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In the last years, the potential of NIRS for quantitative and qualitative analysis of olives fruits and oils has
been investigated. However, limited work has been published about the on-line implementation of NIR
spectroscopy in this sector. NIRS application at factory level (olive mills) is desirable. However, prior
its implementation, many parameters related to the on-line spectrum acquisition, must be studied and
optimised. In this paper, the influence of parameters such as focal distance and integration time has been
studied. On-line spectral measurements were performed on intact olives in the spectral range of 380-

;;et}; vgfgis\:/es 1690 nm using a diode array spectrometer located on the top of a conveyor belt. The statistical criteria
On-line used to evaluate the spectral repeatability for each level of parameters considered were the standard

NIRS deviation (SD) of the log (1/R) values and the root mean square statistics (RMS). Results demonstrated
that for on-line control of olives in movement, spectra acquisition process was more affected by the focal
distance chosen than by the integration time used. A focal distance of 13 mm and an integration time of
5 s have been defined as the optimal operational conditions.

Diode-array technology
Optimisation

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Near infrared (NIR) spectroscopy is widely accepted as a valu-
able tool in olive fruits, pastes and oils analysis. Applications have
been demonstrated for raw material testing as well as for quality
control process (Armenta et al., 2010; Cayuela et al., 2009; Cayuela
and Pérez-Camino, 2010; Gracia and Leén, 2011). This is mainly
due to the advantage of this technique over traditional methods.
NIRS instruments are characterised by their speed, excellent accu-
racy and precision, no sample destruction, minimal or no need of
sample preparation, ability to provide simultaneous information
on several properties and constituents, relatively reduced opera-
tional costs and no use of toxic reagents (Garrido, 2006).

Despite these advantages, the use of this technique for on-line
process monitoring in industrial plants is still limited. This could
mainly be attributed to low scanning speed, high cost and non-por-
tability of some traditional NIRS laboratory instruments (Fernan-
dez-Ahumada et al., 2008). Most of these problems happening in
the past have been minimised and overcome by the development
of new NIR technologies more suitable for on-line analysis. This
is the case of instruments based on diode array (DA) detectors,
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fibre optic probes (Yi-Tao et al., 2010; Turza et al., 2002) and acou-
sto optical tunable filters (AOTFs) technologies (Kestens et al.,
2008).

During the 1990s, several spectrophotometers based on diode
array detectors became commercially available and have been
used for quality control analysis of different foods such as apple
(Alamar et al., 2007), tomato (Flores et al., 2009), milk (Mouazen
et al., 2009), nectarine (Pérez-Marin et al., 2011) and beef (Rosenv-
old et al., 2009; Redbotten et al., 2001). The main advantage of
these instruments is the possibility to acquire the spectral informa-
tion at several wavelengths simultaneously within few millisec-
ond. The high speed of diode array NIRS instruments allow
analysis of a large sample volume in a short time. Furthermore,
these DA spectrometer systems are mechanically robust (no mov-
ing parts included), which permits to realise measurements under
harsh conditions.

Several NIRS applications of DA technology for on movement
analysis of different food and products have been published. One
of the first studies was carried out by Axrup et al. (2000). A diode
array spectrometer (Ocean Optics Europe) was evaluated as a tool
for the on-line determination of several parameters (water content,
extractive content, Klason lignin, etc.) in wood chips and bark.
Spectral data were acquired while the samples were transported
on a conveyor belt moving at 1 ms~'. This study showed that NIR
reflectance measurements allow obtaining valuable information
about the chemical and physical properties of several components
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in motion. Sinnaeve et al. (2004) studied the quality of wheat
(moisture, protein and specific gravity) and forage (dry matter, to-
tal protein, cellulose, neutral and acid detergent fibre, soluble sugar
and organic matter digestibility) using a diode array instrument
(CORONA 45) installed on a harvester machine. The results showed
that the robustness of the calibrations models obtained in this way
should be further improved. More recently, Hahn et al. (2010) as-
sessed the potential of NIRS on a mobile at-line system for the
determination of dry matter, crude protein and starch contain of
wheat, barley and triticale grains. Spectra were collected with
the same instrument used by latter authors over the wavelength
range of 960-1690 nm. Results demonstrated a good determina-
tion of dry matter and protein content. On contrary, no good cali-
brations were developed for starch content.

