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Food and feed safety as well as quality control analyses are often carried out using reference methods that
have limitations in terms of adequation for the optimum implementation at the different steps of the food/
feed chain and for the control of the end-products. Recent developments in analytical instrumentation and
data processing methods have led to increased use of spectroscopic techniques, being proposed to establish
alternative methods replacing the reference techniques. In recent years, these improvements have included
the development of NIR hyperspectral imaging methods combined with appropriated chemometric tools. The
research aim of this paper is to show that combining NIR hyperspectral imaging spectroscopic technique with
chemometrics can greatly improve food and feed safety and quality control. For this purpose, two case studies
were conducted using two different NIR hyperspectral imaging systems combined with chemometric tools
and spectral rules applied in a dichotomist way. The first study focused on the detection of impurities in ce-
reals in order to integrate a complete methodology into an automatic cereal selection or production chain.
The second study focused in the contamination of plants by pathogens and showed the potential of this com-
bination for detecting and quantifying cyst nematodes in sugar beet roots.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Food and feed safety as well as quality control analyses are often
carried out using reference methods (wet chemistry) that have limi-
tations in terms of adequation for the optimum implementation at
the different steps of the food/feed chain and for the control of the
end-products. These methods are:

(i) Time-consuming, whereas techniques that can produce an in-
stantaneous answer are needed;

(ii) Expensive, in a context where appropriate safety and quality
control at any crucial link in the food chain require a huge
number of analyses to be performed;

(iii) Performed in the laboratory, although the management control
needs to be at the production level (on-line measurement) or
at the field level (in-field measurement);

(iv) Inflexible and single purpose (one method/one parameter),
whereas rapid methods that allow the simultaneous analyses
of different compounds are needed;

(v) Sampling dependent, whereas the analysis should be represen-
tative of the whole product batch;

(vi) Not always respectful of the environment (toxic reagents), in
the context of an international analytical community that is

looking for ways of minimising the impact of any actions on
the environment or quality of life.

The limitations of the reference methods for food and feed safety
and quality control have prompted research teams from public cen-
tres, universities and private companies to develop new analytical so-
lutions based on spectroscopic technologies, such as fluorescence
spectroscopy, near-infrared spectroscopy (NIR), mid-infrared spec-
troscopy (MID) and Raman spectroscopy [1–10]. The advantages of
spectroscopic techniques are their speed, ease of use, reasonable
start-up cost, non-destructiveness and the possibility of implementa-
tion on-line or directly in the field. Spectroscopic methods enable a
much higher level and frequency of product control, leading to an
improved food safety and quality control system. The development
of robust and flexible spectroscopic instrumentations adapted for
on-line/in-field control of the production chain is well suited for the
continuous monitoring of processes from raw materials to finished
products. Such systems provide real-time analyses with an increased
sample throughput. Other decisive advantages of spectroscopicmethods
are the ability to determine different factors simultaneously, reduced
need to use reagents and reduced sample preparation.

New developments in the spectroscopic area include the develop-
ment of NIR hyperspectral imaging instruments [11,12]. NIR image
analysis is a growing sector in life sciences [13–15]. In agronomy in
particular, the various tools now available that enable objective, re-
peatable, rapid and non-destructive observations to be made are
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easily adapted to the preparation of samples of a very different na-
ture, from the detection of molecular components on a micrometric
scale to geographical studies of a particular territory on a kilometric
scale. Thanks to image analysis, the conformity of products involved
in quality control can be constantly optimised. All these applications
contribute to a more precise knowledge of life science mechanisms.
Of particular interest from a public health perspective are instru-
ments designed for multispectral or NIR hyperspectral imaging anal-
ysis that already play a key role in automatic food and feed inspection
[16–22] and will continue to do so. In recent years, NIR hyperspectral
imaging has demonstrated its suitability for quality and safety control
in the feed sector; it has been used successfully, for example, in the
detection of processed animal proteins in feed [23–26], as well as in
the cereal sector [27–32] where it enables rapid collection of a mul-
titude of spectra of individual kernels or particles, which is of great
interest for laboratories involved in the control of compound feed
or cereals. Several applications of NIR hyperspectral imaging relate
to the detection of pathogens on plants, as insects [33,34] and
fungi [35–40]. Other applications of NIR hyperspectral imaging in-
clude the post-harvest handling of fruit and vegetables [41–44],
the quality control of meat [45–47] and other agricultural domains
[48–50].

