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Abstract: In this review, various applications of near-infrared hyperspectral imaging
(NIR-HSI) in agriculture and in the quality control of agro-food products are presented.
NIR-HSI is an emerging technique that combines classical NIR spectroscopy and imag-
ing techniques in order to simultaneously obtain spectral and spatial information from
a field or a sample. The technique is nondestructive, nonpolluting, fast, and relatively
inexpensive per analysis. Currently, its applications in agriculture include vegetation
mapping, crop disease, stress and yield detection, component identification in plants,
and detection of impurities. There is growing interest in HSI for safety and quality
assessments of agro-food products. The applications have been classified from the level
of satellite images to the macroscopic or molecular level.

Keywords NIR spectroscopy, satellite system, airborne system, ground-based HSI,
NIR-HSI, agriculture, agro-food industry

Introduction

Agricultural materials are characterized by different chemical composition and internal
physical structures, which means that, when working with near-infrared (NIR) spectroscopy,
they reflect, scatter, absorb, and/or emit electromagnetic energy in different ways at specific
wavelengths. These differences are characterized by a typical NIR spectrum that can be
considered as the spectral signature or spectral fingerprint of the material. NIR spectroscopy
has been a well-known technology in the agricultural sector since the scientific work
conducted by Norris and coworkers in the 1960s (1). It is a nondestructive method of analysis
based on the diffuse reflectance of samples and is widely used for rapidly determining the
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Hyperspectral Imaging 143

concentration of nutrients and feed value in dried and fresh crop materials (2–7), food and
feed quality control (8, 9), and food safety (10–12).

In recent years, new methods based on NIR spectroscopy technology have been de-
veloped, mainly based on a combination of techniques. Thus, NIR technology has been
linked with a microscope to create NIR microscopy (NIRM) (13) and with imaging tech-
niques to create hyperspectral imaging (HSI) methodologies. ElMasry and Sun (14) defined
HSI as a “combination of the strong and weak points of visible/near-infrared (VIS/NIR)
spectroscopic techniques and vision techniques.” The images provide enough information
to identify and distinguish spectra as unique material. A hyperspectral image offers the
potential to extract more accurate and detailed information than that obtained when work-
ing with classical NIR technology. Burger and Geladi (15) noted that NIR-HSI gives us a
natural expansion of conventional spectroscopy as well as the spatial position information
of the acquired spectra. With the decrease in wavelength resolution, the NIR-HSI spec-
trum is compensated by increasing the spectral quality obtained from thousands of spectra.
NIR-HSI processing algorithms, known as multivariate imaging analysis (MIA), are still
being developed. Hyperspectral images have become one of the most common research
objectives in the exploration and monitoring technologies used in many areas of work (14).

A NIR spectroscopy system provides one spectrum per measurement, whereas hyper-
spectral images provide thousands of spectra from one sample. In one measurement, each
pixel corresponds to one spectrum. The image taken by NIR-HSI also provides a spectral
signature of the sample that is unique and can be used to characterize and identify any given
material (16).

The initial uses of these hyperspectral images were for remote sensing applications
(detection and mapping) because of the reflection characteristics of the spectra. HSI was
used for the detection of military vehicles hidden in vegetation and for some of the National
Aeronautics and Space Administration’s (NASA) work (17). It was also successfully used
by geologists to identify and simultaneously analyze more than 150 materials, including
minerals, vegetation, ice, and snow (18). Hyperspectral images give a good enough spectral
range and spatial resolution for mapping and studying the Earth’s surface and for char-
acterizing soil properties, including moisture, organic matter content, and salinity (19).
NIR-HSI is useful in the paper industry for sorting different types of materials (e.g., pulp,
paper, cardboard, newspaper, and bleached and unbleached fibers) (20). HSI is very useful
in the art domain, not only for artwork conservation (21) but also for identifying pigments
in paintings and palimpsests (22).

The technique has been used in the medical sector to determine various diseases, such
as peripheral vascular diseases (23), and in ophthalmology and oncology (24), immunohis-
tochemistry (25), latent fingerprinting and age assessment of bruises in forensic medicine
(26), and face recognition in biomedicine and human identification (27). Recent studies
have demonstrated that HSI can be used in cancer diagnosis (28). The HSI technique is a
promising method for evaluating cervical cytologic preparations and, if used in conjunction
with slide scanners, can assist in the automated detection of precancerous and cancerous
cells. NIR-HSI can be used for mapping compound distribution, testing active pharmaceu-
tical ingredients and excipients for formulation uniformity, identifying contamination on
tablet surfaces, and detecting dissolution problems in solid pharmaceutical forms (29, 30).

