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a b s t r a c t

In the present study, different multivariate regression techniques have been applied to two large near-
infrared data sets of feed and feed ingredients in order to fulfil the regulations and laws that exist
about the chemical composition of these products. The aim of this paper was to compare the perfor-
mances of different linear and nonlinear multivariate calibration techniques: PLS, ANN and LS-SVM.
The results obtained show that ANN and LS-SVM are very powerful methods for non-linearity but LS-
SVM can also perform quite well in the case of linear models. Using LS-SVM an improvement of the
eywords:
IR
eed
hemometrics
LS
NN
S-SVM

RMS for independent test sets of 10% is obtained in average compared to ANN and of 24% compared
to PLS.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

In most of the countries that produce important amounts of
eed, feed ingredients, fresh silages or soil products, regulations and
aws exist about the chemical composition of these products. Nor-

ally these regulations lay down some kind of limits (minimum
ater content, etc.) in the final product in order to guarantee that

t meets their legitimate expectations and fulfils the good man-
facturing practice. However, manufacturers want to produce at
inimal costs and try to arrange their formulations in a way, that

he chemical composition of the products is approaching those lim-
ting values. In order to do so, the chemical composition of the
aw materials must be known. This requires considerable analyti-
al methods, which are expensive and require the use of chemical
eactive. Near infrared spectroscopy (NIRS) is a good alternative
o these analytical techniques [1–5]. NIRS is the most widely used
on-destructive technology in the feed industry and official control

aboratories to determine qualitative parameters of feed ingredi-
nts and feeding stuffs. The high throughput of the method, the
Please cite this article in press as: J.A. Fernández Pierna, et al., Comparison of
data of feed and feed products, Anal. Chim. Acta (2011), doi:10.1016/j.aca.2

apacity to determine in one single analysis large panoply of param-
ters and the possibility to build network of spectrometers made
his technique very attractive for the feed sector. The fact that this
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003-2670/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.aca.2011.03.023
method can be also used on-line in a feed production plant made
this technique even more attractive.

The recent proliferation of fast computers and chemometric
algorithms has boosted the use of NIR instruments and it became
possible to test everyday foods, feeds and different agricultural
products routinely for quality control [6]. Multivariate regression
is the process which maps spectra onto the chemical composition
of materials by using statistical and mathematical methods, and
includes the analysis of data with many observed variables, as well
as the study of systems with many important types of variation
[7,8]. Multivariate regression establishes a model between com-
ponent concentrations or properties and the spectral absorbance
(log 1/R) measured for a set of samples at different wavelengths
[9]. The performance of multivariate regression is based on several
important steps. In a first step we need to acquire as wide a range
of samples of one type as possible with an emphasis on covering
even extreme samples, which could be samples that are either rare
or undesirable because they are poor quality, deteriorated or out
of specification. As soon as possible after scanning with the NIR
instrumentation the selected samples are submitted for reference
analyses. This part should be done with care and precision, ideally
with duplicates so that the reference method precision is known
various chemometric approaches for large near infrared spectroscopic
011.03.023

and any tests can be repeated if gross errors are encountered. Then,
the modelling itself can begin using a number of chemometric algo-
rithms [10,11]. In many spectroscopic applications, multiple linear
regression (MLR) [6,7] and partial least squares (PLS) [7,12] are used

dx.doi.org/10.1016/j.aca.2011.03.023
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Fig. 1. Example of data

o make regression models because of their simplicity to use, speed
nd good performances. However, as explained by Thissen et al.
13] nonlinear relations are quite often found which can only be

odelled in a limited way by taking into account more latent vari-
bles. Then, alternative methods have to be used; techniques as the
rtificial neural network (ANN) [14,15] or the least-squares support
ector machines (LS-SVM) [16–20] have the ability to model non-
inear relationships. LS-SVM, which deals with high dimensional
nput vectors, has the advantage to ANN that it builds a global

odel. Previous studies have compared the performance of differ-
nt multivariate calibration techniques (PCR, PLS and ANN) applied
o NIR data in situations of interpolation and extrapolation as well
s in the case where the new spectra are affected by instrumental
erturbations not accounted for in the calibration set [11,21,22].

The main goal of the present work is to present an effective
nd complete procedure for multivariate calibration of large NIR
ata sets from feed samples including diagnostics, feature reduc-
ion/selection, modelling and validation of models. This is also done
y comparing several supervised multivariate regression methods
ut on the basis of their performances to handle such large datasets.
or this, two large datasets of NIR spectra of feed and feed ingredi-
nts with known wet chemical information for several parameters
ere used. The chemometric methods used in this work were well

now techniques as PLS or ANN and the more recent technique
S-SVM.

