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Regression is probably the most widely studied and applied 
statistical analysis method in the chemometric literature. The 
aim is to develop models which can be used to predict prop-
erties of interest based on measurements of the chemical 
system, such as spectroscopic data. Multivariate calibration 
techniques such as multiple linear regression (MLR), principal 
component regression (PCR) and partial least squares 

regression (PLS)1 can then be used to compute a mathe-
matical model. It correlates the multivariate measurement 
(spectrum) to the concentration of the analyte of interest and 
such a model can be used to predict the concentrations of new 
samples.

When the number of measured predictor variables is large 
and it is not known beforehand which specific predictors are 
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Variable selection provides useful information about the most important predictors in the dataset, information which is not always 
available at the beginning of an analysis. Two recent variable selection methods, backward variable selection for partial least squares 
(BVSPLS) and powered partial least squares (PPLS), were compared against each other and against forward stepwise selection (FSS) 
and full spectrum partial least squares (PLS) in terms of their ability to produce accurate prediction models in NIR spectroscopy data. 
All four regression methods were studied using three different NIR datasets. PPLS and BVSPLS gave good prediction results in all three 
datasets, even with a very limited number of calibration samples available (<40). All methods gave similar prediction results when the 
number of calibration samples was higher (>150). PPLS gave the best predictive performance of all methods and also gave the selections 
of variables that were most easily assigned to specific chemical bonds. Hence, the PPLS models were more easily interpretable than the 
other models. This study quantifies differences between the two recent variable selection methods as well as the differences between 
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most influential on the responses, selection of variables could 
be feasible. Variable selection tries to identify a sub-set of 
variables that still possess sufficient features to build a robust 
regression model. Moreover, due to a number of practical and 
statistical reasons (for example, to avoid collinearity, improve 
predictive ability and improve interpretability), a large set of 
variables should be reduced to a smaller, more manageable 
set. The main goal of any variable selection technique is to 
obtain a small sub-set of variables that gives a model with the 
prediction and generalisation abilities better than, or at least 
equivalent to, a model based on the original set of variables. 
Variable selection in regression is a difficult part of model 
building because the number of sub-sets to be considered 
grows exponentially with the number of candidate variables. 
The advantages of variable selection are the exclusion of irrel-
evant and redundant variables leading to better signal-to-
noise ratio, better data visualisation and model interpret-
ability, reduction of measurement requirements as well as 
increased prediction accuracy and precision. Subsequently, 
these properties could induce the development of cheaper 
instruments, cheaper analysis as well as faster prediction 
models. Moreover, an increase in the model robustness can be 
achieved by the application of a variable selection technique. 
One possible drawback of variable selection is that certain 
outlier detection methods may be more difficult to under-
take. Numerous methods have been developed for variable 
selection such as varieties of sub-set selection methods,2,3 
stepwise regression, jack-knife or bootstrapping algorithms,4–7 
evolutionary algorithms,8 genetic algorithms9–12 and thresh-
olding algorithms.13 Recently, a backward variable selection 
method for PLS regression (BVSPLS) has been proposed.14 
Another relatively recent method is the powered partial least 
squares,15 which is a generalisation of the traditional non-
linear iterative partial least squares (NIPALS) algorithm. PPLS 
can also be used for variable selection purposes. The develop-
ment of new variable selection methods is constantly evolving 
and the need for comparative studies is raised. There are 
several studies aimed at comparing various methods,16 but 
due to the ongoing development of new methods, comparative 
studies will always be needed.

The objective of this paper is to compare BVSPLS and PPLS 
and with some widely used methods. The most established, 
simplest and most pragmatic method for variable selection is 
forward stepwise selection of variables (FSS). There are several 
examples in the literature where varieties of FSS have been 

used as a reference method.2,16 Moreover, the FSS algorithm 
is implemented in a multitude of data analysis software and 
is, hence, widely used. For this reason, FSS was our choice for 
a reference method for this comparative study. Moreover, the 
traditional PLS solution, without any variable selection, should 
also be included as a reference method in order to address the 
question whether variable selection itself has a positive effect 
for the predictive ability of the models. Assuming that predic-
tion error is the main concern, why would analysts bother with 
variable selection in the first place? This question was our 
main rationale for comparing models against full spectrum 
PLS. In order to validate the feasibility of the methods, we 
chose to compute prediction models based on small data-
sets. Decreasing the number of calibration samples while 
still retaining good model performance can potentially reduce 
reference sampling costs.