The objective of this article is to describe HSI and its principles and to compare the
advantages and disadvantages of NIR-HSI with the classical NIR spectroscopy technique.
The applications described range from landscape to field scale, such as mapping a canopy
or highlighting vegetation stress, to the more restricted microscopic, if not molecular, level,
such as detecting contaminants or quantifying biochemical parameters.
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144 L. M. Dale et al.

Principles and Instrumentation

The field of spectral imaging can be divided into three domains: multispectral imaging
(MSI), HSI, and ultraspectral imaging (USI). MSI is a system where the image acquired has
few separated wavelengths. In HSI, the image is acquired with an abundance of continuous
wavelengths. USI is when one image is acquired with a low spatial resolution of several
pixels (i.e., the system used has a very fine spectral resolution) (14).

Hyperspectral images or hypercubes are three-dimensional data sets containing light
intensity measurements where two dimensions (X and Y) represent spatial positions and the
third dimension (λ) represents spectral variation (Figure 1). The images can be interpreted,
typically, as stacks of hundreds of two-dimensional spatial images at different wavelengths,
or tens of thousands of spectra, aligned in rows and columns.

Three instrumentation approaches are used to acquire hyperspectral images. These
approaches can be termed (a) point (staring) scan, (b) push-broom (line) scan, or
(c) plane (whiskbroom) scan, depending on the orientation of the scanning dimension
relative to the two-dimensional spatial sample axes. A point scan (or staring instrument)
acquires a spectrum at a single spatial location using a Fourier transform (FT) or grating-
type spectrometer. Hyperspectral images are obtained by successively measuring spectra
while the sample is repositioned in the X and Y spatial dimensions. This kind of instrument
is often used in microscopy using a high-precision X-Y motion stage. The push-broom
system projects a line of light onto a two-dimensional focal plane array (FPA) and is best
suited for remote sensing by aircraft or online process measurement because the Y spatial
axis may be arbitrarily long. The plane scan (or whiskbroom) imaging system positions
the measurement camera parallel to the sample surface, obtaining X-Y spatial images with
fixed sizes limited by the dimensions (pixels) of the camera detector. Hyperspectral images

Figure 1. Hyperspectral image (hypercube) aquisitions technique, adapted from Vermeulen et al.
(31), (CRA-W) 208 × 145 mm (96 × 96 DPI). Legend: a-scan point (staring) scan, b-push-broom
(line) scan, c-plane (global) scan, λ-spectral variation, X and Y-spatial dimensions.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

ie
ge

],
 [

D
al

e 
L

au
ra

 M
on

ic
a]

 a
t 2

2:
56

 0
3 

Ja
nu

ar
y 

20
13

 



Hyperspectral Imaging 145

Figure 2. Aquisition of spectrum by conventional NIRS system. Legend: (1) NIRS system; (2) Typ-
ical spectrum of NIRS system.

are obtained by modulating the radiation reaching the camera via the use of band-pass or
tuneable filters positioned in front of the camera (31–32).

Advantages and Disadvantages of NIR-HSI

For both classical NIR and HSI, the obvious advantages include simplicity of data acquisi-
tion, low cost per analysis, rapid inspection, simultaneous analysis of several compounds,
nondestructive method, and accuracy. The advantages of all NIR spectroscopy systems are
reflected in NIR-HSI systems. In NIR spectroscopy systems, however, the samples usually
have to be ground at less than 1 mm, but with NIR-HSI systems sample preparation is
not necessary; the samples can be scanned without any grinding and can be used for other
purposes (e.g., for germination assays or rescanning when the samples are in different
vegetation stages in order to predict the optimal period for harvest) (14).

One of the strong points of NIR-HSI is the time savings, not only for sample preparation
but also for database registration (14, 33). With conventional NIR techniques, one measure
gives one average spectrum (Figure 2). Thousands of spectra can be obtained with NIR-
HSI, giving a complete picture of the distribution of chemical compounds at the pixel
level (Figure 3) and the possibility of simultaneously obtaining the spectral and spatial
description of the sample (34).

Hyperspectral images can provide high-quality spectra of surfaces (35) related to
internal information (e.g., they can detect and quantify bacteria distribution inside the
product) (15, 36).

Although this technique has the potential to detect diseases and defects in agricul-
tural products and food, its application is limited due to the price of equipment, a clear
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146 L. M. Dale et al.