Alongside this increased use of spectroscopic techniques, there have
also been significant developments in chemometrics. Chemometrics is
a chemical discipline that usesmathematics and statistics to design or se-
lect optimal experimental procedures, to underline relevant chemical in-
formation by analysing chemical data, and to generate knowledge about
chemical systems [51]. The main developments have been in i) data re-
duction, allowing faster data analysis, ii) the construction and manage-
ment of databanks, iii) the combination of data from different
techniques, iv) the development of algorithms to perform appropriate
data extraction and exploitation, and v) the interpretation and presenta-
tion of the results [52–54]. These improvements have benefited greatly
from the incredible development in computer capabilities. For analysts
and chemometricians, NIR hyperspectral imaging represents something
of a revolution, with hundreds or thousands of spectra (including tens
or hundreds of variables) being collected for each sample, instead of
the unique average spectrum typically collected using classical spectro-
scopic instrumentation [17]. NIR image analysis needs the development
of very specific chemometric strategies and algorithms in order to get the
spatial information from the images and link it to physical or chemical
characteristics. There is a growing need, therefore, to combine NIR
hyperspectral imaging with recent chemometric developments in
order to develop methods for the improvement of the safety and quality
of the food and feed chain.

The research objective of this paper is to show that combining NIR
hyperspectral imaging spectroscopic techniques with chemometrics
can be an elegant solution to set up methods for the improvement
of food and feed safety and quality control. In other words, the aim
is to achieve major improvements in the ability of new spectroscopic
methods to solve food/feed safety and quality analytical challenges in
order to provide higher levels of consumer assurance not previously
possible. The paper presents two case studies related to quality and
safety control in the agricultural sector.

In the first case study, the issue addressed was cereal contamina-
tion. Cereals are one of the most important sources of raw material
for food and feed in the world. Cereal producers seldom have ade-
quate means to separate cereal grains from various contaminants
(harmful or not) that could be accidentally or voluntary included.
For instance, in wheat grain one can find such substances as straw,
damaged or spoiled grains, grains from other cereals (called also bo-
tanical impurities), insects or plastic. Although these impurities are
usually less problematic than harmful contaminants, from an eco-
nomic and technological perspective they can be a great damage
problem for cereal producers and transformers. Cereal producers are
paid according to the quality of their harvest and will be finally

penalised by poor quality batch. Cereal transformers will have addi-
tional costs due to implementation of cleaning procedures or will
have technological implication of undesirable impurities. For these
reasons, this study was limited to looking at diverse contaminants
(essentially of vegetable origin) in cereals. The aim was to show the
advantages of using NIR hyperspectral imaging spectroscopy and che-
mometrics in order to integrate them into automatic cereal control
procedures at the service of the seed, food and feed sectors.

The second case study focused on the infestation of plants by patho-
gens. Plant diseases remain one of the major problems in crop produc-
tion. The easiest andmost economical way of ridding plants of parasites
is to breed varieties that are resistant to them.Many research programs
throughout the world aim at breeding varieties with durable or long-
term resistance. The study described here concerns the infestation of
sugar beet plants by the cyst nematode, Heterodera schachtii, which
causes significant yield reduction. In classical breeding programs, the
assessment of tolerant and susceptible plants to this cyst nematode is
carried out by visually counting the number of cysts in the whole root
area using optical microscopy [55]. The aim of the study was to assess,
using NIR hyperspectral imaging, the susceptibility of sugar beet plants
to nematodes in function of the number of cysts present [56,57].

