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Honey is a complex and challenging product to analyze due mainly to its composition consisting on various botanical sources. 
The discrimination of the origin of honey is of prime importance in order to reinforce the consumer trust in this typical food 
product. But this is not an easy task as usually no single chemical or physical parameter is sufficient. The aim of our paper is 
to investigate whether FT-Raman spectroscopy as spectroscopic fingerprint technique combined with some chemometric tools 
can be used as a rapid and reliable method for the discrimination of honey according to their source. In addition to that, different 
chemometric models are constructed in order to discriminate between Corsican honeys and honey coming from other regions 
in France, Italy, Austria, Germany and Ireland based on their FT-Raman spectra. These regions show a large variation in their 
plants. The developed models include the use of exploratory techniques as the Fisher criterion for wavenumber selection and 
supervised methods as Partial Least Squares-Discriminant Analysis (PLS-DA) or Support Vector Machines (SVM). All these 
models showed a correct classification ratio between 85% and 90% of average showing that Raman spectroscopy combined 
to chemometric treatments is a promising way for rapid and non-expensive discrimination of honey according to their origin.
Keywords. Discrimination, FT-Raman, typical food product, honey, chemometrics, SVM, PLS-DA.

Discrimination du miel de Corse par spectroscopie FT-Raman et chimiométrie. Le miel est un produit complexe à analyser, 
principalement du fait de sa composition basée sur diverses origines botaniques. La discrimination basée sur l’origine du miel 
est d’une très grande importance pour renforcer la confiance du consommateur pour ce produit alimentaire typique. Mais ce 
n’est pas une tâche facile parce qu’en général, un seul paramètre chimique ou physique n’est pas suffisant. L’objectif de cet 
article est d’investiguer si la spectroscopie FT Raman, comme technique de spectroscopie dite de fingerprinting, combinée 
à quelques outils de chimiométrie peut être utilisée comme une méthode rapide et fiable pour la discrimination du miel en 
fonction de son origine. De plus, des modèles de chimiométrie sont construits pour discriminer le miel de Corse et le miel 
issu d’autres régions en France, Italie, Autriche, Allemagne et Irlande en se basant sur ses spectres de FT-Raman. Les modèles 
développés incluent l’emploi de techniques exploratoires comme le critère de Fisher pour la sélection de longueurs d’onde 
et des méthodes supervisées comme la Partial Least Squares-Discriminant Analysis (PLS-DA) ou Support Vector Machines 
(SVM). Tous ces modèles ont montré une proportion de classification correcte entre 85 % et 90 % en moyenne, montrant que 
la spectroscopie Raman combinée aux traitements de chimiométrie est une manière prometteuse pour la discrimination rapide 
et peu couteuse du miel selon son origine.
Mots-clés. Discrimination, FT-Raman, produit alimentaire typique, miel, chimiométrie, SVM, PLS-DA.

1. Introduction 

Honey is a natural biological product used as food and 
medicine since ancient times (Ransome, 2004). It is 
a complex and challenging product highly linked to 
the botanical sources it is made and by consequence 
to the production area. The different proportions of 
nectar incorporated in honey vary depending on the 
geographic zone, the vegetation type as well as the 
flowering period of the plants (Hewitson, 2009). This 
great variety of combinations of these criteria impacting 

on the honey composition offers to the consumer a 
number of typical products with defined characteristics. 
The control of quality and the assessment of the 
geographical origin of honey which is associated to the 
producing vegetation are of prime importance in order 
to reinforce the consumer trust in such typical food 
products. In fact, the consumer is always asking for 
a certainty of the geographic zone of honey product. 
The assessment of the origin of a food product is not 
an easy task as usually no single chemical or physical 
parameter is sufficient. In fact, due to its complex 
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and variable composition, it became necessary to use 
global analytical approaches like fingerprinting and 
profiling methods. In recent years, characterization 
of honey has received an increased attention. Many 
works have been carried out in order to determine the 
composition of honey (Ha et al., 1998; de Oliveira et 
al., 2002), physical and chemical properties (Cho et al., 
1998; Cozzolino et al., 2003), to detect and quantify 
honey adulteration with different kinds of syrups (i.e. 
cane, beet or high-fructose syrups) (Paradkar et al., 
2002; Downey et al., 2003; Kelly et al., 2006; Toher 
et al., 2007), to specify the main floral sources (Tewari 
et al., 2005; Bartelli et al., 2007) and to assess the 
authentication of unifloral or multifloral types of honey 
(Ruoff et al., 2006b; 2006c).