Figure 3. Aquisitions of spectra using a laboratory-scale NIR-HSI system (CRA-W). Legend:
(1) Photograph of sample; (2) Hyperspectral image of sample; (3) Typical spectra (<1%) of a
laboratory-scale NIR-HSI system.

disadvantage of the method (8). In addition, for rapid image acquisition and analysis,
NIR-HSI requires very high hardware speed, a major factor that limits its use (14).

As in the case of NIR spectroscopy, NIR-HSI is an indirect method and calibration
models are necessary. This is a disadvantage in both systems. To obtain efficient qualitative
and quantitative analyses, NIR spectroscopy and NIR-HIS methods need to be combined
with chemometric techniques (29), a discipline that uses mathematical and statistical meth-
ods to extract and interpret chemical information from data (37). In the literature there are
many reviews and textbooks on chemometrics (29, 37–40). The disadvantage is that all
of this modeling and data processing is time consuming; interpretation programs are very
expensive and specialists are needed for calibration and standardization.

Another disadvantage of NIR-HIS is the registration of a series of successive over-
lapping bands; it is difficult to assign them to specific chemical groups and working with
what are seen as bad pixels (also known as spies; Figure 4) (14). In order to identify and
detect different unambiguous spectra in the same image, it is necessary for a sample to
have the same absorption characteristics (14). López-Alonso and Alda (41) carried out a
comprehensive study on bad pixels, defining them as pixels classified as anomalous (e.g.,
pixels that always produce the same signal and from which chemical information cannot be
extracted). Blinking or drifting pixels with erratic behavior can also be called bad pixels,
because they are clearly different from those considered good pixels. There are also noisy
pixels (i.e., pixels emitting a noise higher than a fixed level).

Applications of NIR-HIS Systems

The applications are described here according to the system used, ranging from satellite
images to small-scale studies: (1) satellite HSI systems, (2) airborne VIS/NIR systems, (3)
ground-based HSI systems, and (4) laboratory-scale HSI systems (Figure 5).
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Hyperspectral Imaging 147

Figure 4. Spectrum of “bad pixel” (spie) (CRA-W).

Satellite HSI Systems

Many studies using satellite systems have been conducted since the 1960s in different
domains. The pioneering studies were in the domains of mining and geology (42). In
the following years the technique was adapted for agricultural uses, such as determining
the physical properties of plant canopies (e.g., leaf size and leaf area index; wavelengths
ranged between 400 and 2,400 nm) (43). Many studies focused on the relationship between
optical properties and pigment concentration of leaves. For example, Johnson et al. (44)
conducted studies on leaf area index and chlorophyll determination and on discrimination
between grass, weed, and plastic objects. The focal plane screening used had wavelengths

Figure 5. Hyperspectral Imaging Systems (photo original). (i) Satellite Hyperspectral Imaging Sys-
tems; (ii) Airborne Visible/Near Infared Imaging Systems; (iii) Ground-based Hyperspectral Imaging
Systems; (iv1) NIR Hyperspectral Imaging Systems-point (staring) scan (CRA-W); (iv2) NIR Hy-
perspectral Imaging Systems-plane (whiskbroom) scan (CRA-W); (iv3) NIR Hyperspectral Imaging
Systems-push-broom (line) scan (CRA-W).
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148 L. M. Dale et al.

ranging from 330 nm to 1,100 nm, with a 3-nm spectral resolution. Broge and Leblanc (45)
investigated the application using satellite data for leaf area index and canopy chlorophyll
density under the same methodological conditions (wavelengths 550–1,000 nm). Significant
results were produced from monitoring plant growth and estimating the photosynthetic
productivity potential.

Other studies have focused on discrimination between plant stresses imposed by limit-
ing water, insufficient nitrogen fertilizer, or both. El-Shikha et al. (46) used a remote sens-
ing monitoring system, the Agricultural Irrigation Imaging System (AgIIs), and showed in
22 × 22 m plots that the effects of nitrogen treatment were more pronounced on leaf area
index, plant canopy width, and fresh yield than the effects of water treatment on broccoli
culture. Successful results were obtained at a reflectance band of 720 nm. El-Shikha et al.
(46) concluded, however, that it would be better for future studies to use airborne scanning
or airborne imagery because it is more practical and less expensive than the satellite systems.

