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Belgium; 9Walloon Breeding Association, 5590 Ciney, Belgium

(Received 16 September 2011; Accepted 27 January 2012; First published online 27 April 2012)

Lactoferrin (LTF) is a milk glycoprotein favorably associated with the immune system of dairy cows. Somatic cell count is often used as
an indicator of mastitis in dairy cows, but knowledge on the milk LTF content could aid in mastitis detection. An inexpensive, rapid and
robust method to predict milk LTF is required. The aim of this study was to develop an equation to quantify the LTF content in bovine
milk using mid-infrared (MIR) spectrometry. LTF was quantified by enzyme-linked immunosorbent assay (ELISA), and all milk samples
were analyzed by MIR. After discarding samples with a coefficient of variation between 2 ELISA measurements of more than 5%
and the spectral outliers, the calibration set consisted of 2499 samples from Belgium (n 5 110), Ireland (n 5 1658) and Scotland
(n 5 731). Six statistical methods were evaluated to develop the LTF equation. The best method yielded a cross-validation coefficient of
determination for LTF of 0.71 and a cross-validation standard error of 50.55 mg/l of milk. An external validation was undertaken using
an additional dataset containing 274 Walloon samples. The validation coefficient of determination was 0.60. To assess the usefulness
of the MIR predicted LTF, four logistic regressions using somatic cell score (SCS) and MIR LTF were developed to predict the presence
of mastitis. The dataset used to build the logistic regressions consisted of 275 mastitis records and 13 507 MIR data collected in
18 Walloon herds. The LTF and the interaction SCS 3 LTF effects were significant (P , 0.001 and P 5 0.02, respectively). When only
the predicted LTF was included in the model, the prediction of the presence of mastitis was not accurate despite a moderate correlation
between SCS and LTF (r 5 0.54). The specificity and the sensitivity of models were assessed using Walloon data (i.e. internal validation)
and data collected from a research herd at the University of Wisconsin – Madison (i.e. 5886 Wisconsin MIR records related to 93
mastistis events – external validation). Model specificity was better when LTF was included in the regression along with SCS when
compared with SCS alone. Correct classification of non-mastitis records was 95.44% and 92.05% from Wisconsin and Walloon
data, respectively. The same conclusion was formulated from the Hosmer and Lemeshow test. In conclusion, this study confirms the
possibility to quantify an LTF indicator from milk MIR spectra. It suggests the usefulness of this indicator associated to SCS to detect
the presence of mastitis. Moreover, the knowledge of milk LTF could also improve the milk nutritional quality.
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Implications

Lactoferrin (LTF) is a glycoprotein naturally present in milk
with known favorable associations with the immune system.
The quantification of this molecule directly in milk could be
useful in the development of animal breeding programs to

improve mastitis resistance of dairy cows and to improve the
nutritional quality of bovine milk. To achieve these objectives
an inexpensive, fast and robust method to quantify LTF
directly from bovine milk is required. The results of this study
show the potential of mid-infrared (MIR) spectrometry to
predict LTF. MIR spectrometry is the method of choice
worldwide to routinely predict milk components. Thus, the
equation developed could potentially be exploited at low- E-mail: hsoyeurt@ulg.ac.be
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cost in the short term. Moreover, this study showed also that
the use of predicted LTF and somatic cell score (SCS) slightly
improved the possibility to detect the presence of clinical
mastitis in dairy cows over and above using SCS alone.

Introduction

Lactoferrin (LTF) is an iron-binding glycoprotein naturally present
in milk and secreted mainly by the mammary epithelial cells. Its
concentration is higher during the later lactation stages (0.25 to
0.40 g/l) compared with early lactation stages (Hagiwara et al.,
2003; Baumrucker et al., 2005; Pugovel et al., 2005). LTF can
also be released by polymorphonuclear neutrophils during
inflammation (Kutila et al., 2004).

