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Following up on the success of previous chemometric challenges arranged during the annual congress
organised by the French Chemometrics Society, the organisation committee decided to repeat the idea for
the Chimiometrie 2007 event (http://www.chimiometrie.org/) held in Lyon, France (29–30 November) by
featuring another dataset on its website. As for the first contest in 2004, this dataset was selected to test the
ability of participants to apply regression methods to NIR data. The aim of Challenge 2007 was to perform a
calibration model as robust and precise as possible using a data set with only a few reference values available
and submitted to different perturbation factors. The committee received nine answers; this paper
summarizes the best three approaches, as well as the approach proposed by the organisers.
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1. Introduction

For the fourth consecutive year and following on from the success of
the chemometric contests organised during previous congresses [1–3],
another dataset was proposed for the ‘Chimiométrie 2007’ meeting
(http://www.chimiometrie.org/) held in Lyon, France (29–30 Novem-
ber 2007). As for the first contest in 2004, this dataset was selected to
test the ability of participants to apply regression methods to NIR data.
The aim of Challenge 2007was to perform a calibrationmodel as robust
and precise as possible using a data set with only a few reference values
available and submitted to different perturbation factors. In the context
of robust statistics, the term robust is reserved for a group of methods
that provide good estimates for the majority of data. [4] Robust ap-
proaches, which are able to neglect the outlier's presence and to
represent the data majority, are strongly required in order to draw
reliable conclusions about data [5–10]. But robustness is also of crucial
importance in control system designs. Real systems are vulnerable to
different perturbation factors and measurement noise and there are
always discrepancies between mathematical models used for design
and the actual system in practice [11–13]. In the early 1990 s, Dardenne
et al. [14] studied the effects of various properties such as moisture,
particle size and ambient temperature on NIR calibration models in
order to reduce the wet chemistry needed for them. Artificial spectral
variations were created by changing the moisture and particle size of
wheat samples when predicting the protein content. These samples,
measured at different temperatures on a monochromator, produced
wide spectral variations that helped to develop robustmodels. The data
used in this challenge come from that paper.

Nine participants took up the challenge with the proposed data.
The results were evaluated on the basis of the best validation criteria
(R2 and RMSEP) obtained for the predicted values of the test set, and
also on the quality of the approach from amethodological perspective.
The three best approaches were presented during the congress and
are summarised here, together with the approach put forward by the
organizers of Challenge 2007.

2. Materials and methods

Several datasets were provided to the participants: a calibration
dataset, an experimental design dataset, a standard replicates dataset
and a test dataset.

2.1. Calibration dataset

For this challenge, only 10 spectra of ground wheat acquired using
a FOSS NIRSystems 4500, measured between 1300 nm and 2398 nm
each 2 nm, were supplied, together with the protein content of the 10
samples measured in g/kg Dry Matter (DM). The aim was to build a
calibration model as robust and precise as possible with the available
10 reference values for protein content.
inst perturbation factors with only a few reference
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Fig. 1. Examples of perturbation spectra from a) the experimental design dataset and
b) the standard replicates dataset.

Fig. 2. PCA plot showing the spectral space of the increased calibration dataset (Xartif)
including the original Xcal.
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2.2. Experimental design dataset

There were also the spectra from an experimental design based on
other 11 samples of ground wheat (with unknown reference protein
values). These 11 whole grain samples were separated into two
homogeneous sets: one was dried to reduce the moisture content
to ±9%, and the other was moistened to reach 13–14% humidity.

Each grain sample set was then divided again in two groups: the
first subsample was ground finely (Cyclotec apparatus, level C) and
the second one was ground more coarsely (Ika apparatus, level I). A
total of 11⁎4 sample sets were thus available. These samples were
measured by reflection NIR in duplicate at three room temperatures
(18 °C, 23 °C and 27 °C). The experimental design database therefore
contained 11×4×3×2=264 spectra.

2.3. Standard replicates dataset

Additional spectral information was supplied from one set of 10
samples (sealed cells) scanned on 31 different instruments of the
same type and from a second set of 10 scanned on 17 instruments. A
total of 480 spectra were thus available.

The reference protein values corresponding to the experimental
design samples and to the 10 samples measured on the different
instruments were unknown.

2.4. Test dataset

Some 2000 spectra of ground wheat from routine analyses were
acquired from ±10 different instruments with several levels of
granulometry, humidity and temperature, and provided by the
Requasud network (http://www.requasud.be/) from 1991 to 2007.
The 2000 spectra each had a reference protein value obtained by the
reference method, but these values were not communicated to the
participants.