In recent years, coupling spectroscopic techniques 
and chemometric methods is one of the tools used and 
proposed for food origin discrimination (Baeten et al., 
2008; Karoui et al., 2008; Manley et al., 2008). Many 
studies have been performed in order to assess the 
botanical origin of honey. It has to be mentioned the 
use of front-face fluorescence spectroscopy coupled 
to Principal Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA) (Ruoff et al., 2006a) or 
Factorial Discriminant Analysis (FDA) (Karoui et al., 
2007); the application of mid infrared (Tewari et al., 
2005; Ruoff et al., 2006c) and near infrared spectroscopy 
with PCA; Canonical Variate Analysis (CVA) (Davies 
et al., 2002) and discriminant methods like partial 
least squares discrimination and LDA (Corbella et 
al., 2005; Ruoff et al., 2006b); as well as the use of 
Dispersive Raman spectroscopy coupled with cluster 
analysis and artificial neural networks (Goodacre et 
al., 2002). All these investigations concerned mainly 
the discrimination and classification of honey in terms 
of the botanical origin and, only little study has been 
done to define its geographical provenance. Davies 
et al. (2002) have mentioned that the distinction of 
honey samples in terms of their geographic regions is 
less obvious than that is for floral origins but it might 
be possible with large sample sets. Ruoff and his 
collaborators have shown that front-face fluorescence 
(Ruoff et al., 2006a) and mid infrared (Ruoff et al., 
2006c) spectroscopic techniques combined with 
chemometric treatments as PCA and LDA may be 
useful to determine the geographical origin within the 
same unifloral type. Recently, Donarski et al. (2008) 
have been working to characterize the resonance 
peaks relating to specific biomarkers of botanical and 
geographical origin using linear discriminant analysis 
(LDA) and genetic programming (GP) techniques 
applied to one-dimensional proton nuclear magnetic 
resonance (1H NMR) spectroscopic data. The potential 
of near-infrared (NIR) spectroscopy to determine the 
geographical origin of honey samples was evaluated 
by Woodcock et al. (2007; 2009) by using different 

chemometric tools as SIMCA or PLS-DA giving 
encouraging results.

Raman spectroscopy, like mid infrared 
spectroscopy, probes molecular vibrations. However, 
the principle underpinning the phenomenon is rather 
different. Raman scattering arises from the changes in 
the polarisability or shape of the electron distribution 
in the molecule as it vibrates. In contrast, infrared 
absorption requires a change of the intrinsic dipole 
moment with the molecular vibration. Asymmetric 
vibrational modes and vibrations of polar groups are 
more likely to exhibit prominent infrared absorption, 
while symmetric vibrational modes generally give rise 
to strong Raman scattering. Although, the mechanism 
of Raman scattering is different from that of infrared 
absorption, Raman and infrared spectra provide 
complementary information about the vibrations of 
molecules and in consequence about the functional 
groups that constitute the product (Yang et al., 
2005). Typical applications of this technique are in 
structure determination, multicomponent qualitative 
and quantitative analysis. FT-Raman spectroscopy 
is, among other recent analytical techniques, more 
and more used for the assessment of the authenticity 
of food products like edible oils and fats (Baeten 
et al., 1996; 1998; 2000a; 2000b; 2005; Kizil et al., 
2008). The increasing use of Raman technique in the 
food area is due to the recent advances in instrument 
technology (Duda et al., 1973; Baeten et al., 2002; 
Yang et al., 2005) like the interferometer methodology 
that leads to FT-Raman spectrometer type and which 
makes it possible to monitor many wavenumbers 
simultaneously. Doing so, the total optical signal 
reaching the detector may be increased above detector 
noise. An important advantage of the technique is 
new sampling presentation which permits to examine 
samples without any preparation in the whole range of 
physical states and inside classical glass vials. Major 
advantages of FT-Raman spectroscopy comprise 
also its simplicity, rapidity, cost-effective, and non-
destructive characteristics. 