2. Material and methods

For these studies, two types of instruments were used to obtain
the NIR hyperspectral images. The first one was a pushbroom instru-
ment (also called line-scan instrument) and the second was a
whiskbroom instrument (also called plane scan instrument). Both
instruments can be differentiated on the basis of the orientation of
the scanning dimension relative to the two-dimensional spatial sample
axes.

For the pushbroom system projects a line of light onto a two-
dimensional Focal Plane Array (FPA), and a two-dimensional calibra-
tion model (spatial–spectral) is needed to account for variation in
sample illumination and instrument throughput. This instrumenta-
tion is best suited for remote sensing by aircraft or on-line process
measurement because the Y spatial axis might be arbitrarily long.
The whiskbroom system positions the measurement camera parallel
to the sample surface, obtaining X–Y spatial images with fixed sizes
limited by the dimensions (pixels) of the camera detector. NIR hyper-
spectral images are obtained by modulating the reflected radiation
reaching the camera via the use of band pass or tuneable filters posi-
tioned in front of the camera [22].

The pushbroom system used was the SWIR XEVA CL 2.5 320
TE4 camera fromXENICS using an ImSpector N25E spectrograph that in-
cluded a cooled, temperature-stabilised Mercury–Cadmium–Telluride
(MCT) detector (SPECIM Ltd, Oulu, Finland) combined with a conveyor
belt (Burgermetrics SIA, Riga, Latvia). All the images consisted of lines
of 320 pixels acquired at 209 wavelength channels: 1100–2400 nm,
with a spectral resolution of 6.3 nm and resulting from the averaging
of 32 scans. The system and the data treatment were controlled by
HyperPro and HyperSee softwares, respectively (BurgerMetrics SIA,
Riga, Latvia).

The whiskbroom system used was a MatrixNIR™ Chemical Imaging
instrument (Malvern instruments, Analytical Imaging, Columbia, MD,
USA)). It is equipped with an InGaAs FPA including 240×320 pixels
(76,800 spectra per scan), along with two liquid crystal tuneable filters
(LCTF) for wavelength selection. It collects reflectance images in the
900–1700 nm spectral range, with a resolution of 10 nm. Two configu-
rations can be used, depending on the optic and the illumination device
installed. The image planes are stacked to form a three-sided matrix,
where the first two axes (x and y) define the field of view (FOV),
which covers an area between 5 cm2 and 120 cm2 depending on the
configuration used, and the third axis (z) corresponds to the spectrum
at each pixel location in the FOV [19].
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3. Case studies

3.1. Case study 1

The first case study sought to detect diverse impurities from differ-
ent origins in cereals. The samples analysed came from three types of
cereal cultures of several origins. In total, 112 samples of wheat, spelt
and barley were used in the study. As a first step, for all the samples a
crude separation of the cereal grains from the impurities was done
using a specific machine [58]. The second step involved a visual and
manual separation of the impurities. These contaminants included
straw, broken grains, grains from other crops, weed seeds, insects, plas-
tic, stones, pieces of wood and paintings, as well as animal faeces.

For each pure cereal, pure impurity and mixture of cereals with
several impurities, images were acquired using the whiskbroom
imaging system. A selection of the most representative spectra was
made, for each individual image, by using a Kennard and Stone algo-
rithm [59] after applying a mask to remove the background. In such a
way, a library for each individual class was obtained. Then, a common
spectral database containing 24,000 spectra was constructed and
included spectra of cereals (wheat, spelt, barley and rapeseed), cellulose
waste (wood and straw), animal contaminants (insects) and other con-
taminants (paintings, plastic and stones).

All the spectra were pre-processed using smoothing (window=5),
SNV and first derivative Savitzky–Golay (window=5, polynomial=2).
In order to trace the origin of thematerials, including the cereals and the
impurities, PCAwas applied initially to get some indication of the possi-
ble discriminant equations to construct. PCA was able to distinguish
easily some groups of impurities, such as insects and stones, but for
other groups of impurities it was unable to make a clear distinction be-
tween them.