Materials and methods
Datasets, pre-processing and sample 
selection
Three large datasets used in Fernández Pierna et al.14 were 
also used in this study: fat/feed (Feed), fibre/maize (Maize I) and 
protein/maize (Maize II). All datasets had a spectral range from 
100 nm to 2498 nm, with every second wavelength removed, 
thus containing 700 variables each. See Table 1 and Fernández 
Pierna et al.14 for more details. There were some duplicate 
samples in the datasets and, in order to achieve a proper 
validation, duplicate response variable values and their corre-
sponding spectra were removed from the datasets. Hence, 
the number of samples in each dataset (N) was reduced to 
2721 for fat/feed, 2488 for Maize I and 1349 for Maize II. All 
datasets were pre-processed with the standard normal variate 
(SNV17) procedure. Splitting of the data into calibration and 
validation sets was done with the DUPLEX algorithm.18 This 
algorithm splits a dataset (i.e. the spectra) into two parts by 
means of a Euclidean distance measure. The algorithm goal is 
to create two datasets with homogeneous statistical proper-
ties for calibration and validation purposes. A sub-set of 200 
samples from each dataset were selected with DUPLEX and 
reserved for calibration purposes. The remaining samples 
were allocated as the validation set. Since we chose to work 
with smaller calibration sets, the 200 selected samples were 
further decimated to 20 samples in 19 steps with the DUPLEX 

Product Constituent Rangea  
[w/w–%]

STDa 

[w/w–%]
No. of validation 

samples
SREF

b 

Feed Fat 0.660–33.9 5.07 2521 0.20
Maize I Fiber 24.3–67.3 6.82 2288 0.60
Maize II Protein 4.02–13.7 1.60 1149 0.20

aStandard deviation for calibration and validation set together 
bStandard error of reference method

Table 1. Overview of the datasets (calibration and validation set together).
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algorithm. The first step selected 190 samples out of the orig-
inal 200 samples and the second step selected 180 samples. 
For each successive step, the number of selected samples 
was decreased by 10.  Thus, 19 calibration sets (200,190,…,20 
samples) and one validation set (all samples except the 200 
calibration samples) were calculated from each main dataset.

Software
All analyses were performed using MATLAB (version R2007b, 
MathWorks Inc., USA, www.mathworks.com) with PLS Toolbox 
(version 4.2, Eigenvector Research Inc., USA, www.eigenvector.
com). The BVSPLS and DUPLEX algorithms were implemented 
in MATLAB code by the authors. The PPLS algorithm was 
implemented in MATLAB by the authors based on the original 
code written by Ulf Indahl.15

Variable selection methods
Forward stepwise selection (FSS)
The FSS algorithm is a simple and widely used procedure 
for variable selection. Three different basic varieties of step-
wise regression are commonly used: forward selection, back-
ward elimination and stepwise method. Forward selection 
sequentially introduces new predictors into the model one 
at a time while the backward loop eliminates predictors one 
at a time from the current variable set. The stepwise method 
is a hybrid between forward selection and backward elimina-
tion. It starts as forward selection, but for each selection step 
it runs an elimination step to compute the need for deleting 
predictors. The algorithm uses a Fisher F-statistic in order 
to decide when variables should be removed or included. To 
construct the final prediction model, we used a PLS algo-
rithm on the retained variables. We chose to set the inclusion 
and removal values so that the FSS algorithm selected 40–80 
variables. The p-values for inclusion and removal were both 
set to 0.11 in order to let the FSS select approximately 40–80 
variables in the used datasets. Selecting that many variables 
will almost certainly introduce some multicollinearity between 
the variables, but the PLS algorithm will handle this more 
robustly than, for instance, the least squares method in the 
MLR algorithm.