This paper aims to present the potential of FT-	
Raman spectroscopy combined to chemometric tools 
as Partial Least Squares-Discriminant Analysis (PLS-
DA) and Support Vector Machines (SVM) to develop 
a method suitable for the discrimination of honey 
from different origins. The quality of Corsica honey 
is recognized by a DO (Denomination of Origin). This 
DO authenticates the knowledge to make ancestral 
and specificities of a honey which benefits from the 
richness of the Corsica flora.

This work was undertaken in the framework of the 
European project TRACING Food Commodities in 
Europe (TRACE) started in 2004 (www.trace.eu.org). 
TRACE project is funded by the European Commission 
through the 6th Framework Programme under the Food 
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Quality and Safety Priority. The objective is to develop 
traceability methods and systems that will provide 
consumers with added confidence in the authenticity 
of European food. Honey is one of the focused foods 
that we have investigated to develop methodologies 
based on spectroscopic fingerprint techniques for the 
assessment of European geographic origin of food. 

2. Theory

2.1. FT-Raman analysis

FT-Raman spectra were acquired on a Vertex 70 – RAM 
II Bruker FT-Raman spectrometer. This instrument is 
equipped with a Nd:YAG laser (yttrium aluminium 
garnet crystal doped with triply ionised neodymium) 
with an output at 1,064 nm (9,398.5 cm-1). The 
maximum of laser power is 1.5 W. The measurement 
accessory is pre-aligned, only the Z-axis of the scattered 
light is adjusted to set the sample in the appropriate 
position regarding the local point. The RAM II 
spectrometer is equipped with a liquid-nitrogen cooled 
Ge detector. The OPUS 6.0 software was used for the 
spectral acquisition, manipulation and transformation.

Samples were presented in the liquid form to the 
spectrometer in classical glass tubes of an internal 
diameter of 12 mm and a length of 75 mm (Schott 
Duran®). Tubes were introduced into a dedicated 
sample holder developed at the CRA-W and made of 
aluminium to assure repeatable position of the sample 
in front of the laser beam. The sample holder was 
placed in the sample compartment. The laser power 
was set at 800 mW, the resolution at 4 cm-1 and the 
number of co-added scans at 128 for each spectrum. 
Each spectrum is then collected in 4 min. Analyses 
were performed in duplicate. 

2.2. Chemometric analysis

Different chemometric methods have been applied in 
order to extract the maximum of information in the 
honey data. In a first step a simple exploratory analysis 
has been performed: the Fisher criterion. This method 
has been used in order to decide which original variables 
have an important discriminating power according to 
the origin (Corsican/non-Corsican). Fisher describes 
the ratio of the between-class variance and the within-
class variance.

For each variable (scattering intensity) j:

FCj = Hj / Ej

	        k
where Hj = ∑ ni(xij-x.j)

2    is the between-class variance
	      i = 1

	   K
and Ej = ∑ (ni-1)s

2
ij is the within-class variance, where

	 i = 1

ni is the number of objects in class i, xij is the mean 
scattering intensity of the objects belonging to class 
i at the j-th wavenumber, x.j is the mean scattering 
intensity of the objects belonging to all classes at the 
j-th wavenumber and sij is the standard deviation of 
the scattering intensities of the objects belonging to 
class i at the j-th wavenumber (Massart et al., 1988).

In a second step, different chemometric 
discriminant supervised algorithms to predict the 
origin of a honey sample are applied during this study: 
Partial Least Squares-Discriminant Analysis (PLS-
DA) and Support Vector Machines (SVM). PLS-DA 
and SVM algorithms have been described elsewhere 
(Fernández Pierna et al., 2004).

3. Materials and methods

3.1. Samples

Honey samples. Different honey samples have 
been received from a number of countries located 
in the Mediterranean region and from two different 
harvest years (2006 and 2007). The aim of this 
work was to study the potential of fingerprinting 
and profiling to discriminate Corsican samples 
from other geographical origins (i.e. France, Italy, 
Austria, Germany and Ireland). A total of 182 and 
192 samples have been selected respectively for the 
first and second year. Table 1 presents a summary 
of the samples used in this study. As indicated in the 
table, most of the samples have been taken from the 
island of Corsica in order to cover as much as possible 
the natural composition. The data set include a total 
of 374 samples, from which 219 and 155 samples are 
coming respectively from Corsican and non-Corsican 
origin. For the Corsican samples, products from 
spring, autumn and non-specified origin as well as 
from various botanical origins, maquis, bushes, sweet 
chesnut, strawberry-tree and Clémentinier (Citrus 
reticulata), are included in the set. Each honey sample 
was diluted with distilled water in order to get a BRIX 
value of to 70°.