Based on the information obtained from the PCA, discriminant
models for the different categories of impurities were created. Due
to its powerful discrimination ability compared with other methods,
the Quadratic Support Vector Machines (SVM) with an RBF Gaussian
kernel was used to construct these models [23,60,61]. The choice of
SVM as a classification method was justified by its good performance

in all the studies, due mainly to the uniqueness of SVM in tackling
pattern recognition problems. For this work, five categories of samples
were used to make the discriminant models. The categories were:
animal contaminants (i.e. insects), cereals (including wheat, spelt
and barley), botanical impurities (it means grains from other cereals
like rapeseed), cellulose waste (i.e. wood and straw) and other con-
taminants (i.e. paintings, plastic and stones). Then, in order to trace
the origin of the different materials, a dichotomist classification tree
was built based on the five categories, allowing the discrimination of
each group of impurities because each node of the tree included a
discrimination model constructed using the spectral databank of the
five categories (see Fig. 1). By analysing the results of each discrimi-
nant model, it was possible to determine whether a category of impu-
rities was present or not, and to estimate its percentage in the sample.

In order to apply SVM, for each node of the dichotomist tree, the
spectral dataset was split, after pre-processing, into a calibration set
to build the model, a stop set to optimise the SVM parameters and a
test set to validate the models using the Kennard and Stone method
[59] and their group representativity was demonstrated [63]. Once
the optimal parameters selected, the final models were constructed
by combining the calibration and the stop sets. Table 1 shows the per-
formances of the models applied in the test sets in terms of confusion
matrices, including sensitivity and specificity. Sensitivity is the pro-
portion of spectra detected as positive for one class that actually are
positive, whereas the specificity is the proportion of spectra detected
as negative for one class that actually are negative. For example, the
first equation concerned the discrimination between background
and the rest. When applying the results to the test set, 95.48% of the
background spectra were correctly detected as background and
98.28% of the other samples were correctly detected as being the
rest. In general, correct classification rates higher than 95% were
obtained.

To test if the equations worked correctly and could be applied in
routine analysis, samples were created by mixing different indepen-
dent impurities representing those present in the original dataset,
and then the different equations were applied. Fig. 2 shows the orig-
inal image and the different prediction images after the application of

Fig. 1. A dichotomist classification tree including six equations related to background, animal contaminants (insects), cereals (including wheat, spelt and barley), botanical impurities
(rapeseed), cellulose waste (wood and straw) and other contaminants (paintings, plastic and stones).
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each of the equations of the classification tree nodes. The pixels
detected as cereal are indicated in blue, pixels detected as animal con-
taminant in red, pixels detected as botanical impurities in yellow,
pixels detected as cellulose waste in green and pixels detected as
other contaminant in pink. The same colours have been applied in
Fig. 3, which shows a plot of the mean spectra of the impurities and
cereals.

The first image consisted of grains of wheat, a piece of straw and a
grain of maize. The equations detected both the maize and the wheat
as cereal and the straw as a cellulose residue. The second image con-
sisted of rapeseeds, insects and wheat grains. All the elements were
easily detected by the respective equations. The third image consisted
of one piece of painting, two barley grains surrounded by chaffy basal
bracts and two grains of wheat. All the samples were easily detected
by the respective equations. The barley grains were detected not only
by the cereal equation but also by the last equation corresponding to
the cellulose content. This can be explained by the fact that roughage
(chaff) contains mainly fibre.

The aim of this first case study was to show the great potential of
hyperspectral imaging combined with chemometrics for the detection
of contaminants in cereals. The system used here was a whiskbroom
imaging system, which is not the ideal system to apply in routine anal-
ysis by integration into an automatic cereal control procedure. For this, a
pushbroom systemwould be more appropriate as demonstrated in the
second case study [40].