Despite these studies, the acquisition of spectral data from a
moving sample (for instance, during an on-line process, on a con-
veyor belt or through a pipe), is quite complex (Andersson et al.,
2005). The on-line acquisition of a spectrum from a moving sample
is dependent on many different parameters such as physical nature
of the material (particle size, shape, orientation and density) as
well as the type and the composition of the material (Fernandez-
Ahumada, 2008). Moreover, the packing of the sample, the surface
roughness or the average distance from the sample to the optics
are parameters that significantly influence the quality, repeatabil-
ity and reproducibility of the spectra generated (Berntsson et al.,
2001). In order to obtain robust models for NIRS applications with
an acceptable level of accuracy and precision, it is essential to set
up the optimal operational conditions to assess the adequate on-
line measurement.

The performance of a NIR on-line instrument for the monitoring
of olive quality parameters in the mill industries is desirable. How-
ever, the obtention of spectra of samples in movement is really dif-
ficult. Prior its implementation, the operating procedure should be
studied and optimised in order to obtain reliable spectra.

The operating procedure usually followed to acquire more accu-
rate spectra involves recording a large number of spectra over a
determined time (known as integration time) to procure a unique
average spectrum (Blanco et al., 1990). However, the optimal inte-
gration time value is not always the same for all kinds of samples.
They have to be optimised in each study before starting spectra col-
lection. On the other hand, the focal distance, defined as the distance
between NIR sensor head and the surface of the olive sample, is an-
other important parameter that must be optimised in order to guar-
antee the optimal irradiance into the sample and in order to ensure
the maximum detection of the reflected NIR light by the detectors.

The purpose of the present study is to evaluate the effect of
some parameters such as focal distance and integration time on
the spectral repeatability for the analysis of intact olive fruits on
a conveyor belt.

2. Materials and methods
2.1. Olive samples

Olive varieties ‘Picual’, ‘Hojiblanca’ and ‘Manzanilla’ have
important morphological and physiological differences, in terms
of fruit size and maturity date. For this reason, and in order to pro-
vide a high range of variability, these three olive cultivars were se-
lected for this work (Table 1).

A total of 20 kg of olive fruits from each variety were collected
sequentially in the period October-December 2009 at the olive cul-
ture station IFAPA “Alameda del Obispo” (Cérdoba, Spain). As soon
as the samples were received in the laboratory of the Postharvest
and Food Technology area, olive fruits were stored at 4 °C and
90% of relative humidity until the time of analysis.

Table 1
Characteristics of the three varieties used in this study.
Variety Mean fruit weight Pulp/bone Maturity
(g) relationship index
Picual 3.2 5.6 1-2
Hojiblanca 4.8 79 6-7
Manzanilla 4.6 8.2 3-4

Before spectroscopy analyses were carried out, the olive fruit
samples were stabilised at laboratory temperature (24 °C).

2.2. On-line VISNIR measurements

A single-beam diode array spectrometer, Corona 45 VISNIR (Carl
Zeiss, Jena, Germany) was used to acquire reflectance spectra in the
wavelength range between 380 and 1690 nm. The instrument
interpolates the data to produce one point at every 2 nm, giving
a 656 data point spectrum.

The instrument is equipped with a silicon (Hamamatsu S 3904)
sensor array of 256 diodes active in the range 380-950 nm and an
InGaAs array of 128 diodes active in the range 950-1690 nm. The
light source consisted of a 10 V/20 W halogen lamp illuminating
perpendicularly to the sample surface. Reflected light was col-
lected by 15 sensors equally spaced around the source and ori-
ented at 45° to the sample plane.

The spectrometer was installed on a structure designed specif-
ically to support it and to perform, in this way, on-line measure-
ments on a conveyor belt (Fig. 1). Spectral readings from intact
olives were acquired during the movement of the samples under-
neath the instrument. Absorbance values were recorded as log(1/
R), where R is the reflectance using the CORA software, version
3.2.2 (Carl Zeiss, Inc.). Before NIRS data acquisition were carried
out, spectra of dark and white references were measured using
respectively, a black standard with spacer and a white ceramic
reflectance standard.

2.3. Experimental parameters

The effects of integration time and focal distance parameters on
on-line spectra acquisition were studied. At the same time, the cul-
tivar’s influence on spectral response was evaluated.

The different values studied of focal distance were 13, 15, 20
and 25 mm and of integration time were 0.1, 0.5, 1, 2 and 5s.
Due to the different sample sizes analysed, the focal distance has
to be adjusted for each variety of olive studied, by the vertical
movement of the support structure, in order to maintain always

Fig. 1. Scheme showing on-line analysis developed on the conveyor belt and the
localisation of the NIRS sensor used. (A) CORONA 45 VISNIR, (B) computer and (C)
edge lipping planer.
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the same distance between the NIR sensor head and the surface of
the sample, independently on the size of the sample analysed.