Chemicals. Crystalline standard saccharides fructose 
(Fluka), glucose (Riedel-de-Haën AG Seelze-
Hannover) and sucrose (Janssen Chimica) were 
analyzed. An aqueous mixture constituted of 39% 
of fructose, 34% of glucose, and 1% of sucrose was 
prepared (Twardowsky et al., 1994). Percentages were 
chosen to simulate the average real concentration in 
honey. Saturated solutions were also prepared for each 
saccharide.
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3.2. Chemometrics

Based on the results obtained in the exploratory analysis 
(Fisher criterion), two different chemometric models to 
predict the origin of a honey sample as either Corsican 
or non-Corsican were generated using PLS-DA and 
SVM. The study includes: 
–	 Construction of individual models (PLS-DA and	
	 SVM) for each year. For these models, the validation	
	 procedure used is the leave-one-out cross-validation;
–	 Construction of global models (PLS-DA and SVM)	
	 using both years together using the data randomly	
	 split into training (274 samples) and test	
	 (100 samples). All models were generated using	
	 only the training set and validated with the test set;
–	 Construction of global models (PLS-DA and SVM)	
	 using both years together based on the wavenumbers	
	 selected by the Fisher criterion and using the data	
	 split into training and test as in the previous case.

In all the models Multiplicative Scatter Correction 
(MSC) has been applied as pre-processing technique. 
MSC corrects spectra for spectral noise and background 
effects which cause baseline shifting and tilting. Once 
the models have been constructed they have been 
validated in order to estimate their performance. In the 
case of classification learning, these are expressed as the 
misclassification rate as well as the sensitivity and the 
specificity. The sensitivity is defined as the proportion 
of actual positives which are correctly identified as 
such, and the specificity measures the proportion of 
negatives which are correctly identified as such.

3.3. Software

All computations, chemometric analyses and graphics 
were carried out with programs developed in Matlab 
v.7.0. (The Mathworks, Inc., Natick, MA, USA).

4. Results and discussion

FT-Raman spectrum of honey (Figure 1) has a large 
band in the vicinity of 3,234 cm-1 characteristic of 
O-H group stretching vibrations, intense peaks centred 
around 2,941 and 2,904 cm-1 corresponding to C-H 
stretching vibrations and several sharp peaks in the 
200-1,500 cm-1 region (also called the fingerprinting 
region) characteristic of several chemical groups. 
Honey Raman spectrum is considered as a combination 
of absorption due to different compounds (Paradkar et 
al., 2002; Batsoulis et al., 2005); the major compounds 
are carbohydrates. Honey contains small amounts 
of proteins, amino acids and organic acids but also 
vitamins and minerals at very low level (Arvanitoyannis 
et al., 2005). The comparison of two honey FT-Raman 
spectra (Corsican and non-Corsican) with a spectrum 
of a mixture of sugar shows a good similarity 
(Figure 1). The mixture is composed from the major 
sugar specimens, fructose and glucose, and the most 
common disaccharide, sucrose, present in honey.

The main vibrational bands of FT-Raman spectra 
presented in figure 1 and their respective assignments, 
according to the literature (Paradkar et al., 2002; de 
Oliveira et al., 2002; Fernández Pierna et al., 2005), are 
listed in table 2.

On the basis of FT-Raman band assignments 
(Table 2), it can be seen that the chemical information 
in a honey FT-Raman spectrum is mainly due to the 
saccharides. Their specific bands centered in the 
vicinity of 3,319 and 3,234 cm-1 correspond to O-H 
stretching vibration mode, in the vicinity of 2,941 and 
2,904 cm-1 are associated to C-H stretching vibration 
and in the vicinity of 1,642 cm-1 are characteristic of 
O-H deformation vibration. In the fingerprinting region 
it can be observed the scattering bands attributed 
to CH2 group deformation vibration in the vicinity 
of 1,460 and 1,367 cm-1, the deformation vibration 
of C-C-H, O-C-H, and C-O-H in the vicinity of 
1,266 cm-1, the C-O-H group deformation vibration 
in the vicinity of 1,126 cm-1, the stretching vibration 
of C-O in the vicinity of 1,077 and 1,064 cm-1, the 
deformation vibration modes of C-H and C-O-H in the 
vicinity of 916 cm-1 and ring deformation vibration in 
the vicinity of 630 cm-1. Scattering bands observed in 
the 200 and 600 cm-1 region are attributed mainly the 
skeletal vibrational motions with major contributions 
from the deformation modes of C-C-C, C-C-O, C-C, 
and C-O groups of saccharides (de Oliveira et al., 