3.2. Case study 2

The second case study sought to assess the number of cyst nema-
todes on sugar beet plants. For this experiment, 20 sugar beet plants
with two levels of resistance were grown in a soil support spread on
plastic plates and inoculated with juveniles of the Beet Cyst Nematode
(Heterodera schachtii). Four weeks after inoculation and before NIR
hyperspectral imaging, the number of cyst nematodes was visually
counted by optical microscopy using a camera system [55], and this
was used as a reference. All the plants were then analysed using the
pushbroom NIR hyperspectral imaging system at a conveyor belt
speed of 2 mm/s.

For detection and possible quantification, a complete spectral library,
including spectra from the background (including awater feed strip and a
plastic box), soil support, roots and cyst nematodes,was built by selecting
around 500 pixels in each region of interest on the images of 10 plants (5
tolerant and 5 susceptible). In total, more than 2000 spectrawere used to
build the SVM discrimination models. The spectra dataset was prepro-
cessed using smoothing (window=5), SNV and first derivative
Savitzky–Golay (window=5, polynomial=2). As for case study 1, for
each SVMequation, the spectral datasetwas randomly split into a calibra-
tion set to build themodel, a stop set to optimise the SVMparameters and
a test set to validate themodels in a ratio of 60, 25 and 15% respectively. A
simple PCA projection has been performed in order to check the homo-
geneity of the three subsets. Once the optimal parameters selected, the
final models were constructed by combining the calibration and the
stop sets. As in the first case study, a dichotomist classification tree
was built in which each node included either a discrimination model
constructed using the spectral dataset or a spectral rule based on expe-
rience. The equations built were: (1) ‘background vs. soil support+
root+cyst’ aimed at eliminating all the background pixels; (2) ‘soil

Table 1
First case study: Performances of themodels applied to the test sets in terms of sensitivity
and specificity.

Detected as

Background Rest
Background 0.955 0.045
Rest 0.017 0.983

Animal contaminant Rest
Animal contaminants 0.968 0.032
Rest 0.005 0.995

Cereals Rest
Cereals 0.928 0.072
Rest 0.008 0.993

Botanical impurities Rest
Botanical impurities 0.967 0.033
Rest 0.001 0.999

Other contaminants Rest
Other contaminants 0.980 0.021
Rest 0.003 0.997

Cellulose waste Rest
Cellulose waste 0.983 0.017
Rest 0.074 0.926

Fig. 2. Three examples of the application of each of the equations of the classification tree nodes. Each example includes the original image and the prediction images. Pixels are
coloured as follows: detected as cereal are indicated in blue, detected as animal contaminant in red, detected as botanical impurities in yellow, detected as cellulose waste in
green and detected as other contaminant in pink.
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support vs. root+cyst’ aimed at removing all pixels related to the soil
support; and (3) and ‘root vs. cyst’ aimed at detecting the presence of
cysts. Table 2 shows the performance of the models applied to the test
sets. The complete dichotomist classification tree included the following
steps (visually represented in Fig. 4):

(1) Detection of pixels in the image, showing a higher absorbance
around 1690 nm than around 1970 nm, corresponding to the
conveyor belt (indicated in black in the original image in
Fig. 4a and white in Fig. 4b after removing the pixels);

(2) Detection of pixels in the image, detected as soil support, roots or
cysts by the SVMmodel ‘background vs. soil support+root+cyst’
(indicated in grey in Fig. 4c);

(3) Detection of pixels in the image, detected as roots or cysts by
the SVM model ‘soil support vs. root+cyst’ (indicated in grey
in Fig. 4d);

(4) Detection of pixels in the image, detected as cysts by the SVM
model ‘root vs. cyst’ (indicated in grey in Fig. 4e);

(5) Removal of the pixels classified as outliers according to rules
based on the comparison of absorbance at several wavelengths;

the cysts showing a lower absorbance around 1734 nm than
around 1715 and 1765 nm (Fig. 4f);

(6) Application of the Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) method [62] to study the neigh-
bourhood of the pixels detected as cysts in step (5). Using
this technique, pixels within 1 pixel of each other and with a
minimum of two neighbour pixels were placed in a single class
and identified as a cyst (indicated in blue in Fig. 5b). Pixels that
did not meet these conditions were identified as outliers.