LTF belongs to the transferrin gene family (Mead and
Tweedie, 1990; Ward et al., 2005) and has reverse iron-binding
properties mainly explaining the different roles allotted to LTF in
the regulation of the immune system (Mead and Tweedie, 1990;
Baker and Baker, 2004). LTF seems to act as a general anti-
bacterial and antifungal molecule (Baker, 2005; Farnaud and
Evans, 2003), to be involved in host defence mechanisms
(Baveye et al., 1999; Baumrucker, 2000; Ward et al., 2005), and
to modulate the inflammatory process (Farnaud and Evans,
2003). Therefore, the content of LTF in bovine milk may have
potential as an indicator of the presence of mastitis and could
be used in an animal breeding program to augment the accu-
racy of selection for mastitis resistance in dairy cows. Indeed,
high LTF concentration in milk (2.3 g/l of milk) compared with
the expected normal level (0.1 to 0.4 g/l of milk) produced by a
specific cow may indicate clinical or subclinical mastitis (Kutila
et al., 2004). Moreover, naturally increasing the content of LTF in
milk through genetic selection could also have beneficial effects
on human health (Tsuda et al., 2000).

For practical reasons (i.e. analysis time, skilled staff, analysis
cost), the current methods used to quantify the LTF content in
milk such as enzyme-linked immunosorbent assay (ELISA) or the
immunodiffusion method are not feasible for a large number of
samples as is necessary for accurate estimation of breeding
values. Therefore, an alternative method that is rapid and low
cost is required.

Recent research has shown the potential of mid-infrared
(MIR) spectrometry to predict components in milk, for
example, milk fat composition, in addition to the routine
predictions of milk fat, protein, lactose and urea undertaken
globally (Rutten et al., 2006; Soyeurt et al. 2006 and 2011).
Similarly, MIR indicators of protein fractions such as casein
and lactoglobulin (Barbano and Dellavalle, 1987; Sorensen
et al., 2003) have been obtained. As it is possible to deter-
mine the total content of protein and some specific milk
proteins, it could be possible to predict the LTF content of
milk using MIR as LTF is a natural milk glycoprotein. This
hypothesis was tested by Soyeurt et al. (2007) who sug-
gested the possibility of quantification of an indicator of LTF
in bovine milk using MIR spectrometry with a cross-valida-
tion coefficient of determination (R2

CV) of 0.75. However, the
study of Soyeurt et al. (2007) had several limitations; only
69 samples collected in the Walloon region of Belgium were

used to develop the equation through a partial least squares
regression (PLS). Recent studies to predict other components
in milk have shown a benefit in the accuracy of calibration
equations with (1) more complex calibration procedures,
(2) a larger number of samples from a wider range of production
systems and (3) greater animal diversity (Dal Zotto et al., 2008;
Soyeurt et al., 2011).

The first aim of the current study was to develop a cali-
bration equation to quantify the LTF content in milk using a
large number of samples collected in Belgium, Ireland and
Scotland from cows of different breeds and from different
production systems. Pre-treatments applied to the spectral
data were tested to improve the robustness of the MIR
prediction of LTF content. The second aim was to quantify
the usefulness of this LTF prediction to identify the presence
of clinical mastitis.

Material and methods

Spectral and LTF data used in the calibration set
Milk samples (40 ml each in Ireland and Scotland and 2 3 60 ml
each in Belgium (i.e. one for the MIR analysis and one for the
LTF quantification)) were collected between April 2005 and April
2006 in Belgium, between April 2009 and August 2009 in Ire-
land and in August 2009 in Scotland. All samples were analyzed
using MilkoScan FT6000 spectrometers (Foss, Hillerod, Den-
mark) that outputs one spectrum of 1060 data points in the
IR range from 900/cm to 5000/cm for each milk sample
analyzed. Belgian milk samples were analyzed by MIR in the
milk laboratory ‘Comité du lait’ (Battice, Belgium) and the
remaining samples were analyzed at Teagasc Moorepark
(Fermoy, Co. Cork, Ireland).

Samples were preserved with bronopol and the LTF con-
centration in whole milk samples was measured at least in
duplicate with a commercial ELISA kit (Bovine Lactoferrin
ELISA Quantification Kit, Bethyl Laboratories Inc., Montgomery,
TX, USA). The procedure was carried out according to the man-
ufacturer’s instructions. The samples were diluted 1 : 1000;
1 : 2000; 1 : 4000; 1 : 6000; 1 : 8000 or 1 : 10 000 in sample buf-
fer. The LTF concentrations used for the calibration were the
average of at least two measures taken on the same milk
sample. Only samples with a coefficient of variation between
two repeated measurements of LTF quantification of ,5%
were used to develop the calibration equation. For Irish and
Scottish samples, ELISA analysis was undertaken by Enfer
Laboratories (Naas Co. Kildare, Ireland). Belgian milk sam-
ples were analyzed by Gembloux Agro-Bio Tech – University
of Liège (Gembloux, Belgium).