Airborne VIS/NIR Systems

Whereas satellite data focus on canopy studies, airborne hyperspectral data are restricted
mainly to terrestrial vegetation (e.g., canopy, leaf area index, plant diseases, plant pro-
duction, biochemical parameters). In a study on vegetation community stress, Merton
(47) used NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to map
multitemporal trends; these were strongly correlated and were successfully used to pre-
dict the biochemical impact and geographical extent of vegetation. Zhang et al. (48)
successfully used the same AVIRIS system in combination with spectral angle map-
ping (SAM) to detect tomato stress induced by late blight disease. The wavelengths
ranged from 400 to 2,500 nm, and the spatial resolution was 4 nm. The same tech-
nique was used by Parker Williams and Hunt (49) to estimate leafy spurge (Euphor-
bia esula L.) cover in 66 circular vegetation plots with a radius of 23 m (wavelengths
400–2,500 nm; spectral resolution of 10 nm). It is possible to use AVIRIS, however, to
estimate leafy spurge distribution and design abundance maps. The differentiation of in-
dividual plant species can be problematic because all green plants have similar spectral
characteristics.

With a portable hyperspectral tunable imaging system (PHyTIS package), composed
of two liquid-crystal tunable filters (Varispec filters, Cambridge Research Instrumentation,
Woburn, MA), Fitzgerald (50) successfully identified cotton (Gossypium hirsutum L.) fields
and estimate cotton production. The absorption was centered on 400–720 nm wavelengths
passing from visible light to NIR radiation (650–1,100 nm wavelengths).

Several studies have demonstrated that airborne imaging systems can be success-
fully used for mapping invasive plants (51, 52). Pengra et al. (51) mapped the common
reed (Phragmites australis (Cav.) Trin. Ex Steud.) in saltmarsh vegetation (wavelengths
400–2,500 nm). They found spectral differences between Phragmites and 26 other saltmarsh
vegetation associations at wavelengths below 1,100 nm using SAM and obtained a classi-
fication accuracy of 81.40%. Andrew and Ustin (52) used an airborne system (126 wave-
bands, 3-m spatial resolution, and 450–2,500 nm wavelengths) to map perennial pepper-
weed (Lepidium latifolium L.) on grasslands, using the cellulose absorption index (defined
at 2,100 nm). The model used mixture-tuned matched filtering (MTMF), with an accuracy
higher than 85%. Fiorani et al. (53) presented a number of selected wavelengths (around 970,
1,600, and 2,100 nm) for specific characteristics of plants, such as chemical composition or
canopies.
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Hyperspectral Imaging 149

Ground-Based HSI Systems

With this system, the hyperspectral images are taken at the field level, usually by fixing
a camera on an agricultural vehicle. It allows, inter alia, field production to be estimated.
Yang et al. (54) estimated grain sorghum yield variability using a CCD camera-based HSI
(wavelengths 457–922 nm; 1.5-m spatial resolution). The yield maps generated from the
images taken with airborne and ground-based HSI corresponded closely with yield data
measured after harvest. Similar results were reported by Schut et al. (55) for grass yield and
nutrient content in a field measured at 848–1,680 nm. They reported that the system was
very suitable for measuring large fields, especially for ground coverage, index of reflection
intensity, and wavelet entropy. Schut et al. (55) reported a consistent correlation between
dry matter content estimated with partial least squares (PLS) and ground coverage, index
of reflection intensity, and mean reflection at 800 nm.

Using the same approach, Suzuki et al. (56) predicted forage chemical composition
(ImSpector V10, Specim, Oulu, Finland; wavelengths 360–1,010 nm; spectral resolution
10 nm). The study was conducted in a field with the aim of mapping the grass chemical
components by developing different calibration models; the coefficient of determination
for crude protein and total digestible nutrients was higher than 0.70. Okamoto et al. (57)
developed a model focusing on weed detection and classification of plants under the same
conditions described above. Initially, the plant species were classified and then the plant
leaves and background soil were separated. For plant discrimination, the Euclidean dis-
tance achieved with segmentation was used, achieving a classification accuracy of 75–80%,
whereas discriminant analysis provided an accuracy of 90%. A method for mapping botan-
ical composition and herbage mass in pasture using the same ground-based HSI systems
was developed by Suzuki et al. (58). The herbage mass was first measured by linear dis-
criminant analysis (LDA), and the plant species were then classified as perennial ryegrass,
white clover, other plants, and dead material, with a classification accuracy of 91.6%.