Backwards variable selection for PLS (BVSPLS)
The BVSPLS is a recently proposed method and is a back-
ward elimination method. Unlike the other algorithms in 
this study, the BVSPLS needs three datasets. In addition to 
the usual calibration and validation set, a dedicated dataset 
(the stop-set) for decision on which variables to retain is 
needed. The first algorithm step is to compute a PLS model 
based on the full calibration dataset with all variables 
included. Consequently, one variable is removed each time 
the algorithm loop executes. For each loop execution, the 
root mean square error of prediction (RMSEP) of the stop-
set, is computed. When all variables have been discarded, a 
plot of the RMSEP from the stop-set against the number of 
variables can be presented. The algorithm then chooses the 
number of variables corresponding to the minimum RMSEP. 

This sub-set of variables is then retained for the final model 
which is a traditional PLS algorithm. For further details, 
see Fernández Pierna et al.14 In order to provide a stop to 
BVSPLS, we chose to let 10% of the calibration samples 
form the stop-set. Hence, for a 100 samples calibration set, 
10 of the samples (selected with DUPLEX) were put in the 
stop-set.

Powered partial lest squares (PPLS)
The PPLS is a generalisation of the traditional NIPALS 
algorithm. Rather than optimising the covariance between 
the predictors and the response, the PPLS splits the covari-
ance expression in the weight vector optimization criterion 
into a variance part and a correlation part. The user can 
then choose the weighting between the variance component 
and correlation component through an additional control 
parameter, gamma (g). The algorithm can be used both 
for modelling and variable selection through the choice of 
g. A g value of 0.5 makes the PPLS solution equivalent to 
the traditional PLS solution, whereas values close to 0 or 
1 makes the algorithm select variables based on predictor 
variance and correlation with the response, respectively. It is 
also possible to let the algorithm optimise the g value within 
a predefined numerical range using an optimisation proce-
dure that maximises the correlation between PPLS scores 
and the response. In this study, we chose to let the PPLS 
work with g values optimised from the interval [0.99,1]. The 
algorithm hence focuses almost exclusively on the variables 
with strong correlation to the response and also possibly 
strong predictive ability. As suggested by Indahl,15 the vari-
ables that had loading weights less than the relative numer-
ical resolution of MATLAB (2.2204x10-17) were discarded. See 
Indahl15 for further details.

Selection of optimal number of PLS/PPLS factors
All methods tested in this study have the feature of latent 
variables. Hence, model complexity has to be selected by 
the user. To make the resulting models more comparable, 
we chose to perform the selection of latent variables just 
once for each combination of method and dataset. For each 
dataset, the model complexity was determined on the basis of 
the complete calibration set of 200 samples and the number 
of factors was held constant throughout the whole range 
of calibration sets. Selection of the number of PLS/PPLS 
components was carried out as a conservative chi-square 
test. The main idea is to consider the minimum mean square 
error of cross-validation (MSECV) as a realisation of the true 
model error variance, s0

2. Using the chi-square power func-
tion, an acceptance region for MSECV can be computed. The 
model with the fewest number of components that also have 
an MSECV inside the acceptance region is then selected 
as the final model. See Indahl15 for further mathematical 
details. However, several numbers of factors for each model 
were computed and compared, but the differences between 
models were only modestly affected by the choice of number 
of factors.

file:///C:/JNIRS%20Papers/JNIRS%2020_3/www.eigenvector.com
file:///C:/JNIRS%20Papers/JNIRS%2020_3/www.eigenvector.com
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Validation procedure
Each of the 19 calibration sets was used to construct a predic-
tion model, which was used to predict the validation set, which 
was the same for all 19 models and for all four regression 
methods. We chose to use a dedicated validation set instead of 
cross-validation for comparison of the predictive ability of each 
model because several studies have pointed out that cross-
validation can lead to severe over-fitting and over-optimistic 
estimation of the models diagnostic measures.2,19,20 The test 
procedure was performed in the following way:

The number of PLS factors was determined by computing 
a model with the full calibration set of 200 samples. The 
same number of factors was used for every variable selection 
method. 

Each variable selection algorithm was executed once on the 
19 smaller calibration sets (200,190,…,20 samples) and predic-
tions for the validation set samples were computed each time. 

Based on these validation set predictions, the coefficients of 
determination (r2) between measured and predicted constitu-
ents for each method were computed and reported.