Distances lower than 13 mm were not studied because they put
olives in direct contact with lens, leaving stains and greasy resi-
dues on the sensor head. Parameters, such sample layer thickness
and conveyor belt speed were also taken into account. A screed
guide was fixed on the conveyor belt at a suitable height to obtain
a constant bilayer of olives, ensuring an adequate coverage in order
to avoid collect spectra from belt surface. The conveyor belt speed
was fixed to 0.1 m/s.

In this study, 60 on-line NIR responses were obtained as a result
of the combination of the 3 different cultivars, the 4 focal distances
and the 5 different integration times.

Each NIR response was the average of 40 spectra acquired dur-
ing the movement of the olives on the conveyor belt. The time
interval measurement was established in 100 ms. Therefore, for
each of the three olive varieties, a total of 200 spectra were col-
lected for each focal distance and 160 spectra were collected for
each integration time.

2.4. Spectral data processing and statistical analysis

Initial data handling and treatment were performed using Win-
ISI 1II v.1.50 (Infrasoft International, Port Matilda, PA, USA) and
Matlab v.7.0. (The Mathworks, Inc., Natick, MA, USA) softwares.

The statistical criteria used to evaluate the spectral repeatability
for NIR response were the standard deviation (SD) and the root
mean square statistic (RMS). RMS calculates the similarities in
absorbance values between the different spectra from the same re-
sponse (Gaitan-Jurado et al., 2008). As already mentioned, in the
present study, 40 spectra per response were obtained.

This statistic is defined as the square root of the mean squared
value of the difference between log(1/R) value of a specific spec-
trum and log(1/R) value of the mean spectrum of various spectra
from a same sample (in this study, response) for the whole range
of wavelength values. RMS value of each spectrum of the 40 spec-
tra from a same sample was calculated according to the following
formula (1):

Sra (Y — Vi)

RMSj = .

(1)
of which Yj is the log(1/R) value for spectrum j at wavelength i(4;),
Y; is the log(1/R) value for the mean spectrum at wavelength i (%)
and n is the number of datapoints (656 in our case).

Finally, the 40 RMS values from each NIR response were aver-
aged in order to obtain a unique RMS Mean value per response.
Consequently, a total of 60 RMS Mean values were obtained.

After obtaining the average values of RMS a Multifactorial ANO-
VA (analysis of variance) procedure was designed in order to build
a statistical model that describe the impact of cultivar type, inte-
gration time and focal distance parameters (defined as categorical
factors Xj) in the RMS Mean values (dependent variable Y). After
ANOVA, comparisons among individual means were made by Fish-
er’s least significant difference (LSD) and finally, interaction effects
between pairs of factors over RMS Mean values were studied.

ANOVA and LSD analysis were performed using Statgraphics
Centurion XVI software v.16.1.15 (StatPoint Technologies, Warren-
ton-Virginia, USA).

3. Results and discussion

The effect of the focal distance and the integration time on the
acquired spectra was studied. All olive spectra (from the three vari-
eties) acquired with the same focal distance (as mentioned above,
600 spectra) and with the same integration time (480 spectra)

were averaged in order to obtain a mean spectrum. In this way, 4
mean spectra were obtained for the study of focal distance and 5
mean spectra for the study of integration time.

A visual comparison of the different mean spectra obtained in
the studies of focal distance and integration time was realised. In
both cases, the spectral variations were also examined by the sta-
tistical standard deviation (SD).

Fig. 2 illustrates the average spectral curves obtained in the
study of the focal distance parameter, as well as, the mean and
SD spectra. Mean and SD spectra are obtained on the basis of 4
mean spectra.

The analysis of the visible region, between 380 and 580 nm,
shows that high SD values were observed due to noise affecting
this region (Malley et al., 2007; Kemps et al., 2010). Spectra show
a particular profile in the range located in the transition area from
the visible to near infrared zone (approximately between 950 and
990 nm). In fact, this is due to the change from silicon (380-
950 nm) sensor array to the InGaAs array (950-1690 nm) detector.