Laboratory-Scale HSI Systems

Qualitative Applications. One of the first studies using this technology in the agricultural
sector focused on the detection of meat and bone meal in compound feedstuffs using HSI
in the NIR focal plane MatrixNIR (Malvern Instruments Ltd., Malvern, UK; wavelengths
900–1,700 nm at increments of 6 nm) (59). The method was developed to enforce food
legislation adopted after the European mad cow crisis connected with Creutzfeldt-Jakob
diseases in humans. Thousands of spectra in a massive space had to be collected simul-
taneously. For detection, the chemometric support vector machine (SVM) tool was used.
This alternative method of NIR focal plane MatrixNIR was suggested as being more ef-
fective than methods used at that time, which were cumbersome and required a specialist.
Similar studies were carried out by Riccioli et al. (60) for discriminating between terres-
trial and fish species in animal protein by-products used in livestock feed. The samples
were analyzed by NIR chemical imaging (NIR-CI) in the 1,000–1,700 nm wavelength
range. Four algorithms—Mahalanobis distance, Kennard-Stone, spatial interpolation, and
binning—were applied in order to select an appropriate subset of pixels for further partial
least squares discriminant analysis (PLSDA). For the four algorithms used, the classification
accuracy obtained was higher than 99.61%.

Kim et al. (61) used fluorescence HSI for the detection of skin tumors (ulcerous le-
sions surrounded by a rim of thickened skin and dermis) on chicken carcasses, replacing
the time-consuming, expensive, and uncomfortable organoleptic inspection method. They
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150 L. M. Dale et al.

used an HSI system from the U.S. Department of Agriculture’s Instrumentation and Sens-
ing Lab (ISL-HSI), which includes a CCD camera, a spectrograph, a sample transport
mechanism, and lighting sources (wavelengths 425–711 nm). The detection rate was 76%,
indicating that the method needs to be improved; some spots were irrelevant for tumors
and some carcasses were not filtered out in the spatial classifier, giving a false-positive rate
that was too high. Various studies were conducted to detect the contamination of poultry
carcasses with visceral content (62, 63). In order to demonstrate that it is possible to detect
fecal and ingested contaminants using NIR-HSI, Lawrence et al. (62) and Park et al. (63)
used an imaging camera consisting of a focusing lens, a prism-grating spectrograph, and
a high-resolution CCD camera. Park et al. (63) used the region of interest (ROI) algorithm
at wavelengths of 290–1,000 nm and obtained an accuracy of 96.6% using principal com-
ponent analysis (PCA). The imaging system operated from wavelengths of about 400 to
900 nm (62). Similar studies were carried out by Wang and El Masry (64) for apple bruise
detection based on physical and chemical changes compared with unbruised fruits (wave-
lengths 400–1,000 nm). They developed a model using different algorithms: minimum
noise fraction transform (MNF), ROI, PCA, PLS, and artificial neural networks (ANNs).
The 750-, 820-, and 960-nm wavelengths were chosen for bruise detection. In order to de-
termine the potential of the selected wavelengths for bruise detection, PCA was conducted
with successful results, such as 93.25% of the variance between normal and bruised spectral
data (principal component 1 [PC1]: 70.01% and principal component 2 [PC2]: 23.94%).
Nagata et al. (65) and Nagata and Tallada (66) worked successfully on strawberry bruise
detection. The LDA algorithm was used at a range of 825 and 980 nm and the rate of dis-
crimination was greater than 90.70% for the calibration model, whereas for validation it was
greater than 86.50%. Other applications of the ISL-HSI system were used for vegetables.
The system was used successfully for detecting cucumber chilling injury, with recognition
rates of 93.30% for injured cucumbers and 88.30% for uninjured cucumbers (67). With
this system, the hyperspectral images were acquired at wavelengths of 448–951 nm, with
a 4.5-nm interval. For detection, PCA and Fisher’s linear discrimination (FLD) were used.

NIR-HSI is also used to measure food quality, particularly fruit quality. For consumer
acceptance and fruit shelf life, firmness is very important and it is necessary for the industry
to use a nondestructive sensing system to evaluate it. High scattering from a surface depends
on the cell structure of the food and is related to the texture. Scattering profiles can therefore
be used to predict fruit firmness. A VIS/NIR-HSI system based on a Varispec Liquid Crystal
Tunable Filter (LCTF, Cambridge Research and Instrumentation) was used for firmness
detection, and LDA, normalized difference (ND), and ANN algorithms were used to analyze
the spectra (66). For strawberry firmness detection, wavelengths of 665–685, 755–870, and
955–1,000 nm were shown to be optimal (standard error of prediction [SEP] around 0.258
in the case of 70% to fully ripe strawberries and 0.350 in the case of 50% to fully ripe
strawberries) (66). A similar technique was used by Lu and Peng (68) to determine peach
firmness. The most important bands for predicting peach firmness were found to be around
677, 710–850, and 950 nm. The Lorentzian distribution (LD) parameter combinations for
firmness calibration of two types of peaches (Red Haven and Coral Star) were chosen.
The coefficients of determination (R2) obtained with multilinear regression (MLR) were
between 0.51 and 0.58 and between 0.67 and 0.77, respectively. In both cases, further
analysis was needed to obtain better results.