A principal component analysis was undertaken across all
spectral data included in the calibration set and the stan-
dardized Mahalanobis distance was calculated. As described
by Williams (2007), a spectral outlier is a spectrum which
differs from the mean of the population by 3 or more
standardized Mahalanobis distance. Using this threshold,
60 samples were deemed to be outliers and were discarded.
Therefore, the final calibration dataset included 110 Walloon
samples and 1658 Irish and 731 Scottish samples.

MIR lactoferrin prediction
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The Walloon samples (i.e. 110 records) were selected to
maximize the spectral variability from the 1609 samples col-
lected in a previous study (Soyeurt et al., 2007) from six different
breeds (dual-purpose Belgian Blue, Holstein–Friesian, Jersey,
Montbeliarde, Normande, non-Holstein Meuse-Rhine-Yssel type
Red and White) across seven herds. All of these samples were
obtained during the routine milk recording managed by the
Walloon Breeding Association (AWE, Ciney, Belgium) and frozen
at 2268C. More details are given by Soyeurt et al. (2007).

Irish and Scottish samples were analyzed fresh one day after
collection. The cows sampled in the Irish research herds were fed
predominantly grazed grass and included animals of different
breeds (Holstein–Friesian, Holstein, Friesian, Jersey, crossbred
Jersey and Holstein–Friesian, Montbeliarde, Normande, Norwe-
gian Red, crossbred Norwegian Red and Holstein Friesian; Pre-
ndiville et al., 2010) and different strains of Holstein–Friesian
(Coleman et al., 2009). Cows from Scotland were from two
genetically divergent lines (divergent for milk solids) and were
fed two different diets (Coffey et al., 2004). Approximately half
were fed a predominantly forage only diet and the other half a
diet consisting of ,60% silage and 40% concentrate.

Calibration models
A PLS approach was undertaken to relate the ELISA LTF values
to the spectral data using WINISI III software (http://www.
winisi.com/; Foss, Hillerod, Denmark). This regression technique
requires cross-validation to prevent over-fitting to the data.
Cross-validation obtains validation errors by partitioning the
calibration set into several groups (50 groups were used in this
study). The calibration is performed on the dataset with one
group excluded and the equations developed are applied to the
excluded group; this is iterated with a different group excluded
at each iteration. The residuals from the prediction for each
sample were combined into a standard error of cross-validation
(Sinnaeve et al., 1994). In order to assess the efficiency of
the calibration equation, different statistical parameters were
estimated: mean LTF ELISA content, standard deviation of
ELISA LTF content (s.d.), standard error of calibration (s.e.c.),
calibration coefficient of determination (R2

C), standard error of
cross-validation (SECV) and cross-validation coefficient of
determination (R2

CV). The ratio of SECV to s.d. (ratio of s.e.
prediction to s.d.; RPD) was also calculated (William and Norris,
2001) in order to estimate the efficiency of calibration.

An equation developed for one spectrometer could provide
results slightly biased on another instrument. To improve the
accuracy of the MIR prediction across instruments, a ‘repeat-
ability file’ was generated by recording the MIR spectrum of
several milk samples provided by five different MilkoScan
FT6000 spectrometers (Foss) and used in the calibration process
based on a methodology proposed by Westerhaus (1990). More
details about the repeatability file were provided by Soyeurt
et al. (2011).

Generating the derivative of the spectral data permits
a ‘sharpening’ of the absorption bands. First and second
derivatives were obtained using the following formula:

dxk¼ xk� g� 1
2
� xkþ g� 1

2

where dxk is the value of the derivative for the spectral data
point k; x is the absorbance; g is an odd integer strictly positive
entitled ‘gap’ (i.e. five consecutive spectral data points in this
study; Hruschka, 1987). The second derivative used the absor-
bance obtained for the first derivative instead of the absorbance
of spectra. Six different statistical approaches were evaluated to
develop the prediction equations:

method 1: PLS and no pre-treatment on the spectral data;
method 2: PLS 1 the use of a repeatability file;
method 3: PLS 1 the use of a first derivative pre-treatment
on the spectral data;
method 4: PLS 1 the use of a first derivative pre-
treatment 1 repeatability file;
method 5: PLS 1 the use of a second derivative pre-treatment;
method 6: PLS 1 the use of a second derivative pre-
treatment 1 repeatability file.
A T-outlier test was used to remove potential outliers from

the reference ELISA data (Winisi software, Foss, Hillerod,
Denmark). The critical T-outlier value was set to 2.5 (i.e.
recommended default value). If the difference between the
predicted and reference LTF values was .2.5 times the SEC,
the sample was considered to be an outlier and deleted. This
methodology was iterated twice.