Table  1. Characteristics of the samples analysed  —
Caractéristiques des échantillons analysés.
Country Year Number of samples
France (Corsica) 2006 111

2007 108
France (other than Corsica) 2006 18

2007 28
Italy 2006 15

2007 15
Austria 2006 18

2007 23
Ireland 2006 2

2007 0
Germany 2006 18

2007 18
TOTAL 2006 182
 2007 192
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2002). It is important to notice that by the application 
of Raman spectroscopy, the other constituents of honey 
like unknown carbohydrates, proteins, amino acids 
or organic acids may exhibit intensities with minor 
contribution in the vicinity of specific wavenumbers 
(351; 424; 1,077; 1,126; 1,266 and 1,460 cm-1).

In order to distinguish the individual contribution of 
the fructose, glucose, and sucrose in a honey spectrum, 
we have collected their FT-Raman spectra (Figure 2). 
The so-called fingerprint region (200 and 1,500 cm-1) is 
shown. Matching peaks obtained for honey and sugars 
mixture with those of spectra of fructose, glucose 
and sucrose permit to attribute most of the scattering 
bands of honey to the scattering bands of the individual 
carbohydrates. FT-Raman bands in the vicinity of 1,064; 
1,266; 1,367 and 1,460 cm-1 are found in the spectra 
of all studied sugar specimens; the scattering bands in 
the vicinity of 708 and 424 cm-1 are associated to both 
fructose and glucose. Scattering band in the vicinity of 
519 cm-1 may be attributed to fructose and sucrose, but 
due to the relative scattering band intensities and the 
weak concentration of sucrose in honey, this band can 
be mainly attributed to the fructose. Other scattering 
bands can be associated to fructose in the vicinity of 
979, 865, 822, and 630 cm-1 while scattering bands of 
glucose can be observed in the vicinity of 1,126; 916; 
777 and 351 cm-1.

4.1. Exploratory analysis

The use of PCA is a normal procedure when working 
with spectroscopic data. Here PCA did not show clear 
pattern concerning the different groups or clear outliers. 
However, the Fisher criterion showed more interesting 
results because it allows selecting original variables 
having an important discriminating power according 
to the origin (Corsican/non-Corsican). These variables 
are indicated in figure 3. One of our main aims is to 
relate the spectroscopic information to the chemical 
one, and this is easier by using Fisher than PCA. The 
Fisher criterion was used to select original variables 
having an important discriminating power according 
to the origin (Corsican/non-Corsican). As previously 
explained, the idea is to maximize the Fisher (F) ratio 
(ratio of between-group to within-group variance) for 
the dataset. As result 15 variables are important as 
indicated in figure 3.

Comparing the frequencies of the maximum 
values of the Fisher plot with those of the honey 
sample spectrum, a high similarity between both can 
be observed. This is explained by the fact that the 
scattering bands of sugars and unknown carbohydrates 
and proteins contribute to the discrimination between 
the two groups of honeys. In fact, the assignments of 
scattering bands of the Fisher plot according to table 2 

Figure 1. Example of sugar mixture, Corsican and non-Corsican honey FT-Raman spectra — Exemple de spectres FT-Raman 
de mélange de sucre, de miels de Corse et de miels non originaires de Corse.
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confirm the role played by these components in the 
discrimination of honey samples according to the origin.

4.2. Supervised analysis

Different models between Corsican samples and the rest 
(including all the other French honeys, Italian, Austrian, 
German and Irish honeys) have been constructed using 
PLS-DA and SVM: 
–	 discriminating models for each year individually;
–	 discriminating models including samples of both	
	 years;
–	 discriminating models using only the 15 variables	
	 selected by the Fisher criterion. 