Steps 2 to 3 were repeated for each main dataset (fat/feed, 
Maize I and Maize II).

Hence, r2 for 20 to 200 calibration samples were obtained in 
a comparable way with 10 samples increments. Paired t-tests 
on the absolute value of the residuals were performed in the 
sense of Cederkvist et al.21 and p-values from these tests are 
indicated in the results section.

Results
Figures 1-3 (upper plots) show the coefficients of determination 
between measured and predicted constituents from the valida-
tion-set predictions as a function of the number of calibration 
samples for the Feed, Maize I and Maize II samples, respectively. 
For all datasets, variable selection gave little or no prediction 
error improvement over the PLS algorithm for calibration sets 
larger than 60 samples (Feed, Figure 1), 120 samples (Maize I, 
Figure 2) and 160 samples (Maize II, Figure 3). For calibration 
datasets smaller than this, all variable selection techniques 
gave better predictive performance compared to full spectrum 
PLS (p<0.05). Especially for low sample numbers, the BVSPLS 
and PPLS gave better performance than both PLS and FSS.

In the Feed dataset (Figure 1), all models were stable at a 
high r2 above 50 samples calibration sets. From 50 to 20 cali-
bration samples, BVSPLS and PLS started to show a decrease 
in performance (p<0.05). The PPLS, in particular, had an 
advantage over the other methods for calibration sets smaller 
than 50 samples (p<0.05).

In the case of Maize I (Figure 2), the situation was similar 
in the sense that all solutions were stable at a relatively high 
level of explained variance for calibration sets larger than 120 
samples. Here, the PPLS gave the best predictions for all data-
sets smaller than 120 samples with the BVSPLS slightly lower 
prediction ability. FSS had performance between PLS and 
PPLS/BVSPLS for calibration sets smaller than 120 samples.
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Figure 1. Upper plot: coefficient of determination (r2) between measured and predicted 
constituents from the validation-set predictions of the Feed dataset as a function of the 
number of calibration samples for the fat content in feed mixture. The regression models 
used was full spectrum Partial Least Squares (PLS), Partial Powered Least Squares (PPLS), 
Forward Stepwise Selection (FSS) and Backwards Variable Selection for PLS (BVSPLS). 
Lower plot: number of selected variables for the three variable selection methods PPLS, 
FSS and BVSPLS. 

Figure 1. Upper plot: coefficient of determination (r2) between measured and predicted constituents from the validation-set predictions 
of the Feed dataset as a function of the number of calibration samples for the fat content in feed mixture. The regression models used 
was full spectrum partial least squares (PLS), partial powered least squares (PPLS), forward stepwise selection (FSS) and backwards 
variable selection for PLS (BVSPLS). Lower plot: number of selected variables for the three variable selection methods PPLS, FSS and 
BVSPLS.
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Figure 2. Upper plot: coefficient of determination (r2) between measured and predicted 
constituents from the validation-set predictions of the Maize I dataset as a function of the 
number of calibration samples for the fat content in feed mixture. The regression models 
used was full spectrum Partial Least Squares (PLS), Partial Powered Least Squares (PPLS), 
Forward Stepwise Selection (FSS) and Backwards Variable Selection for PLS (BVSPLS). 
Lower plot: number of selected variables for the three variable selection methods PPLS, 
FSS and BVSPLS.

Figure 2. Upper plot: coefficient of determination (r2) between measured and predicted constituents from the validation-set predictions 
of the Maize I dataset as a function of the number of calibration samples for the fat content in feed mixture. The regression models 
used was full spectrum partial least squares (PLS), partial powered least squares (PPLS), forward stepwise selection (FSS) and back-
wards variable selection for PLS (BVSPLS). Lower plot: number of selected variables for the three variable selection methods PPLS, 
FSS and BVSPLS. 
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Figure 2. Upper plot: coefficient of determination (r2) between measured and predicted 
constituents from the validation-set predictions of the Maize I dataset as a function of the 
number of calibration samples for the fat content in feed mixture. The regression models 
used was full spectrum Partial Least Squares (PLS), Partial Powered Least Squares (PPLS), 
Forward Stepwise Selection (FSS) and Backwards Variable Selection for PLS (BVSPLS). 
Lower plot: number of selected variables for the three variable selection methods PPLS, 
FSS and BVSPLS.