Beef color and tenderness are two major parameters of beef quality. Beef quality
evaluation by a trained panel is expensive, time consuming, and difficult to organize. The
development of a nondestructive, fast, accurate, on-line technology for predicting beef color
and tenderness is therefore highly desirable. As noted above for fruit firmness, hyperspectral
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Hyperspectral Imaging 151

scattering profiles would be useful for assessing beef quality because light scattering from
a surface is closely related to product texture. Recently, a VIS/NIR-HSI (400–1,100 nm)
was used to predict the beef color parameters and tenderness (Warner-Bratzler shear force)
of Luxi cattle between 25 and 36 months old, at carcass weights of 280–450 kg (69). These
authors fitted scattering profiles derived from hyperspectral images to the LD function in
order to extract parameters that were used to predict the tenderness and color of 7-day-old
cooked beef steaks. The LD function parameter contributions of optimal wavelengths were
used to establish MLR models. The R2 for calibration and cross-validation was higher than
0.91 and the overall accuracy of classification in tender and tough groups was 93.8%. Using
a push-broom HSI with a diffuse flood lighting system, Naganathan et al. (70) classified beef
tenderness into categories (tender, intermediate, and tough) with a classification accuracy
of 96.4%, and Kim et al. (71), using an optical scattering feature of lights, obtained an
accuracy of 98.4%, although they did not provide details about the type of beef, age, or
genotypes of the animals and the carcass weights. These results highlight the potential of
HSI optical scattering for the on-line detection of beef quality.

Other studies on contaminant determination have been conducted by Gómez-Sanchis
et al. (40) on citrus fruits to detect Penicillium fungi. They used a hyperspectral vision system
based on liquid-crystal tunable filters (LCTF; Xenoplan, Schneider Optics, Coalsnap ES
model, Photometrics), with ranges between 400 and 720 nm for VIS spectral wavelengths
and between 650 and 1,100 nm for NIR spectral wavelengths. The aim of the study was to
prevent or at least reduce associated economic losses in citrus culture. The accuracy of the
classifying methods such as ANN and decision trees was about 98%. The same technique,
but with LDA and classification and regression tree models (CART), was used for mandarin
fruit and the classification accuracy of rotten fruit was greater than 91% (72).

Another application of HSI in the field of fruit diseases is the detection of citrus canker.
Caused by a bacteria, Xanthomonas axonopodis Hasse, this is a severe and devastating
disease that can affect the peel (conspicuous and erumpent lesions) of some citrus varieties
in infected regions of the world. Currently, there is no really effective treatment or prevention
to eradicate the disease. The spectral information and divergence (SID) algorithm was
recommended by Chang (38) to classify the fruits. It is based on a stochastic approach
called spectral information measure, which has been shown to outperform classical spectral
matching techniques. In this application, SID is interesting for differentiating canker disease
from normal and other common diseased peel lesions (73). The HSI wavelengths ranged
from 450 to 930 nm and the overall classification accuracy for grapefruit was 96.2%, using
an optimal SID threshold value of 0.008 based on the assumption that the false-negative
and false-positive errors were equally weighted. The method could therefore be used to
discriminate citrus canker from other peel diseases, but more research is needed to improve
detection accuracy and make it suitable for online application.

