-871,	822 weak 	
777 very	weak Deformation	of	C-H
708-710 weak 	
629-630 strong Ring	deformation
590-592 shoulder Skeletal	vibration
519-522 strong Deformation	of	C-C-O	and	C-C-C
449-450 shoulder Skeletal	vibration
420-424 strong Deformation	of	C-C-O	and	C-C-C
351 very	weak Unknown	carbohydrates	and	proteins
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When	 global	 models	 are	 constructed	 the	 results	
improved	mainly	when	working	with	SVM	(Table 4).	
PLS-DA	 (8	factors)	 has	 a	 sensitivity	 of	 84.30%	
when	 working	 with	 the	 whole	 spectra,	 whereas	

SVM	 (C	=	1000000,	 σ	=	10)	 has	 a	 value	 of	 94.05%.	
Concerning	the	specificity	similar	values	are	obtained	
for	both	methods	(86.66%	for	PLS-DA	vs	86.69%	for	
SVM).	Working	only	with	the	15	variables	selected	by	
the	 Fisher	 criterion	 gives	 good	 sensitivities	 (91.48%	
for	PLS-DA	and	94.05%	for	SVM),	however	a	loss	in	
specificity	(69.28%	for	PLS-DA	and	84.19%	for	SVM)	
is	obtained	mainly	when	working	with	PLS-DA.	It	is	
important	to	remark,	as	it	was	already	demonstrated	by	
Fernández	Pierna	et	al.	(2005),	that	SVM	outperforms	
PLS-DA	and	that	SVM	is	able	to	work	well	even	when	
the	number	of	variables	is	very	small.

Figures 4	 and	 5	 show	 the	 prediction	 results	 for	
the	 test	 set	 using	 the	 full	PLS-DA	and	SVM	models	
respectively.	As	it	can	be	observed,	when	applying	the	
PLS-DA	model,	8	false	negative	results	are	found,	i.e.	
8	Corsican	samples	from	the	test	set	are	misclassified.	
The	 same	 false	 negative	 results	 are	 obtained	 when	
applying	 the	 SVM	 model	 (SVM	 misclassifies	
9	Corsican	 samples).	 Moreover,	 when	 studying	 the	
misclassified	 Corsican	 samples,	 it	 is	 interesting	 to	
note	that	the	8	false	negative	results	detected	by	both	
methods	belong	to	the	group	of	spring	samples.	Similar	
results	are	observed	when	looking	at	the	LOOCV	results	
for	 the	global	model	when	using	PLS-DA.	 In	 such	a	
case,	29	false	negative	results	have	been	obtained	and	
59%	of	them	belong	to	the	spring	samples.	The	same	

Figure 2.	FT-Raman	spectra	of	three	sugars	(fructose,	glucose,	and	sucrose)	—	Spectres FT-Raman de trois sucres (fructose, 
glucose et sucrose).

Figure 3.	Results	of	the	Fisher	criterion	showing	the	most	
important	 variables	 for	 the	 discrimination	—	Résultats du 
test de Fisher montrant les variables les plus importantes 
responsables de la discrimination.
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false	negative	results	are	obtained	when	using	LOOCV	
in	the	global	SVM	model.

5. ConClusIon

Several	 important	 and	 practical	 conclusions	 can	 be	
drawn	from	the	investigation	presented	in	this	paper.

The	recent	advances	in	instrument	technology	make	
the	FT-Raman	a	promising	method	to	use	in	the	food	

area	for	authentication.	FT-Raman,	as	well	as	infrared	
spectroscopy,	 provides	 complementary	 information	
about	the	vibrations	of	molecules	and	in	consequence	
about	the	functional	groups	that	constitute	the	product.	
Other	 important	 advantages	 of	 the	 technique	 are	 its	
simplicity,	rapidity,	cost-effective,	and	non-destructive	
characteristics.	 In	 this	 study,	 scattering	 FT-Raman	
bands	 have	 been	 selected	 and	 could	 be	 identified	 as	
fingerprints	 of	 the	 major	 components	 in	 honey,	 i.e.	