Figure 3. Upper plot: coefficient of determination (r2) between measured and predicted constituents from the validation-set predictions 
of the Maize II dataset as a function of the number of calibration samples for the fat content in feed mixture. The regression models 
used was full spectrum partial least squares (PLS), partial powered least squares (PPLS), forward stepwise selection (FSS) and back-
wards variable selection for PLS (BVSPLS). Lower plot: number of selected variables for the three variable selection methods PPLS, 
FSS and BVSPLS.
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In the last dataset, the Maize II (Figure 3), all methods 
performed less well than in the first two datasets. Full spec-
trum PLS gave the lowest prediction ability for datasets smaller 
than 170 samples. For datasets larger than 170 samples, 
there were just small differences between the methods. For 
smaller datasets than 170 samples, the PPLS gave slightly 
better performance than FSS and BVSPLS.

In the fat dataset, PPLS models had an almost constant 
RMSEP of 1.8, whereas some of the PLS models had a RMSEP 
as high as 3.2. In the Maize I dataset, the RMSEP were approxi-
mately 2.7 for all methods at 200 samples calibration sets. As 
the calibration set became smaller, RMSEP values increased 
to 3.0 for PPLS and 4.2 for PLS. This behaviour was also 
present in the Maize II dataset. All methods had RMSEP of 0.7 
at 200 calibration samples, but the RMSEP rapidly increased 
as the number of calibration samples decreased. The PPLS 
increased to 1.6 whereas PLS increased to 5.0

For all datasets, the PPLS and BVSPLS selected more 
variables for inclusion in the prediction models than the FSS.
All variable selection methods differed markedly with regard 

to frequency of the selected variables. The PPLS and FSS 
selected some variables in the spectrum more often than 
other variables and especially PPLS gave a quite clear and 
structured image of which variables contribute positively to 
the prediction models. BVSPLS, however, selected variables 
more evenly spread throughout the spectrum (Figures 4–6).

To illustrate the improvement of variables selection (Figure 
7), an example for 60 calibration samples of the Feed dataset is 
illustrated (Figure 1). We chose the PPLS and the PLS models 
for this case and plotted the predicted fat content data against 
the measured fat content from each method. 

Discussion
Two recent methods, BVSPLS and PPLS, were compared against 
each other and against FSS and PLS methods. Several studies 
on variable selection are found in the literature, for example 
References 22–24, but we could not find comparative studies on 
variable selection methods similar to BVSPLS and PPLS.
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Figure 4. Frequencies of the selected variables for Powered Partial Least Square (PPLS), 
Forward Stepwise Selection (FSS) and Backwards Variable Selection for PLS (BVSPLS). 
Histogram of the selected variables in each method (i.e. the number of times each variable 
was selected out of the  total of 19 models) versus the wavelength for fat content in the 
Feed dataset.

Figure 4. Frequencies of the selected variables for powered 
partial least square (PPLS), forward stepwise selection (FSS) 
and backwards variable selection for PLS (BVSPLS). Histogram 
of the selected variables in each method (i.e. the number of 
times each variable was selected out of the total of 19 models) 
vs the wavelength for fat content in the Feed dataset.
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Figure 5. Frequencies of the selected variables for Powered Partial Least Square (PPLS), 
Forward Stepwise Selection (FSS) and Backwards Variable Selection for PLS (BVSPLS). 
Histogram of the selected variables in each method (i.e. the number of times each variable 
was selected out of the  total of 19 models) versus the wavelength for the Maize I dataset.

Figure 5. Frequencies of the selected variables for powered 
partial least square (PPLS), forward stepwise selection (FSS) 
and backwards variable selection for PLS (BVSPLS). Histogram 
of the selected variables in each method (i.e. the number of 
times each variable was selected out of the  total of 19 models) 
versus the wavelength for the Maize I dataset.
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All variable selection techniques showed improvements 
over PLS in some cases and the improvements were more 
pronounced at smaller calibration sets. The numbers of PLS 
factors were determined using the full 200 samples calibra-
tion sets and the numbers of components found were held 
constant for all other calibration sets. The actual numbers of 
components were determined with a conservative chi-square-
test. We tried, however, several other model dimensionalities, 
but the general results and improvements in prediction ability 
were only slightly affected by this.