2.5. Notations

The calibration dataset was kept in matrices Xcal, ycal whereas the
data from the experimental design in a matrix Xed and the standard
replicates dataset in two matrices Xinstr1 (31 instruments) and Xinstr2

(17 instruments). The Test dataset was kept in Xtest.

DM dry matter
EPO external parameter orthogonalisation
LS-SVM least-squares support vector machines
MSC multiplicative scatter correction
NIR near infrared
OSC orthogonal signal correction
PCA principal component analysis
PLS partial least squares
RMSEC root mean square error in calibration
RMSEP root mean square error in prediction
RPD ratio of standard error of prediction to sample standard
deviation
SEC standard error of calibration
SECV standard error of cross-validation
SNV standard normal variate

3. Results

3.1. Participant 1

Two approaches were tested: exhaustive calibration on artificial
data, and Orthogonal Signal Correction (OSC) [15] on these artificial
data.
Please cite this article as: J.A. Fernández Pierna, et al., How to build a r
values: A chemometric challenge at ‘Chimiométrie 2007’, Chemometr.
3.1.1. Approach 1: exhaustive calibration on artificial data
This approach involved using information about the perturbation

factors and ‘injecting’ it into the 10 spectra of the calibration dataset
(Xcal) in order to generate an artificial calibration database Xartif.
Then, PLS (Partial Least Squares) was applied in this new calibration
database that included all the possible perturbation factors.

In order to do so, initially all the possible perturbating vectorswere
identified using the experimental design dataset (Xed) and the
standard replicates dataset (Xinstr1+Xinstr2) for each of the 24 spectra
(Xsample i) of the same sample i (one sample i had 24 ‘j’ combinations
of possible perturbations). The 24 vectors of perturbations were
calculated as follows:

�δ xi; j
� �

= xi; j−�xi ð1Þ
obust model against perturbation factors with only a few reference
Intell. Lab. Syst. (2010), doi:10.1016/j.chemolab.2010.05.015
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Fig. 3. Final model constructed using Xartif for participant 1.
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where ¯xi is the mean spectra of sample I and xi,j is the jth spectra of
sample i. All the perturbations were put in a new matrix Ded con-
taining the 264 possible perturbations. The same procedure was
followed in order to identify all possible perturbations from the
standard replicates dataset, resulting in a matrix Dinstr of 480
perturbation spectra. Fig. 1 shows an example of the perturbation
spectra that could be obtained.

Finally, all the perturbations from Ded and Dinstr were combined
(usingaddition), resulting in amatrix of 127,464 spectra ((264×480)+
264+480)). In order to generate an artificial database, 20,000 per-
turbation spectrawere randomly taken and added to 2000 repetitions of
the 10 spectra from Xcal, resulting in a matrix Xartif. The reference
protein values corresponding to this matrix yartif were obtained from
the 2000 repetitions of the reference protein value for the calibration
dataset ycal, because the perturbations added to the spectra should not
change the reference value.

Fig. 2 shows that the spectral space of the calibration database
increased when comparing from Xcal to Xartif using PCA (Principal
Component Analysis). This was due to the integration of perturbation
into the database. The model was then calibrated using Xartif and a
second derivative using the Savitsky and Golay algorithm (window 9,
polynomial order 3) ([16]) as pre-processing and wavelength
selection (from 1950 to 2250 nm). Some non-linearity remained,
but the model in cross-validation gave interesting performances.
(Fig. 3).

3.1.2. Approach 2: OSC approach on artificial data
Orthogonalisation techniques are an interesting alternative for

building robust models, i.e. independent as much as possible to
potential perturbation factors. They include the External Parameter
Orthogonalisation (EPO) [17] approach (see participants 2 and 3). The
Orthogonal Signal Correction (OSC) approach takes account of the
reference values, since the orthogonalisation is performed against the
Table 1
Validation criteria of the models after test for each factor individually (the left side corresp

Raw data

R2 Bias SEP Slope Of

Humidity 0.97 −26.90 7.10 0.82
Granulometry 0.99 −11.70 3.00 1.02 −
Temperature 1.00 −0.12 1.61 0.97
Repetition 1.00 0.21 1.00 1.01 −
S1 0.83 – 5.73 – –

S2 0.95 – 2.95 – –

Please cite this article as: J.A. Fernández Pierna, et al., How to build a r
values: A chemometric challenge at ‘Chimiométrie 2007’, Chemometr.
y value to be predicted [15]. OSC based on an experimental designwas
proposed to take advantages of both EPO and OSC [18], i.e. trying at
the same time to be insensitive to identified perturbation factors by
removing the corresponding noise, without lowering the y prediction
ability. In this application, however, although perturbation variability
was present in the experimental designs, there was no variability in
the reference values. The OSC approach was therefore proposed as a
pre-treatment based on the previously built artificial calibration
database, where reference values and perturbation variability were
present. The multivariate directions hence identified by applying OSC
on the artificial calibration database (containing the perturbation
variability) were used to perform orthogonalisation of the initial
calibration database.