. Materials and methods

.1. Samples

Two NIR spectral datasets have been obtained using a Bruker
PA instrument (Karlsruhe, Germany) working in the range

etween 10,000 cm−1 and 4000 cm−1, having a spectral resolu-
Please cite this article in press as: J.A. Fernández Pierna, et al., Comparison of
data of feed and feed products, Anal. Chim. Acta (2011), doi:10.1016/j.aca.2

ion of 8.0 cm−1. The fist dataset consisted of 26,652 spectra (with
00 wavelengths) of feed ingredients with reference values for
sh, fat, fibre and protein. The second dataset contained a total of
8,676 spectra (with 700 wavelengths) of feed with reference val-
ibution (feed data set).

ues for ash, fat, fibre, starch and protein. The spectral data were
pre-processed by the standard normal variate transform followed
by detrend [23] and 1st derivative Savitzky–Golay treatment (2nd
degree polynomial and a window of 15) in order to remove the
scattering effects and to smooth the spectra [24].

2.2. Brief description of the chemometric methods

2.2.1. Partial least squares (PLS)
PLS is a very well known regression technique [7,12]. The fact

that the studied system or process is driven by a small number of
latent variables, and that these latent variables are weighted aver-
ages of the observed variables, is the fundamental theory of any
PLS model. Therefore, PLS is a method for the indirect observation
of the latent variables.

2.2.2. Artificial neural networks (ANN)
Artificial neural networks are designed to mimic functions of the

human brain [14,15]. Information processing occurs at many simple
elements called neurons. Neurons are connected via synapses (con-
nection links), that modulate signals passing through them. Each
synapse has an associated weight w. The net input N is the function
of all transmitted signals xi and their corresponding weights wi in
a neuron: N = �(wixi) (sum of weighted input signals). Each neuron
applies an activation (transfer) function to its net input N in order to
provide an output signal for each neuron. A neural network is char-
acterized by its architecture or its pattern of connections between
the neurons. Neurons are arranged in several layers: input layer
that receives the inputs, hidden layer(s) which transforms the input
representation into a new ‘hidden’ representation and output layer
whose units send the predicted values out. Input data are signals
xi of the input layer. Initial weights are random values. Process-
ing the data from input layer to output layer provides the output,
various chemometric approaches for large near infrared spectroscopic
011.03.023

which is the result. A neural network is also characterized by its
learning algorithm, i.e. its method of determining the weights on
the connections. Before using a network for prediction it must be
trained with known data. This is necessary to ensure that the net-

dx.doi.org/10.1016/j.aca.2011.03.023
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to check the distribution of the samples in the different subsets. The
ig. 2. Summary of the results for the test set selected by duplex in terms of RMS
or the feed data set.

ork provides useful results. The mostly used learning algorithm is
ased on the ‘back-propagation of errors’. While learning, the net-
ork compares its output with observed (known) output values

f learning data. The effectiveness is usually determined in terms
f the root mean square (RMS) error between the actual and the
esired outputs averaged over the learning data. After comparison,
he network changes weights backwards from output layer to input
ayer with respect to the output error. A neural networks is charac-
erized also by its activation (transfer) function, which determines
ts output. In this study a hyperbolic tangent function was chosen
s transfer function [25].

.2.3. Least squares support vector machines (LS-SVM)
Support vector machines (SVM) is a powerful methodology for

olving problems in nonlinear classification, function estimation
nd density estimation which has also led to many other recent
evelopments in kernel based methods in general [20].

The LS-SVM method focuses on the least squares version of SVM,
hose main advantage is that it is computationally more efficient

han the standard SVM method. In this case training requires the
olution of a linear equation set instead of the long and compu-
ationally hard quadratic programming problem involved by the
tandard SVM. In the LS-SVM solution, the training samples are
apped to a kernel space, where a hyperplane is fitted on these

oints. In this case all the training samples are used to achieve a
esult, which consequently is not sparse as was the case for the
lassical SVM that select only some of them called the support
ectors.

.3. Software

All computations, chemometric analyses, and graphics were
arried out with programs developed in Matlab v7.4.0. (The Math-
orks, Inc., Natick, MA, USA). For PLS, the PLS toolbox v. 4.11
Please cite this article in press as: J.A. Fernández Pierna, et al., Comparison of
data of feed and feed products, Anal. Chim. Acta (2011), doi:10.1016/j.aca.2

Eigenvector Research, Inc.,Wenatchee, WA, USA) was used; for
NN, the Neural Network Toolbox Version 5.0.2 (The Mathworks,

nc., Natick, MA, USA) and for LS-SVM the programs indicated in
ef. [18].

ig. 3. Summary of the results for the test set selected by random in terms of RMS
or the feed data.
Fig. 4. Summary of the results for the test set selected by duplex in terms of RMS
for the feed ingredient data.

3. Results

A regression model for each property and for each data
set is determined, which can then be applied to classify new
(unknown) samples. A full analysis including diagnostics, feature
reduction/selection, modelling and validation of models has been
performed. For the application of all the different regression meth-
ods, the data set was summarized by an nxm matrix X where n
denoted the number of samples and m the number of variables
(absorbances at different wavelengths). The references values for
such data set were summarized in yi. Such observations constituted
the training set. The calibration models constructed using the train-
ing set were then applied to two test sets. These two test sets have
been selected in the following way:

- A first test set was selected by using the duplex design proposed
by Snee [26]. This method starts by selecting the two points fur-
thest from each other and puts them both in a first set (training).
Then the next two points furthest from each other are put in a
second set (test), and the procedure is continued by alternatively
placing pairs of points in the first or second set. As a result, 10% of
the total number of samples was used as test set. This technique
yields a test set including the most diverse samples.