In all cases the results are shown in tables where 
the success rates obtained for the training and test sets 
are summarized. For the individual models, it concerns 
the confusion matrix for the Corsica vs the rest model 
applied to the training set and using leave-one-out 
cross validation (LOOCV). For the global models, it 
corresponds to the confusion matrix for the training set 

and the independent test set. In both tables the results 
are expressed as the percentage of correctly classified 
samples as well as the sensitivity and the specificity (in 
%). 

Table 3 shows the results for the individual 
models. For year 1 when the constructed PLS-DA 
model (9 factors) is applied to the training set, 100% 
of samples are correctly classified; when performing 
LOOCV, 87.2% of Corsican samples are correctly 
classified as Corsican and 91.5% of non-Corsican as 
non-Corsican. This drives to a sensitivity of 91.12% 
and a specificity of 87.73%. For year 2 the values of 
83.24% and 85.86% are obtained for the sensitivity and 
the specificity respectively using PLS-DA (8 factors). 
SVM (C = 1000000, σ = 10) shows slightly larger 
values than PLS-DA, with a sensitivity of 91.31% 
and 83.64% and a specificity of 88.67% and 86.69% 
for year 1 and year 2, respectively. For the individual 
models in general better results are obtained for year 1 
than for year 2 in terms of sensitivity and specificity 
and SVM shows only a small improvement compared 
to PLS-DA. 

Table 2. Main scattering bands of honey and their respective assignments — Bandes importantes du miel et leurs affectations.
Wavenumber (cm-1) Intensity Type of vibration
3312-3334 medium Stretching of O-H
2938-2944 very strong Asymmetric stretching of CH2

2900-2907 shoulder Stretching of C-H
1636-1642 weak Deformation of O-H of water
1458-1461 strong Symmetric deformation in the plane of CH2

1364-1369 medium Asymmetric deformation in the plane of CH2

1265-1267 strong Deformation of C-C-H, O-C-H and C-O-H; vibration of Amide III (peptide bond)
1126-1127 strong Deformation of C-O-H; Vibration of C-N (protein or amino acid)
1077 strong Stretching of C-O
1064-1069 strong Stretching of C-O
979 very weak Unknown
916-918 weak Deformation of C-H and C-O-H
904 shoulder Deformation of C-H
865-871, 822 weak  
777 very weak Deformation of C-H
708-710 weak  
629-630 strong Ring deformation
590-592 shoulder Skeletal vibration
519-522 strong Deformation of C-C-O and C-C-C
449-450 shoulder Skeletal vibration
420-424 strong Deformation of C-C-O and C-C-C
351 very weak Unknown carbohydrates and proteins
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When global models are constructed the results 
improved mainly when working with SVM (Table 4). 
PLS-DA (8 factors) has a sensitivity of 84.30% 
when working with the whole spectra, whereas 

SVM (C = 1000000, σ = 10) has a value of 94.05%. 
Concerning the specificity similar values are obtained 
for both methods (86.66% for PLS-DA vs 86.69% for 
SVM). Working only with the 15 variables selected by 
the Fisher criterion gives good sensitivities (91.48% 
for PLS-DA and 94.05% for SVM), however a loss in 
specificity (69.28% for PLS-DA and 84.19% for SVM) 
is obtained mainly when working with PLS-DA. It is 
important to remark, as it was already demonstrated by 
Fernández Pierna et al. (2005), that SVM outperforms 
PLS-DA and that SVM is able to work well even when 
the number of variables is very small.

Figures 4 and 5 show the prediction results for 
the test set using the full PLS-DA and SVM models 
respectively. As it can be observed, when applying the 
PLS-DA model, 8 false negative results are found, i.e. 
8 Corsican samples from the test set are misclassified. 
The same false negative results are obtained when 
applying the SVM model (SVM misclassifies 
9 Corsican samples). Moreover, when studying the 
misclassified Corsican samples, it is interesting to 
note that the 8 false negative results detected by both 
methods belong to the group of spring samples. Similar 
results are observed when looking at the LOOCV results 
for the global model when using PLS-DA. In such a 
case, 29 false negative results have been obtained and 
59% of them belong to the spring samples. The same 

Figure 2. FT-Raman spectra of three sugars (fructose, glucose, and sucrose) — Spectres FT-Raman de trois sucres (fructose, 
glucose et sucrose).