The other pre-treatments used were a second derivative using
the Savitsky and Golay algorithm with a window of 9 and a poly-
nomial of degree 3, followed by an SNV (Standard Normal Variate)
on the whole wavelength range. Cross-validation optimised the PLS
calibration model with only two latent variables and one OSC-factor
removed, giving a parsimonious model.

3.2. Participant 2

The method chosen for calibration was PLS. The first optimisation
of the model was carried out by testing different pre-processing
methods, using the calibration error (SEC) and the cross-validation
leave-one-out error (SECV) as selection criteria. Because the spectra
were affected by a baseline and a multiplicative effect, the pre-
treatment used was a second derivative using the Savitsky and Golay
algorithm with a window of 9 and a polynomial of degree 3 ([16]),
followed by SNV ([19]), as explained in [20]. Two models were
retained: one was based on the raw spectra, and the other was based
on the pre-processed spectra, as previously described.

Both models were then submitted to a test for each perturbation
factor, independently from other factors, in order to determine its
influence. To do this, the matrices of experiments were averaged
according to the perturbation factors not involved, in order to retain
the variability only for the matrix whose effect needed to be eval-
uated. Both models were then tested on this reduced matrix. For
example, to study the influence of moisture, the experimental design
was averaged in terms of granulometry, temperature and repetitions,
which supplied 22 spectra: 11 for the dry products and 11 for the
humid products. The predictions for each sample at two moisture
contents were then compared.

The method used to improve the robustness of the calibration was
based on EPO ([17,21]). As explained in the Section 3.1, this technique
involves the orthogonalisation of the measurement space of the
spectra, on the basis of the disturbances caused by the perturbation
factors. The orthogonalisation removes the components of the sub-
space spanned by the differences between the spectra repeated for the
same sample. On one hand, the more the number of removed com-
ponents increases, the more spectra of each sample become similar
and then the calculated predictions on these spectra become more
similar. On the other hand, if too many components are removed, this
could alter the calibration. To choose the dimension of the space to be
onds to the raw samples and right side to the pre-treated data) for participant 2.

Pretreated data

fset R2 Bias SEP Slope Offset

2.85 1.00 1.93 5.66 0.80 27.60
14.70 0.99 −2.77 2.34 0.97 1.75
3.46 1.00 −0.33 1.17 1.02 −2.86
1.42 1.00 −0.06 0.52 1.00 −0.68

0.91 – 4.12 – –

0.96 – 2.55 – –

obust model against perturbation factors with only a few reference
Intell. Lab. Syst. (2010), doi:10.1016/j.chemolab.2010.05.015
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Table 2
Validation criteria of the models after test for each factor individually after orthogonalisation (the left side corresponds to the raw samples and right side to the pre-treated data) for
participant 2.

Raw data Pretreated data

R2 Bias SEP Slope Offset R2 Bias SEP Slope Offset

Humidity 0.99 0.05 2.51 1.01 −1.60 1.00 0.13 1.47 1.00 0.75
Granulometry 0.99 −0.27 2.46 1.03 −4.85 1.00 0.00 1.40 1.01 −1.68
Temperature 1.00 0.01 1.37 0.98 2.02 1.00 0.00 0.58 1.00 −0.44
Repetition 1.00 −0.20 0.47 1.00 −0.73 1.00 −0.07 0.28 1.00 −0.25
S1 0.98 – 1.77 – – 0.98 0.00 1.69 – –

S2 0.99 – 0.96 – – 1.00 – 0.66 – –
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removed by orthogonalisation, we used the Wilks's lambda, which
represents the ratio of the variance inter samples and the variance
intra samples. This indicator was calculated in accordance with the
number of removed factors and the number of latent variables of the
model. The examination of its evolution enabled us to choose the
optimal dimension to be removed.
Fig. 4. PCA scores calculated without pre-processing, showing importance of external para
apparatus.