NIR-HSI was used by Fernández Pierna et al. (37) to screen compound feeds. A model
was constructed by sorting the particles, using a classification tree where every node en-
countered a discriminating step. These measures were complemented by discriminating
equations created from hyperspectral databases for each class of materials obtained in the
MatrixNIR (wavelength range 900–1,700 nm). Discriminating equations were constructed
using chemometric SVM tools and classification accuracy was greater than 99% for cali-
bration data and greater than 88% for validation data. Later, Fernández Pierna et al. (74)
carried out a similar study on impurity discrimination (straw, broken grains, grains from
other crops, weed seeds, insects, plastic, stones, pieces of wood and paintings, animal feces)
in cereals (wheat, spelt, and barley). SVM was used as a chemometric tool and classified
the impurities with an accuracy of more than 95%.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

ie
ge

],
 [

D
al

e 
L

au
ra

 M
on

ic
a]

 a
t 2

2:
56

 0
3 

Ja
nu

ar
y 

20
13
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Burger and Geladi (15) used MatrixNIR at wavelengths of 960–1,662 nm and different
algorithms (PLS, ROI, and PCA) to successfully discriminate different types of cheeses
on the basis of the protein, fat, and carbohydrate content. The same technique was used to
discriminate salt and sugar granules by the peaks centred at 1,130, 1,438, and 1,470 nm,
which correspond to salicylic acid, sugar, and citric acid, respectively. Abdel-Nour and
Ngadi (75) used HSI to detect omega-3 fatty acids in designer eggs. ROI was used to select
the specific spectral region (994 and 1,109 nm), and for discriminant analysis the K-means
algorithm was used, with 100% accuracy. For egg classification, the PLS algorithm was
used. The R2 coefficients were 0.89, 0.54, and 0.75 and the residual predictive deviations
(RPDs) were 2.85, 1.30, and 2.00, respectively, for linolenic acid, eicosapentaenoic acid,
and docosahexaenoic acid, respectively.

Quantitative Applications. Peirs et al. (76, 77) and Menesatti et al. (78) applied the hy-
perspectral technique to determine the starch index of apples as a maturity parameter for
predicting the optimal harvest period. They used NIR-HSI equipped with a scanner and
spectrophotometer at wavelengths of 1,000–1,700 nm. The PLSDA algorithm was used
with a correlation coefficient higher than 0.94. Weinstock et al. (79) used the same tech-
nique to predict oil and oleic acid concentration in individual corn kernels. The germ from
the endosperm was first distinguished by the PCA algorithm, and then the PLS algorithm
was used to successfully predict the total oil and oleic acid concentration, with a root mean
standard error of prediction (RMSEP) of 0.7 and 14%, respectively. Alpha-amylase activ-
ity was also predicted in Canadian western red spring wheat samples; the analyses were
performed by FT-NIR and short-wavelength infrared HSI (SWIR-HSI); the wavelength
range was 1,235–2,450 nm and the PCA and PLS algorithms were used (80, 81). A spectral
information divergence was registered at a wavelength of 1,900 nm, where water, starch,
and protein were believed to be the combination vibrations of overtones of alpha-amylase
activity (10, 81, 82). It was pointed out that models built with both systems were similar;
the R2 for FT-NIR was lower than for SWIR-HSI (0.82 and 0.88, respectively) and the root
mean square error was 0.90 for FT-NIR and 0.52 for SWIR-HSI.

A MatrixNIR camera and a SisuChema SWIR-HSI system (Specim, Spectral Imag-
ing Ltd., Oulu, Finland) were used to differentiate glassy from floury maize endosperm
(wavelengths 960–1,662 nm for the MatrixNIR camera and 1,000–2,498 nm for the SWIR-
HSI) (83). The results showed the ability of the PLSDA model to predict glassiness and
flouriness correctly with a RMSEP of 0.294. Bauriegel et al. (84) used HSI (wavelengths
400–1,000 nm, spectral resolution 2.5 nm) for the early detection of Fusarium infection in
wheat. During the development stages, the healthy and diseased tissues could successfully
be distinguished with 87% accuracy and were in a ±10% range of tolerance. Similarly,
Firrao et al. (85) used the HSI technique for maize fumonisin detection. Because mycotox-
ins are known to be difficult to detect directly using optical methods, the aim of the study
was to scan the contaminated samples at wavelengths from 720 to 940 nm. The authors
considered that HSI could provide a reliable contamination estimation (SEP was 0.1895)
within a few minutes and be used to assist in lot selection at various stages of the maize
processing chain.

Del Fiore et al. (86) built a model of discrimination for healthy and diseased maize
kernels produced by toxic fungi with HSI (ImSpector Specim V10, Borgo Isonzo, LT,
Italy). The VIS/NIR range was 400–1,000 nm. Using PCA, toxic fungi in maize kernels
at specific wavelengths (410, 535, and 945 nm) were detected. In cereals, Vermeulen et al.
(87) used MatrixNIR (wavelengths range 900–1,700) to discriminate the ergot bodies from

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

ie
ge

],
 [

D
al

e 
L

au
ra

 M
on

ic
a]

 a
t 2

2:
56

 0
3 

Ja
nu

ar
y 

20
13

 



Hyperspectral Imaging 153

wheat kernels. The Fisher coefficient calculated on the preprocessed data (wavelength range
1,220–1,440 nm) allowed contaminated samples to be detected.