Figure 3. Results of the Fisher criterion showing the most 
important variables for the discrimination — Résultats du 
test de Fisher montrant les variables les plus importantes 
responsables de la discrimination.
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false negative results are obtained when using LOOCV 
in the global SVM model.

5. Conclusion

Several important and practical conclusions can be 
drawn from the investigation presented in this paper.

The recent advances in instrument technology make 
the FT-Raman a promising method to use in the food 

area for authentication. FT-Raman, as well as infrared 
spectroscopy, provides complementary information 
about the vibrations of molecules and in consequence 
about the functional groups that constitute the product. 
Other important advantages of the technique are its 
simplicity, rapidity, cost-effective, and non-destructive 
characteristics. In this study, scattering FT-Raman 
bands have been selected and could be identified as 
fingerprints of the major components in honey, i.e. 

Table 3. Confusion matrix for the Partial Least Squares-Discriminant Analysis (PLS-DA) and Support Vector Machines 
(SVM) equations Corsican vs the rest using leave-one-out cross validation (LOOCV) for individual years — Matrice de 
confusion pour les équations Partial Least Squares-Discriminant Analysis (PLS-DA) et Support Vector Machines (SVM) 
(Corse vs le reste) en utilisant une cross validation leave-one-out (LOOCV) pour chaque année de collecte.

Training set
% classified as...

LOOCV
% classified as...

Sensitivity Specificity

Belonging to Corsican Non-Corsican Corsican Non-Corsican

PLS-DA Year 1 Corsican 100.0 0.0 87.1 12.8 91.12 87.73

Non-Corsican 0.0 100.0 8.5 91.5
Year 2 Corsican 96.4 3.6 86.4 13.6 83.24 85.86

Non-Corsican 1.2 98.8 17.4 82.6
SVM Year 1 Corsican 99.1 0.9 88.3 11.7 91.31 88.67

Non-Corsican 0.0 100.0 8.4 91.6
Year 2 Corsican 100.0 0.0 87.3 12.7 83.64 86.69

Non-Corsican 0.0 100.0 17.1 82.9

  Sensitivity = a/(a+c) where	  
  Specificity = d/(b+d) 	

	 	 	

Corsican Non-Corsican
Corsican a b
Non-Corsican c d

Table 4. Confusion matrix for the Partial Least Squares-Discriminant Analysis (PLS-DA) and Support Vector Machines 
(SVM) equations Corsican vs the rest using training and test set for both years’ samples before and after variable selection 
(Fisher) — Matrice de confusion pour les équations Partial Least Squares-Discriminant Analysis (PLS-DA) et Support 
Vector Machines (SVM) (Corse vs le reste) en utilisant un jeu de données de calibration et test comprenant l’ensemble des 
échantillons des deux années, avant et après la sélection des variables (Fisher).

Training set
% classified as...

Test set
% classified as...

Sensitivity Specificity

Belonging to Corsican Non-Corsican Corsican Non-Corsican

PLS-DA all years Corsican 100.0 0.0 87.1 12.9 84.30 86.66

Non-Corsican 0.0 100.0 16.2 83.8
all years
Fisher

Corsican 100.0 0.0 58.1 41.9 91.48 69.28
Non-Corsican 0.0 100.0 5.4 94.6

SVM all years Corsican 82.2 17.8 85.5 14.5 94.05 86.69
Non-Corsican 10.3 89.7 5.4 94.6

all years
Fisher

Corsican 77.1 22.9 82.3 17.7 93.73 84.19
Non-Corsican 17.1 82.9 5.5 94.5

  for sensitivity and specificity, see table 3 — pour la sensibilité et la spécificité, voir tableau 3.



Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics	 83

fructose, glucose and sucrose. Some other bands have 
been associated to other minor components as unknown 
carbohydrates and proteins.

The use of exploratory techniques as the Fisher 
criterion for wavenumber selection and supervised 
methods as PLS-DA or SVM seems to be a promising 
way, when working with FT-Raman data, for a rapid 
and non-expensive discrimination of Corsican honey 
from other honey samples. All the studied models 
showed a correct classification ratio between 85% and 
90% of average, showing a clear advantage for the 
SVM method specially when working with a reduced 
number of variables.
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