- With the remaining samples, another 10% of the samples were
randomly selected as second test set.

In order to have an idea of data distribution after splitting, explo-
rative data analysis, as the principal component analysis (PCA)
technique, can be performed [6]. PCA is an unsupervised method
that transforms the set of observed variables into a new set of
uncorrelated variables, expressed as a linear combination of the
observed ones, with lower dimensions. This gives an insight of
possible outliers, clusters and other data structures. PCA has been
applied to the data after splitting as previously explained in order
various chemometric approaches for large near infrared spectroscopic
011.03.023

results are shown in Fig. 1, in this case for the feed data set (PC1 vs.
PC2). As expected, it can be seen that the samples selected by the
duplex method are distributed in a homogeneous way and covered

Fig. 5. Summary of the results for the test set selected by random in terms of RMS
for the feed ingredient data.

dx.doi.org/10.1016/j.aca.2011.03.023
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Fig. 6. Y measured vs. Y predicted

he whole range in the PC space. However, the random selection, in
his case, contained less extreme samples than the test set selected
y duplex.

Regression models have been constructed using PLS, ANN and
S-SVM using the training set (train). For each model, different
arameters have to be optimized: the optimal number of latent
ariables in the case of PLS, the optimal number of inputs and nodes
or ANN and the best combination of C and sigma in the case of
S-SVM. C is a regularisation parameter that allows adjusting the
rade-off between error minimization, and maximal margin esti-

ation. Sigma corresponds to the width of the Gaussian function,
nd can be used to adjust the degree of generalization [27].

In order to optimize the different model parameters, cross-
alidation was used by selecting a subset of samples within the
raining set, using Venetian blinds (every n-th sample together).
n all the cases the aim was to obtain the model with the min-
mal error. In order to have a good indication of the adequacy
f the model, the results were presented as RMSEC (root mean
quared error for calibration) and RMSEV (root mean squared error
or validation) that represents the model and the validation errors,
espectively. The model with smallest standard error for the vali-
ation data set was assumed to have the best fit to the data and
hen both independent test sets were predicted using the opti-

al parameters. RMSEP (root mean squared error for prediction)
escribed the model predictive ability calculated on both indepen-
ent test sets.

Figs. 2 and 4 show a summary of the results for the test sets
elected by duplex expressed in terms of RMS for the feed data
nd the feed ingredients data set respectively. Figs. 3 and 5 show
he summary for the test sets selected by random for the feed
ata and the feed ingredients data set, respectively. All the mod-
ls obtained showed reasonable RMS values and considerable high
etermination coefficients R2 (not shown) between the predicted
nd the real values. The best results are those obtained with the LS-
Please cite this article in press as: J.A. Fernández Pierna, et al., Comparison of
data of feed and feed products, Anal. Chim. Acta (2011), doi:10.1016/j.aca.2

VM technique, with slightly lower RMS values than those obtained
ith the rest of the regression methods, in some cases the error is

lmost half of the one obtained using PLS. PLS gives in general poor
esults, in some cases it can be due to the fact that the relation-
ed – ash showing a non-linearity.

ship between the predicted values and the actual concentration
is not linear. This can be checked by visual examination of the
method response versus the analyte concentration. This usually
works well but it is subjective and open to different interpreta-
tions. Then we can also use some statistical methods as for instance
the ones based on the study of the correlation of residuals. The
residuals are the differences between observed and expected val-
ues and they are assumed to be zero. The Run test [28,29] and the
Durbin–Watson test [30] look for a correlation (non randomness)
of the residuals. In the case of the feed for the determination of the
ash concentration, for instance, both tests were applied showing
a certain correlation between the predicted and expected values.
This is not always the case for the data studied here and in most
of the cases, like the ash case (see Fig. 6) this is mainly due to
some possible outliers. For this work outlier detection methods
have been not applied and all the samples have been used for the
study.

4. Conclusion

This work has shown that ANN and LS-SVM are very power-
ful methods for non-linearity but LS-SVM is also performing quite
well in the case of linear models. Models based on PLS failed badly
in most of the cases; however ANN and mainly LS-SVM provided
good generalization performance. Using LS-SVM an improvement
of the RMS for both test sets of 10% is obtained in average com-
pared to ANN and of 24% compared to PLS. Although no general
rules could be extracted from the results, it is clear that in the
case of large datasets, LS-SVM outperforms classical techniques as
PLS or ANN. However, a drawback of the technique remains the
selection of the LS-SVM parameters, which is a key point in the
training process of these models when applied to regression prob-
lems. In general this selection is implemented using grid searches,
which grow as the size of the build data set increases, and then the
various chemometric approaches for large near infrared spectroscopic
011.03.023

computational cost of the LS-SVM training process also increases
considerably. For a small training set the solution of the LS-SVM
problem is obtained straightforward, however with huge datasets,
the memory space will increase with the level of the number of the

dx.doi.org/10.1016/j.aca.2011.03.023
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