Plant diseases remain the major problem in crop production, leading to yield and qual-
ity loss (88). An NIR line scan or push-broom imaging spectrometer (Burgermetrics, SIA,
Riga, Latvia), which uses a cooled, temperature-stabilized mercury–cadmium–telluride de-
tector (Xenics SPECIM Ltd., Oulu, Finland) combined with a conveyor belt (wavelength
range 1,100–2,400 nm), was used to quantify crop parameters, such as beet cyst nema-
todes (Heterodera schachtii A. Schmidt) (74, 89). The specific pixels corresponding to the
conveyor belt showed higher absorbance around wavelengths of 1,690 and 1,970 nm; the
chemometrics tool used in both studies was SVM.

HSI has been used successfully in food and water bacterial contamination detection
(39). Some fresh vegetables are common vehicles for foodborne pathogens (e.g., Salmonella
ssp., Escherichia coli O157:H7, Listeria monocytogenes). NIR spectroscopy has been used
for the analysis of microorganisms in vegetables but does not provide information on
bacteria distribution on the product. Siripatrawan et al. (36) have developed an HSI method
for the detection of E. coli K12 in packaged fresh spinach with minimal human interference.
They used a hyperspectral camera with a wavelength range of 400–1,000 nm and a spectral
resolution of 5 nm to acquire hyperspectral images. Chemometrics, including PCA and
ANN, were then used to analyze the preprocessed data. The predicted number of E. coli vs.
true values was closely fitted (R2 = 0.97) and the prediction mean square error was very
low (MSE = 0.038).

Conclusions and Future Developments in HSI

In this review, a wide range of HSI applications in agriculture and agro-food quality and
safety, from a macroscopic approach to a more limited field area, has been described.

Among the various HSI systems, satellite and airborne HSI shows a weakness in the
conformity between the information acquired through interpretation of the images and the
data acquired in the field, leading to possible errors. With ground-based HSI, it is simpler to
determine whether the data are similar or not, but errors are still possible because not only
are the samples registered but the background can be intercepted also, and it is necessary to
improve the technique to obtain lower prediction errors. Finally, with NIR-HSI, errors are
not registered on a large scale because data are collected directly on samples, on sample
surfaces, or from the inside of samples for specific component detection or discrimination.
However many errors have been registered, such as sampling, pixel overlapping, penetration
depth, lack of fit, etc.

Compared with classical analytical methods (e.g., high-performance liquid chromatog-
raphy, mass spectroscopy), as a nondestructive, fast, nonpolluting, and relatively low-cost
method, HSI is an emerging technology for diversified applications in agriculture and in
food quality and safety. Its ability to determine the internal constituents of food products
is of prime importance in the food industry. In addition, compared with the other imaging
systems, NIR-HSI is able to provide spatial and spectral information as well as multicon-
stituent information, and it is sensitive to minor constituents. But if the analyte of interest
is concentrated in spots and if it is homogeneously distributed, the limit of detection will
be determinated as with conventional NIR.

There is growing interest in using HSI in agriculture and the agro-food industry to
control and predict agro-food quality through specific components analyses but also for the
on-line detection of diseases and chemical, microbial, or biological contaminants.
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154 L. M. Dale et al.

This article has shown that HSI can be used successfully in grassland studies on a large
scale, but the system is not yet developed enough for species discrimination on dried and
milled samples. HSI could be used for the discrimination of botanical families and plant
species and for the detection of toxic and invasive plants from mixed meadows.

With regard to future developments other than applications in agriculture and food
quality and safety, it is necessary to develop low-cost HSI systems for dedicated applications
(e.g., by identifying optimal wavelengths/wavebands depending on the application for
which it is intended). An improvement in preprocessing speed and robustness, particularly
in the reliability of models, could encourage more widespread online utilization of this
technology in agriculture and the agro-food industry, which could therefore reduce the cost
of process monitoring and product inspection.
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LDA: Linear Discriminant Analysis
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ANN: Artificial Neural Networks
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LD: Lorentzian Distribution
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SEP: Standard Error of Prediction
RPD: Residual Predictive Deviation
WBSF: Warner Bratzler Shear Force
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