External validation
An external validation was conducted using 274 samples col-
lected from 14 Walloon herds in June and July 2009, and again
during January and May 2011. Samples were collected from
different breeds: dual-purpose Belgian Blue, Holstein–Friesian,
Montbeliarde and non-Holstein Meuse-Rhine-Yssel type Red and
White. The developed equations were applied to this dataset and
the validation coefficient of determination was calculated (R2

v).

Prediction of clinical mastitis
To assess the usefulness of the LTF MIR prediction to detect
mastitis, the LTF calibration equation was applied to the recorded
spectral data from cows with associated mastitis information.

Calibration set. Mastitis records were collected from 18 farms
located in the Walloon region of Belgium between January 2007
and the beginning of August 2011 (two farms from 2007, two
farms from 2008, two farms from 2009, five farms from 2010
and seven farms from 2011). A total of 1750 mastitis events
were recorded from 864 dairy cows. The average incidence of
mastitis for these herds was 30.17% with an s.d. of 15.30%.
The minimum mastitis incidence was 9.09% and the maximum
was 78.38%. These farms were involved in the Walloon milk
recording program; therefore, the composition of milk from all
cows in lactation in the herds were analyzed every 4 to 6 weeks
using a Foss MilkoScan FT6000 (Foss). Spectral data and
somatic cell count (SCC) were recorded. LTF content was esti-
mated by applying the LTF MIR equation developed in this
study on the recorded spectra. The somatic cell score (SCS)
was obtained by the following formula: SCS 5 (log 2(SCC/
100 000)) 1 3. SCS was calculated because its distribution is
more normal compared with the distribution of SCC data. The
mastitis events were merged with the MIR records based on the

Soyeurt et al.
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date of the mastitis event 67 days. Only Holstein cows were
considered in this study. Finally, 275 mastitis events had an
associated SCS and MIR spectral records. Therefore, the final
dataset contained 13 507 MIR records with 275 mastitis events
from 1564 Holstein cows.

Logistic regression (PROC LOGISTIC in SAS; SAS Institute,
1999) was used to develop an equation to detect the pre-
sence of mastitis (1 5 mastitis; 0 5 no mastitis). Indepen-
dent variables included in the model were SCS, predicted
MIR LTF and their interaction. To avoid bias from correlated
records among cows, the generalized estimating equations
(PROC GENMOD in SAS; SAS Institute, 1999) were tested but
the results were similar and sometimes worse that those
observed for PROC LOGISTIC. This could be explained by the
large number of cows used in this study. Therefore, only the
PROC LOGISTIC results will be presented in this study.

There were a small number of mastitis cases relative to
non-mastitis samples; thus, a second, more ‘balanced’
dataset was created: only test-day MIR records from all cows
within 660 days of the 275 mastitis cases were kept. This
dataset contained 677 records.

Logistic regression models were built from this dataset.
Comparisons were made based on different statistical
parameters such as the deviance and Pearson’s Goodness-
of-Fit, the percent of concordant, discordant and tied
samples, and the receiver operator curve (ROC) area. The
significance of the different effects included in the model
was assessed using the Wald test.

Internal validation. The internal validation of the equations
(i.e. nearly all samples used for the validation were used for the
calibration) was based on the P of the Hosmer and Lemeshow
Goodness-of-Fit test executed by using PROC LOGISTIC in SAS
with the LACKFIT option (SAS Institute, 1999). On the other
hand, the coefficients of the logistic equation developed pre-
viously were applied to the entire available Walloon dataset (i.e.
13 507 MIR records related to 275 mastitis events) in order to
predict the logit value, which is an estimation of the P of the
presence of mastitis. The thresholds used were the following:

Predicted logit value 5 0, then predicted mastitis event
was coded as 0.
Predicted logit value .0, then predicted mastitis event
was coded as 1.
Predicted logit value ,0, then predicted mastitis event
was coded as 0.
Then, the specificity (i.e. the ability of the model to predict

the absence of mastitis) and the sensitivity (i.e. the ability of
the model to predict the presence of mastitis) were calculated
by the following formulas:

Sensitivity¼
P

Samples correctly classified as provided by cows with mastitis
P

Samples provided by cows with mastitis

Sensibility ¼
P

Samples correctly classified as provided by healthy cows
P

Samples provided by healthy cows

External validation. A total of 5886 milk samples from 800
Holstein cows were collected in the research farm of the
University of Wisconsin – Madison. All samples were ana-
lyzed by MIR spectrometry by the milk lab ‘AgSource Coop-
erative Service’ (Menomonie, WI, USA) using a MilkoScan
FT6000 (Foss) between January 2009 and February 2011.
The spectral data and SCC were recorded. SCS was calcu-
lated by using the formula shown previously. LTF content
was estimated using the developed MIR calibration equa-
tion. Moreover, 540 mastitis events were recorded between
January 2009 and December 2010. The mastitis incidence
was 25.39% for 2009 and 32.32% for 2010. By using the
same approach of data edits used in the Walloon dataset (i.e.
date of mastitis event 67 days), only 93 events had an asso-
ciated MIR spectral record. The same methodology as the one
explained for the internal validation using all Walloon dataset
was used in order to calculate the P for the presence of mastitis
in the external validation dataset and therefore, to evaluate the
specificity and the sensitivity of the model.

Results and discussion

LTF calibration equations
The calibration dataset used contained 2499 samples and
had a mean and s.d. for the LTF content of 163.29 6 103.40 mg/
l of milk. The robustness of the six approaches to derive the
equations is shown in Table 1. Because of the use of the T-outlier
test, the number of samples actually used to develop the dif-
ferent equations differed. However, the maximum number of
samples discarded by this test was 61 (i.e. 249922438 5 61),
which represents ,2.50% of the total amount of samples.
Across the six different statistical approaches evaluated, the R2

CV

ranged from 0.69 to 0.73. Clearly, the equation combining a first
derivative pre-treatment and the use of the repeatability file
gave the most accurate results (i.e. high R2

CV (0.72) and RPD
(1.86); highest R2

v (0.60)). The SECV was 50.55 mg/l of milk.
Soyeurt et al. (2011) also concluded that the use of the first-
derivative and the repeatability files resulted in the most accu-
rate prediction of milk fatty acids.

The increase in R2
CV and RPD in the method including both

the first derivative and the repeatability file compared with the
method including only a first derivative can be explained by the

Table 1 Statistical parameters for the six methods used to develop the
lactoferrin equation

n R2
c R2

CV RPD R2
v

No pre-treatment 2445 0.71 0.70 1.83 0.29
First derivative 2463 0.74 0.73 1.91 0.43
First derivative 1 repeatability file 2442 0.72 0.71 1.86 0.60
Second derivative 2459 0.73 0.72 1.90 0.53
Second derivative 1 repeatability file 2438 0.70 0.69 1.81 0.51
Repeatability file 2445 0.69 0.69 1.79 0.27

R2
c 5 calibration coefficient of determination; R2

cv 5 cross-validation coefficient of
determination; RPD 5 ratio of s.d. of the reference enzyme-linked immunosorbent
assay values to the standard error of cross-validation; R2

v 5 validation coefficient
of determination estimated from 274 Walloon samples.
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difference in the number of samples originating from Ireland
and Scotland and those originating from Belgium. On one hand,
the validation dataset contained only Walloon milk samples.
In contrast, the calibration dataset contained a very low number
of Walloon samples relative to Scottish and Irish samples.
Therefore, because of the large number of Walloon samples in
the repeatability file, the use of this file during the calibration
process allowed us to better consider the spectral variability
present in the Walloon region of Belgium (more details on the
repeatability file in Soyeurt et al., 2011). In other words, the
spectral variability of Walloon samples was not just based on
110 samples included in the calibration set but also from
samples included in the repeatability file. In conclusion, the
equation, which used the repeatability file, was more adapted
for Walloon data as depicted by the validation results.

RPD for the prediction equation including both the first
derivative and repeatability file was close to 2. If the RPD ratio
is larger than 2, the calibration equation is considered good and
can be used for practical purposes (Sinnaeve et al., 1994).