Please cite this article as: J.A. Fernández Pierna, et al., How to build a r
values: A chemometric challenge at ‘Chimiométrie 2007’, Chemometr.
Finally, the orthogonalisation of the models was achieved in two
ways:

– By individual orthogonalisation, i.e. bringing together the six
projectors (4 for Xed, 1 for Xinstr1 and 1 for Xinstr2) calculated
individually for every perturbation factor.
meters: (a) temperature, (b) moisture, (c) grinding (d) repeatability on different NIR

obust model against perturbation factors with only a few reference
Intell. Lab. Syst. (2010), doi:10.1016/j.chemolab.2010.05.015
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Fig. 5. Two first component scores of PCAwith EPO pre-processing: (a) on 1st derivative
spectra, (b) on raw spectra.

Fig. 6. Spectra of the 10 available samples (Xcal).
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– By a global orthogonalisation, i.e. calculating a global projector, on
all the X matrices brought together.

These two methods were applied to both models (raw and pre-
treated), resulting in four different predictions for the test set. The
three most different predictions were retained.

As previously explained, the models were submitted to a test for
each perturbation factor independently to determine its influence. The
sensitivity of these models to the different size factors is illustrated in
Table 1 (the left side corresponds to the raw samples and right side to
the pre-treated data). As shown in the table, the perturbation factors
have varying influences on the robustness of the model:

– For moisture, there is clearly a positive effect of the pre-treatment:
the bias is far less strong, as is the dispersion about the calibration
line. However, the slope is far from 1 (±0.8) in both cases.

– For granulometry, the pre-treatment reduces the bias and the
dispersion about the calibration line.

– Temperature and sample repetition seem to be slightly influential.
The pre-treatment improves the prediction, independently of the
robustness.

The sensitivity of the models, after orthogonalisation, to the dif-
ferent size factors is illustrated in Table 2. It shows the clear advantage
of orthogonalisation, especially for the most influential factors. The
number of components that need to be removed is 3 for the factors of
influence in the first experimental design, and 8 for the inter spec-
trometer repetitions.

3.3. Participant 3

As a first step, the goal was to show that the perturbation factors
(i.e. moisture, grinding, temperature and repeatability on different
NIR apparatus) were significant. To demonstrate this, PCA was per-
formed after centering raw spectra. For each PCA, clusters were made
up of each perturbation factor (Fig. 4).

A pre-processing method was then applied, its aim being to
remove from the data space the part that was most influenced by the
perturbation factor variations. As the previous participants, the
method proposed was EPO [17], which estimates the parasitic
subspace by computing a PCA on a set of spectra measured on the
same objects, while the perturbation factor varies.

Different pre-treatments were applied: SNV [19], MSC [22]
(multiplicative scatter correction), first derivative spectra using
Savistsky Golay algorithm, and raw spectra. The first derivative
spectra pre-treatment gave the best result.

As for participant 2, when applying EPO pre-processing, there are
two possibilities: by individual orthogonalisation, i.e. eliminating
perturbation factors on an ad hoc basis and by a global orthogonalisa-
tion. Both possibilities were tested and the second method was chosen
because it gave thebest PCArepresentation in that example. Fig. 5 shows
the two first scores of PCA with EPO pre-processing on the first
derivative spectra and on raw spectra. Comparing this with Fig. 4.d
clearly shows the powerful performance of EPO pre-processing.

The PLS model was calibrated on the calibration matrix after EPO
pre-treatment of the first derivative spectra. The Jack-Knife technique
[23] was used to fix the required number of PLS factors for model
construction. Cross-validation was applied in regression, so the
optimal factor number was determined based on the prediction of
the sample kept out of the individual model. A final model with two
latent variables and an R2 of 0.99 and RMSEC (root mean square error
in calibration) of 3.30 was applied to the test dataset matrix.

3.4. Challenge organisers

Fig. 6 shows the spectra of the 10 available samples. The strategy
proposed sought to create a huge calibration set by taking account of
Please cite this article as: J.A. Fernández Pierna, et al., How to build a robust model against perturbation factors with only a few reference
values: A chemometric challenge at ‘Chimiométrie 2007’, Chemometr. Intell. Lab. Syst. (2010), doi:10.1016/j.chemolab.2010.05.015
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Fig. 7. Differences between the pairs of samples based on the experimental design
dataset.
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the perturbation factors, i.e. the experimental design and the
repetitions between instruments. The main idea was to compute all
the differences between all the pairs of the same sample in both
perturbation factors, and then add these differences to the 10 spectra
with known Y values. The procedure can be described in two steps:

Step 1 The experimental design (Xed) comprised 11 samples×2
moistures×2 grinders×3 temperatures×2 replicates scans.
In total, 264 spectra were available. All the differences
between the pairs of samples were computed, giving a total
of 552 (24⁎(24−1)) differences per sample. Then, for the 11
samples, a matrix containing 6072 differences was retained.
Fig. 7 shows all these differences.