As can be observed on Fig. 2, the mean spectrum of the higher
distance (25 mm) is located on the top of the graph, while the spec-
trum of the lower distance (13 mm) is located on the bottom. A
shift in absorbance values can be observed in spectra acquired with
different focal distances, possibly due to the difference in the
amount of light reflected from the sample back to the spectrome-
ter. These spectral positions were also observed after reduce the
multiplicative effects by MSC (Multiplicative Scatter Correction)
pretreatment and adjust spectral baseline using a second deriva-
tive (data not shown).

The effect of the integration time parameter on the absorbances
was also studied. Mean and SD spectra were obtained on the basis
of 5 mean spectra. Fig. 3 represents the mean, SD and average spec-
tral curves for the different integration times studied.

Contrary to the focal distance parameter, no significant visual
differences of absorbance values were observed between mean
spectra obtained over the complete wavelength range. However,
as in the previous case, an important variation in the SD spectra
was observed in the visible region between 380 and 480 nm, due
probably to the instrument noise.

Results obtained seem to suggest that the choice of an appropri-
ate focal distance will have a major influence on the spectral qual-
ity and repeatability than the choice of an adequate integration
time (mean SDrocal distance = 0.12 VS. mean SDIntegration time = 002)

In order to understand how the selection of a determined focal
distance and integration time affect the repeatability of results,
RMS Mean values were obtained and evaluated using Multifactorial

2.00 7 0.17

log (1/R)

0.00 T T T T T T T T T T T T — 0.07
380 480 580 680 780 880 980 1080 1180 1280 1380 1480 1580 1680

Wavelength (nm)

—13mm = =15 mm 20 mm 25 mm Mean SD

Fig. 2. Mean, SD and average spectral curves collected for the different focal
distances (13, 15, 20 and 25 mm).
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Fig. 3. Mean, SD and average spectral curves collected for the different integration
times (0.1, 0.5, 1, 2 and 5 s).

ANOVA. Before RMS calculation, spectra from 380 to 580 nm were
removed to eliminate high frequency noise region.

As can be observed in Table 2, ANOVA procedure decomposes
the variability of RMS Mean into contributions due to various fac-
tors. Since Type IIl sums of squares (the default) have been chosen,
the contribution of each factor is measured having removed the ef-
fects of all other factors. The P-values test the statistical signifi-
cance of each of the factors. Since three P-values are less than
0.05, these factors have a statistically significant effect on RMS at
the 95.0% confidence level.

In order to determine which means are significantly different
from which others it was necessary to apply the Multiple Range
Tests. The method used to discriminate among the means was
Fisher’s least significant difference (LSD) procedure. With this
method, there is a 5.0% risk of calling each pair of means signifi-
cantly different when the actual difference equals 0.

Table 3 shows for the cultivar factor that three different homog-
enous groups were identified using columns of X’s. Within each col-
umn, the levels containing X's form a group of means within which
there are no statistically significant differences. In this particularly
case, the X's form denotes a statistically significant difference
among the three cultivars. The following Fig. 4A displays the inter-
vals around each mean graphically. It is clearly seen from this figure
that the RMS values of Picual cultivar are lower than those observed
for the Hojiblanca variety and about all, for the case of Manzanilla.

In Table 3 can also be observed that two homogeneous groups
have been identified according to the alignment of the X’s in col-
umns for focal distance factor. As can be noticed, two pairs (13-
25 mm and 15-25 mm) show statistically significant differences.

Table 3
Multiple Range Test. Method: 95.0 percent LSD.

Factor Count ‘LS mean LS sigma Homogeneous groups
Cultivar

Picual 20 37336.3 3865.71 X
Hojiblanca 20 55083.2 3865.71 X
Manzanilla 20 725109 3865.71 X
Focal distance

13 mm 15 44824.8 4463.73 X

15 mm 15 49570.3 4463.73 X

20 mm 15 57504.7 4463.73 XX
25 mm 15 68007.3 4463.73 X
Integration time

5s 12 433713 4990.61 X

2s 12 47416.2 4990.61 X

1s 12 49972.9 4990.61 XX
0.1s 12 62543.6 4990.61 XX
0.5s 12 71580.0 4990.61 X

" LS, leasts squares.

Fig. 4B suggests that at 95 percent LSD, increasing the distance be-
tween the NIR sensor and the surface of the olive, increases RMS
mean value.

For the particularly case of integration time factor, as seen in
Table 3, three different homogenous groups were identified using
columns of X’s and there are five pairs statistically significant at
the 95.0% confidence. In Fig. 4C is observed that for integration
time higher than 1 s the RMS values decreases reaching minimum
values for 5s.