Without using any pre-treatment, the R2
CV was equal to

0.70 (Table 1). Soyeurt et al. (2007) observed a R2
CV of LTF of

0.75 using 69 milk samples. The slight difference compared
with the present study can be explained by the difference in
the number of samples included in the calibration set (2499
v. 69 samples) and the average content of LTF and the s.d.
(163.29 6 103.40 v. 253.72 6 206.37 mg/l of milk). This
variability of LTF can be explained by the introduction of
samples originating from different countries. This means that
the current calibration set has a larger proportion of samples
with a low content of LTF, which have a different spectral pat-
tern (Figure 1). Soyeurt et al. (2006) and Rutten et al. (2009)
showed both that R2

c and R2
CV are influenced by the content of

the studied traits in milk. Therefore, the larger amount of milk
samples with low LTF content in this study could negatively
influence the obtained R2

CV. However, the SECV obtained in this
study was lower than the SECV reported by Soyeurt et al. (2007;

50.55 v. 103.93 mg/l of milk), suggesting a better accuracy of
the LTF MIR prediction in this study.

Even if the R2
CV and R2

v values were different (Table 1),
SECV and standard error of prediction (SEP) obtained from
the method including both first-derivative and repeatability
files were relatively similar (50.55 and 58.98 mg/l of milk),
suggesting the development of a robust equation. In the same
way, SEC and SECV were also similar. SEC was 49.90 mg/l of
milk showing also the robustness of the developed equation.

The calibration dataset contained samples from three
different countries. Irish and Scottish samples were analyzed
by the same spectrometer located at Teagasc Moorepark
(Fermoy, Co. Cork, Ireland) and the same laboratory for LTF.
Belgian samples were analyzed by the milk lab ‘Comité du
Lait’ for MIR spectrometry and by Gembloux Agro-Bio Tech
for the ELISA analysis. This potential source of variation for
the spectral and reference ELISA data generates an interest
to combine all of the available samples into one calibration
dataset for testing. When the calibration dataset contained
only the Walloon samples (i.e. 110 samples), the R2

CV was
0.62 with a SECV of 52.34 mg/l of milk. In the same way with
the Irish and Scottish samples (i.e. 2389 samples; these
samples were combined because they came from the same
spectrometer and analyzed by ELISA in the same lab), the
equation showed a R2

CV of 0.70 with SECV of 50.93 mg/l of
milk. For these equations when the first derivative was
analyzed and the repeatability file included, the R2

CV was
lower and the SECV was greater. Therefore, the inclusion of
samples coming from different country/region in one cali-
bration dataset as undertaken in this study improved the
robustness of the developed LTF calibration equation. This
conclusion was substantiated by the results from the exter-
nal validation. Indeed, when the Walloon validation samples
were predicted using the equation developed from only
Walloon samples (i.e 110 samples), the R2

v was 0.40 with a
SEP of 77.26 mg/l of milk. When the LTF prediction of these

Figure 1 Distribution of lactoferrin enzyme-linked immunosorbent assay (ELISA) values (mg/l of milk).
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same validation samples was computed using the equation
including Irish and Scottish samples, the R2

v was 0.57 with a
SEP of 59.15 mg/l of milk. The R2

v obtained from the equation
combining all available samples with a repeatability of ELISA
values <5% was 0.60 (Table 1). Therefore, considering all
data in the same calibration set improved the robustness of
the LTF calibration equation.

Figure 2 shows the coefficients of the LTF equation
including the repeatability file and the first derivative pre-
treatment. In order to compare the coefficients between
them, each coefficient was multiplied by the mean value of
the corresponding spectral data. This permits accounting for
the differences in the absorption of IR rays between spectral
data. The three MIR regions considered were relevant. The
region surrounding 1200/cm was associated with LTF and
this region is known to be related to C–O bonds (Sivakesava
and Irudayaraj, 2002). The region located around 1300/cm
and related to COOH was also useful in the prediction of LTF.
A large negative peak was observed around 1450/cm and
another interesting region was located between 1700/cm
and 1800/cm. Sivakesava and Irudayaraj (2002) mentioned

that the region located between 1700 and 1500/cm is related
to protein bands. The range 1450 to 1200 is assumed to denote
carboxylic groups of protein. Finally, the MIR data between
2500/cm and 2800/cm were also associated with LTF and this
region is known to be related to lipids because it is the region
for the ester linkage and C–H stretch group (Sivakesava and
Irudayaraj, 2002).