To explain the differences in predictive ability, we have 
pointed out three reasons. 1. Some predictor variables have 
only remote relevance to the response Variable. 2. The signal-
to-noise ratio (S/N) in some predictor variables may be so low 
that the elimination of those variables improves the model. 3. 
Some predictor variables may have a nonlinear relationship 
to the response. Thus, elimination of these variables may give 
more parsimonious and linear prediction models and, hence, 
improve the prediction abilities. All, or a sub-set of, these 
reasons could explain the prediction error improvements that 

we have presented, but further research is needed to exploit 
the details in the mechanisms behind this phenomena.

FSS, and especially PPLS, selected very interpretable sets 
of variables (Figure 4–6). For the Feed dataset, PPLS and to 
a certain degree FSS, emphasised the C–H stretch bands 
in the 1700 nm range, whereas BVSPLS selected apparently 
random variables (Figure 4). This behaviour was also present 
in the Maize I dataset where the PPLS and FSS selected many 
variables in the O–H stretch band at 1450 nm and the C=O 
stretch band from 2000 nm to 2200 nm (Figure 5). An even 
stronger interpretability was found in the Maize II dataset, 
where the FSS and PPLS focused very strongly on the N–H 
stretch bands in the 1800 nm, 2000 nm and 2400 nm regions 
(Figure 6). For the BVSPLS, the picture was more difficult to 
interpret because the algorithm selected variables almost 
evenly spread out in the measured spectrum (Figures 4–6) but 
still with better prediction results than those obtained with 
PLS and similar to those of PPLS.

Both FSS and BVSPLS are related in the sense of being 
stepwise methods selecting or discarding predictors at certain 
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Figure 6. Frequencies of the selected variables for powered 
partial least square (PPLS), forward stepwise selection (FSS) 
and backwards variable selection for PLS (BVSPLS). Histogram 
of the selected variables in each method (i.e. the number of 
times each variable was selected out of the total of 19 models) 
versus the wavelength for the Maize II dataset.
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Figure 7. Predicted fat content from Partial Least Squares (PLS, upper plot) and Partial 
Least Squares (PPLS, lower plot) in feed mix plotted against the measured fat content. The 
PLS gave a coefficient of determination (r2) between measured and predicted constituent 
of 0.78, whereas the PPLS model gave r2=0.93. Both models were calibrated using a 
calibration set with 60 samples and validated on the full validation set (N=2521, Fig. 1). 

Figure 7. Predicted fat content from partial least squares 
(PLS, upper plot) and partial least squares (PPLS, lower plot) 
in feed mix plotted against the measured fat content. The PLS 
gave a coefficient of determination (r2) between measured 
and predicted constituent of 0.78, whereas the PPLS model 
gave r2 = 0.93. Both models were calibrated using a calibration 
set with 60 samples and validated on the full validation set 
(N = 2521, Figure 1).
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schemes. Their selection patterns are quite similar (Figures 
4–6) and have a more random appearance than variables 
selected by PPLS. PPLS works in a fundamentally different 
way than the other methods because of the specially designed 
optimisation step that heavily weights the predictors with high 
correlation with the response.

Conclusion
In this paper, several validation procedures were conducted on 
the recent variable selection methods BVSPLS and PPLS and 
compare these to FSS and full spectrum PLS. The compari-
sons were carried out on three different NIR spectroscopic 
datasets predicting fat in compound feed (Feed), fibre in 
maize(Maize I) and protein in maize (Maize II). We have drawn 
three conclusions from this study.
1. Variable selection gave a positive effect on the prediction ability 
of small calibration sets. Since calibration samples are often 
costly to collect, this may be an important finding in order to 
make the best regression models out of few calibration samples.
2. The results clearly showed a consistent and well-structured 
selection of variables. FSS and BVSPLS gave less consistent 
variable selections as PPLS.
3. Both PPLS and BVSPLS showed high ability to compute good 
prediction models on small datasets which were better than 
FSS. This shows that variable selection techniques are evolving 
and require continued comparisons with existing algorithms.
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