Once the models were constructed and validated, the complete
discrimination tree, including the three equations and the spectral
rules, was applied successively to all the pixels in the images of the
20 plants in order to estimate the number of pixels detected as
cysts by surface unit. Fig. 5 shows the results obtained for a suscepti-
ble plant. The images show the cysts coloured in red or blue after de-
tection using optical microscopy (Fig. 5a) or pushbroom imaging
(Fig. 5b), respectively.

Based on the results from the 20 plants, a determination coeffi-
cient of 0.71 was calculated between the number of cysts counted
on the roots using optical microscopy and the number of pixels rec-
ognised as nematode cysts using the NIR hyperspectral imaging
method. However, most of the tolerant plants and some susceptible
plants were underestimated as indicated by the regression parame-
ters (slope of 1.22 and offset of 26.16). It has to be noted that the un-
derestimation of the cysts number is issued from the calculating
process: one cluster is considered as 1 cyst whereas some clusters
identified using the DBSCAN method can contain more than 1 cyst.
However, this does not affect the main issue of this study which is
to assess the susceptibility of sugar beet plants to nematodes in func-
tion of the number of cysts present. An average of 40 and 69 for the
tolerant and susceptible plants, respectively, was counted using clas-
sical microscopy, whereas for the NIR hyperspectral imaging method
these predicted values were 21 and 58 cysts, respectively. Despite the
underestimation by NIR hyperspectral imaging, the obtained correla-
tion could make possible the development of robust and reliable dis-
crimination models between tolerant and susceptible plants.

A similar study was performed with the whiskbroom NIR hyper-
spectral imaging system. A determination coefficient of 0.65 was cal-
culated between the number of cysts counted on the roots using
optical microscopy and the number of pixels recognised as nematode
cysts using the whiskbroom method. The lower correlation obtained
with this instrument was because the whiskbroom NIR hyperspectral
imaging system does not allow a complete image of the sample to be
obtained, as was the case with the NIR pushbroom system, thereby
adding a new source of uncertainty to the measurement. The advan-
tages of the pushbroom system compared with the whiskbroom sys-
tem are that the whole plate can be analysed once, the wavelength
range is larger and the acquisition time is lower.

4. Conclusion

The first case study demonstrated that the use of NIR hyperspectral
imaging combinedwith chemometric tools is potentially interesting for
the simultaneous detection in cereals of a series of contaminants from
different origin. This kind of technology contributes to improving the
quality of products in the food and feed processing industry. In addition,
it represents a huge increase of the speed of measurement and there-
fore a reduction in the costs of analyses. The second study showed the
potential of the NIR hyperspectral imaging for discriminating cysts
from the roots and soil support in sugar beet roots, and for quantifying
the number of cysts. This technique could help plant breeders in asses-
sing germplasm tolerance and susceptibility to pests and diseases and
in quantifying the level of damage or resistance to the pathogens or
insects. Besides the results shown in this work, the methodologies pro-
posed here could also be applied in numerous other domains in the

Table 2
Second case study: Performances of themodels applied to the test sets in termsof sensitivity
and specificity.

Detected as

Background Rest
Background 1 0
Rest 0 1

Soil support Rest
Soil support 1 0
Rest 0.024 0.976

Root Cyst
Root 1 0
Cyst 0.015 0.985

Fig. 3. Mean spectra of several impurities and cereals. Spectra are coloured as follows:
cereal in blue, animal contaminant in red, botanical impurities in yellow, cellulose
waste in green and other contaminant in pink.
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selection of ingredients at the beginning/end of a production chain. NIR
hyperspectral imaging can also be used in large number of researches in
the agricultural sector, as the qualitative and quantitative identification
of animal particles in feed, the detection and quantification of different
contaminants in food/feed, seed control in factories or disease control in
a breeding process among others. These studies need always to be com-
bined with powerful chemometric tools in order to create a complete
procedure allowingdealingwith on-line/off-line prediction in a produc-
tion system for the quality control of agricultural products.
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