Mastitis indicator
Descriptive statistics for the Walloon and Wisconsin data
used to study the relationship between mastitis and pre-
dicted LTF are described in Table 2. On the basis of the
skewness and kurtosis values, SCS as well as the predicted
LTF approached a normal distribution. The correlation
between these traits was 0.54 from the Wisconsin (i.e. 5886
MIR samples) and Walloon (i.e. 13 507 MIR records) data. As
SCS is influenced by the presence of mastitis (Emanuelson
et al., 1988; Harmon, 1994; Pösö and Mäntysaari, 1996;
Hagiwara et al., 2003), we can hypothesize that predicted
LTF may also be related to the presence of mastitis. The
relationship between clinical or subclinical mastitis and the

Figure 2 Coefficients of the lactoferrin mid-infrared equation multiplied by the mean of the corresponding spectral data.

Table 2 Descriptive statistics of the dataset used to develop and validate the logistic regressions

Mean s.d. Skewness Kurtosis

Wisconsin data (n 5 5886)
SCC (31000) 211.71 560.30 7.63 77.37
SCS 2.59 1.84 0.67 0.33
Predicted lactoferrin (mg/l of milk) 185.07 105.04 1.31 4.39

Walloon data (n 5 13 507)
SCC (31000) 339.46 895.13 8.08 94.54
SCS 3.17 1.95 0.57 0.10
Predicted lactoferrin (mg/l of milk) 207.57 122.81 1.44 5.45

SCC 5 somatic cell count; SCS 5 somatic cell score.
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milk LTF content was mentioned previously by Gaunt et al.
(1980), Hagiwara et al. (2003) and Kutila et al. (2004).

The logistic regression including only MIR predicted LTF
did not reveal the presence of mastitis (the P-value of the
Wald test was of 0.17).

Table 3 presents the statistical parameters of the logistic
regression models including either SCS alone; both SCS and
MIR predicted LTF; or SCS, LTF and their interaction (SCS 3

LTF). The P-values for the deviance Goodness-of-Fit test were
similar between the three studied regressions. However, the
P-value for the Pearson Goodness-of-Fit was lower for the
logistic regression including both SCS and LTF. Akaike’s
information criterion was also lower for the regression
including SCS, LTF and their interaction. The inclusion of LTF
with the interaction SCS 3 LTF in combination with SCS
seemed to improve slightly the explanation of the observed
variability for the mastitis information because the R2 was
higher for this regression (0.19). The inclusion of LTF and the
interaction SCS 3 LTF in the model seems to be relevant
because all of these fixed effects were significant based on
the Wald test. The ability of the model to predict the pre-
sence of mastitis was better for the model including SCS, LTF
and the interaction SCS 3 LTF. The ROC area and the percent
of concordant samples were slightly higher for this third
regression. In the same way, the percent of disconcordant
samples was slightly lower.

The P-value for the Hosmer and Lemeshow Goodness-of-
Fit were higher for the model including SCS, LTF and their
interaction, suggesting a better ability of this model to pre-
dict the presence of mastitis. This observation can be
explained partly by a relationship between the LTF content
and SCC and their different reactions to the pathogens
affecting the udder. Lindmark-Mansson et al. (2006) showed
the link existing between LTF and SCC but also mentioned
that the LTF content in milk begins to increase when the

SCC is .5000 cells/ml. Hagiwara et al. (2003) demonstrated
that the changes in the LTF content in milk are different
following the pathogens involving the mastitis in the udder.

Table 4 shows the percentage of samples correctly and
incorrectly classified as well as the specificity and the sen-
sitivity of the developed logistic regressions based on the
entire Walloon dataset (i.e. 13 507 records – internal vali-
dation because some samples were used to create the
regressions) and the Wisconsin dataset (i.e. 13 507 records –
external validation because samples were not used to build
the logistic regressions). The validation results gave different
conclusions compared with the results obtained from the
calibration process (Table 3). No large differences appeared
between regressions. However, a slightly better sensitivity
was obtained for the equation including only SCS from
the Walloon data, and the one including SCS and LTF from
the Wisconsin data. However, from the Walloon dataset, the
difference of the sensitivity value between the equation
including only SCS and the one containing SCS and LTF was
slight (49.45 v. 49.09). A better specificity was observed for
the model including LTF, SCS and the interaction SCS 3 LTF. The
difference between the calibration and the validation processes
can be explained mainly by: (1) the difference in the proportion
of mastitis and no-mastitis events in the calibration and vali-
dation datasets and (2) the higher uncertainty for the 0 score
(i.e. no-mastitis event) because maybe the model was predict-
ing subclinical mastitis. Therefore, on the basis of the Hosmer
and Lemeshow test, the existing interaction between LTF and
SCC mentioned in the literature, and the specificity results, the
best models in this study should be the one including SCS, LTF
and their interaction.