Step 2 The differences between the two series of 10 samples scanned
on different instruments were computed. For set 1 (Xinstr1)
scanned on 31 instruments, 930 (31⁎(31−1)) differences
were calculated for each sample. For set 2 (Xinstr2) scanned on
17 instruments, 272 (17⁎ (17−1)) differences for each
sample were obtained. For the 10 samples, a total of 12,020
differences were computed, as shown in Fig. 8.
Fig. 8. Differences between the two series of samples scanned based on the Standard
Replicates Dataset.

Please cite this article as: J.A. Fernández Pierna, et al., How to build a r
values: A chemometric challenge at ‘Chimiométrie 2007’, Chemometr.
All these differences were added to the 10 available spectra (Xcal),
giving a total of 180,920 spectra with only 10 reference protein values.
Some of these calculated differences, mainly in the case of the
standard replicates database, are larger than the rest, which was
useful to include the variability present in those perturbation factors.
Due to computer and time limitations, a random selection of spectra
was made and the final model was constructed using 2548 spectra
and 10 reference protein values. Fig. 9 shows the projection of the
2000 samples of the test dataset (Xtest) on the 2548 spectra set
constructed, indicating that both sets match perfectly.

The proposed model was constructed using least-squares support
vector machines (LS-SVM) [24]. The results are shown in Fig. 10.

Fig. 10 provides a comparison in terms of RMSEC between the
model using only the 10 available samples (Fig. 10 a) and the model
constructed using the 2548 spectra obtained following the strategy
described (Fig. 10 c). An additional parameter, RPD (ratio of the
standard deviation of the population over the standard error of
prediction), was also included. In both cases, the prediction for the
test dataset is also shown (Fig. 10 b and d respectively).

4. Final results

The evaluation of the approaches was based on the best results
obtained for the predicted values of the test dataset (2000 spectra).
The reference protein values obtained by the reference method for
these spectra were not communicated to the participants. For the
evaluation, the R2, RMSEP (Root Mean Square Error in Prediction) and
the RPD were used as validation criteria. The results for the different
approaches are summarised in Table 3.

5. Conclusion

The challenge produced a wide diversity of results. However, when
evaluating the 10 answers received (nine from the participants, one
from the organisers) as a whole, Challenge 2007 showed that it is still
possible to perform a robust and precise calibration when only a few
reference values are available independently of theperturbation factors.
The use of well-defined experimental designs, including repeated
measurements under different conditions, will lead to the use of simple,
easy and low-cost instruments and the construction of robust models.

During the congress the approaches summarised here were
presented, together with the challenge organisers' approach. The
Fig. 9. PC1 vs. PC2 showing the projection of the 2000 samples of the Xtest on the 2548
spectra dataset constructed by the challenge organisers.

obust model against perturbation factors with only a few reference
Intell. Lab. Syst. (2010), doi:10.1016/j.chemolab.2010.05.015
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Fig. 10. Results obtained after the application of the SVM model for the challenge organisers. a) model using only the 10 available samples of Xcal; b) prediction of Xtest based on
model represented in a; c) model constructed using the 2548 spectra obtained following the strategy described and d) prediction of Xtest based on model represented in c.
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participants found the results interesting and it was decided to
include another challenge for the next congress.

The data of this challenge and previous challenges is available on
the internet address of the French Chemometric Society (http://www.
chimiometrie.org/).
Table 3
Summary of the results of the different approaches in terms of R2, RMSEP and RPD (ratio
of the standard deviation of the population over the standard error of prediction).

R2 RMSEP RPD

Participant 1 (approach 1) 0.91 3.91 3.32
Participant 1 (approach 2) 0.88 4.51 2.88
Participant 2 0.89 4.24 3.05
Participant 3 0.86 4.86 2.65
Challenge organizer 0.93 3.56 3.82

Please cite this article as: J.A. Fernández Pierna, et al., How to build a r
values: A chemometric challenge at ‘Chimiométrie 2007’, Chemometr.
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