Finally, interaction effects were calculated in order to represent
the combined effects of factors on the dependent measure. When
an interaction effect is present, the impact of one factor depends
on the level of the other factor. In the following figure (Fig. 5A)
the interaction effects between the cultivar type and integration
time factors are shown. As can be observed, there is no interaction
between both because the slope of lines follow the same tendency
in the graph. The plot of RMS Mean values obtained shows a clear
tendency of increase of these values with decreasing the integra-
tion time. Smaller RMS Mean values for the three varieties were
observed at the integration time 5s. On the contrary, the highest
values were showed for 0.5 and 0.1 s integration times. Also, it is
possible notice that RMS Mean values for Picual variety did not
show significant differences according to the integration time used.

In the same way, interaction effects between cultivar and focal
distance were studied (Fig. 5B). The comparison of the repeatabil-
ity measurements for different focal distances shows that, in gen-
eral, RMS values were much higher at 25 mm than those obtained
at 13 mm for the particular case of Manzanilla and Hojiblanca.
However, Picual variety showed similar RMS Mean Values for both
distances.

Table 2

Results from the Multifactorial ANOVA of the three factors (cultivar type, integration time and focal distance) in the RMS mean values.
Source Sum of squares Df" Mean square F-ratio"” P-value
Main effects
A: Cultivar 1.23729E10 2 6.18643E9 20.70 0.0000
B: Integration time 6.59776E9 4 1.64944E9 5.52 0.0027
C: Focal distance 4.62717E9 3 1.54239E9 5.16 0.0068
Interactions
AB 1.1628E9 8 1.4535E8 0.49 0.8538
AC 4.19238E9 6 6.98729E8 2.34 0.0641
BC 4.08205E9 12 3.40171E8 1.14 0.3772
Residual 7.17297E9 24 2.98874E8
Total (corrected) 4.0208E10 59

" Df, degrees of freedom.
" All F-ratios are based on the residual mean square error.
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Finally, interaction effects between focal distance and integra-
tion time factors were studied (Fig. 5C). The combination of a focal
distance of 13 mm and an integration time of 5 s gave the smallest
RMS value, and consequently the best spectral repeatability. A sim-
ilar result was showed by the combination of 13 mm and 2. In
contrast, higher values of RMS were observed when combining
the focal distance of 20 mm and 0.5s of integration time or
25 mm focal distance and 0.5 s of integration time.

The comparison of the mean RMS values obtained with the dif-
ferent focal distances studied shows that no significant differences
could be observed using 0.1 s as integration time for all focal dis-
tances. The study carried out with an integration time of 5 s gave
notable differences between the RMS results according to the focal
distance used, showing a minimum value of 28,753 and a maxi-
mum of 66,028.

The best RMS values obtained at higher values of integration
time in the repeatability study could be explained by the size of
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Fig. 5. Interaction effects between pairs of factors in ANOVA. (A) Cultivar-
integration time (s); (B) cultivar-focal distance (mm) and (C) focal distance
(mm)-Integration time (s).

sample area analysed and by the size of the sample. The increase
of the integration time permits to analyse more area of one sample
and then to include more heterogeneity during one measurement
(Fig. 6). In the same way, the size of the sample can also exercises
influence due to small olive fruits (as in the case of Picual variety)
means a lot of olives analysed by sample area and therefore, more
heterogeneity is collected.

In view of the results obtained, it is possible conclude that the
best focal distance and integration time is 13 mm and 5 s because
the RMS Mean value was the lowest. Furthermore, the type of cul-
tivar have influenced significantly in these values. Picual variety
has shown the minimum values regardless of integration time or
focal distance used. On the contrary, RMS values obtained for Man-
zanilla and Hojiblanca have been higher in both cases. Therefore,
these results could indicate that the ripeness state of the fruit
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Fig. 6. Illustration of sample area analysed (grey) with 0.1 and 5 s integration times.

has had a significant effect on the RMS Mean values obtained since
the Picual cultivar was the least mature and conversely, the olives
of the Manzanilla and Hojiblanca varieties analysed had all a high
state of maturity.

4. Conclusions

Optimal operational conditions should be defined prior to start
a NIRS on-line analysis of samples in movement in order to obtain
accurate spectral data. This paper reports the impact of the focal
distance and the time integration acquisition parameters on the
spectral repeatability for the analysis of intact olive fruits on a con-
veyor belt. A focal distance of 13 mm and an integration time of 5 s
give the best RMS Mean value, showing a higher repeatability than
those obtained with the other distances and integration times
studied.
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