Even though a positive correlation was observed between
SCS and LTF, predicted LTF alone was not associated with the
presence of mastitis. However, the knowledge of both SCS
and LTF seems to slightly improve the mastitis prediction.

Table 3 Statistical parameters of the developed logistic regressions including SCS or SCS and lactoferrin

Dataset (269/408)

SCS SCS 1 lactof. SCS 1 lactof. 1 SCS 3 lactof.

Deviance P , 0.01 P , 0.01 P , 0.01
Pearson P 5 0.60 P 5 0.41 P 5 0.48
AIC 817.62 818.27 813.47
R2 0.18 0.18 0.19
Wald P , 0.0001 P , 0.0001 P , 0.0001

Intercept P , 0.0001 P , 0.0001 P 5 0.0008
SCS P , 0.0001 P , 0.0001 P 5 0.0011
Predicted lactoferrin P 5 0.2425 P 5 0.0060
SCS 3 predicted lactoferrin P 5 0.0175

ROC area (%) 71.2 71.4 71.5
% concordant 71.0 71.3 71.4
% disconcordant 28.7 28.4 28.3
% tied 0.30 0.30 0.30
Hosmer and Lemeshow* P 5 0.38 P 5 0.17 P 5 0.58

SCS 5 somatic cells score; lactof. 5 prediction lactoferrin content using the developed MIR equation; SCS 3 lactof. 5 interaction between
SCS and lactof.; AIC 5 Akaike’s information criterion; R2 5 coefficient of determination; ROC 5 receiver operator curve.
*P-value close to 1 is expected.
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Moreover, the knowledge of LTF content in milk is also
important to characterize the nutritional quality of milk
(Tsuda et al., 2000). As many milk recording organizations
begin to think about the possibility of retaining the spectral
information, the prediction of LTF will be as easily available
as the SCS data and could improve the detection of mastitis
or the efficacy of breeding programs that aim to improve the
mastitis resistance of dairy cows. On the basis of Hagiwara
et al. (2003), a cow producing milk with ,200 mg/l of LTF in
milk could not inhibit the growth of Escherichia coli. A total
of 52% of the cows studied by these authors produced milk
with LTF content ,200 mg/l. Therefore, the aim of a poten-
tial breeding program to improve mastitis resistance could
ensure this limit of 200 mg of LTF/ml of milk. This would also
be beneficial for human health and is possible because MIR
LTF trait is heritable (Soyeurt et al., 2007). However, before
discussing the breeding objective, a lot of work is needed
notably to study the relationship between MIR LTF and other
common milk production traits (i.e. milk yield, fat, protein,
etc.) and economic traits (i.e. fertility, longevity, etc.).

Conclusions

This study confirms the possible computation of an indicator
of LTF content in milk by MIR spectrometry. On the basis of
R2

CV, RPD and R2
v, the calibration equation combining a first

derivative pre-treatment as well as the use of a repeatability
file is the best option to measure the LTF content in bovine
milk. The slight difference between SECV and SEP suggests
that the developed LTF equation is robust. Even if this prediction
used alone does not improve the detection of mastitis, its
combination with SCS is promising. A larger external validation
exercise based on a dataset containing new mastitis informa-
tion is required to confirm the specificity and sensitivity of the
developed model. In conclusion, based on the validation results,

if a large additional cost for the measurement of LTF by MIR is
imposed on the customers, the improvement of mastitis
detection by adding LTF information may not be justified.
However, as many milk recording organizations begin to retain
the spectral information, the LTF prediction will be easily
obtained at low cost, and therefore the combination of SCS and
LTF to improve the detection of mastitis or the mastitis resis-
tance by specific breeding programs will be interesting. The
introduction of LTF in a breeding program could also facilitate
the improvement in the nutritional quality of milk.
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