Table 3. Confusion	matrix	 for	 the	Partial	Least	Squares-Discriminant	Analysis	 (PLS-DA)	and	Support	Vector	Machines	
(SVM)	equations	Corsican	vs	 the	rest	using	leave-one-out	cross	validation	(LOOCV)	for	 individual	years	—	Matrice de 
confusion pour les équations Partial	Least	Squares-Discriminant	Analysis	 (PLS-DA) et Support	Vector	Machines	 (SVM) 
(Corse vs le reste) en utilisant une cross	validation	leave-one-out (LOOCV) pour chaque année de collecte.

Training set
% classified as...

looCV
% classified as...

sensitivity specificity

Belonging to Corsican non-Corsican Corsican non-Corsican

PLS-DA Year	1 Corsican 100.0 0.0 87.1 12.8 91.12 87.73

Non-Corsican 0.0 100.0 8.5 91.5
Year	2 Corsican 96.4 3.6 86.4 13.6 83.24 85.86

Non-Corsican 1.2 98.8 17.4 82.6
SVM Year	1 Corsican 99.1 0.9 88.3 11.7 91.31 88.67

Non-Corsican 0.0 100.0 8.4 91.6
Year	2 Corsican 100.0 0.0 87.3 12.7 83.64 86.69

Non-Corsican 0.0 100.0 17.1 82.9

		Sensitivity	=	a/(a+c)	where	 	
		Specificity	=	d/(b+d)		

	 	 	

Corsican Non-Corsican
Corsican a b
Non-Corsican c d

Table 4.	Confusion	matrix	for	 the	Partial	Least	Squares-Discriminant	Analysis	(PLS-DA)	and	Support	Vector	Machines	
(SVM)	equations	Corsican	vs	the	rest	using	training	and	test	set	for	both	years’	samples	before	and	after	variable	selection	
(Fisher)	—	Matrice de confusion pour les équations Partial	 Least	 Squares-Discriminant	Analysis	 (PLS-DA) et Support	
Vector	Machines	(SVM) (Corse vs le reste) en utilisant un jeu de données de calibration et test comprenant l’ensemble des 
échantillons des deux années, avant et après la sélection des variables (Fisher).

Training set
% classified as...

Test set
% classified as...

sensitivity specificity

Belonging to Corsican non-Corsican Corsican non-Corsican

PLS-DA all	years Corsican 100.0 0.0 87.1 12.9 84.30 86.66

Non-Corsican 0.0 100.0 16.2 83.8
all	years
Fisher

Corsican 100.0 0.0 58.1 41.9 91.48 69.28
Non-Corsican 0.0 100.0 5.4 94.6

SVM all	years Corsican 82.2 17.8 85.5 14.5 94.05 86.69
Non-Corsican 10.3 89.7 5.4 94.6

all	years
Fisher

Corsican 77.1 22.9 82.3 17.7 93.73 84.19
Non-Corsican 17.1 82.9 5.5 94.5

		for	sensitivity	and	specificity,	see	table 3	—	pour la sensibilité et la spécificité, voir tableau 3.
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fructose,	glucose	and	sucrose.	Some	other	bands	have	
been	associated	to	other	minor	components	as	unknown	
carbohydrates	and	proteins.

The	 use	 of	 exploratory	 techniques	 as	 the	 Fisher	
criterion	 for	 wavenumber	 selection	 and	 supervised	
methods	as	PLS-DA	or	SVM	seems	to	be	a	promising	
way,	when	working	with	FT-Raman	data,	 for	a	 rapid	
and	 non-expensive	 discrimination	 of	Corsican	 honey	
from	 other	 honey	 samples.	 All	 the	 studied	 models	
showed	a	correct	classification	ratio	between	85%	and	
90%	 of	 average,	 showing	 a	 clear	 advantage	 for	 the	
SVM	method	specially	when	working	with	a	reduced	
number	of	variables.
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