

Mid-infrared prediction of cheese yield from milk and its genetic variability in first-parity cows

F.G. Colinet¹, T. Troch¹, S. Vanden Bossche¹, H. Soyeurt¹, O. Abbas², V. Baeten², F. Dehareng², E. Froidmont², G. Sinnaeve², P. Dardenne², M. Sindic¹, and N. Gengler¹

¹ University of Liège, Gembloux Agro-Bio Tech, Belgium
² Walloon Agricultural Research Center, Belgium

Introduction

- Cheese manufacture and yield
 - Economical importance
 - Empirical and theoritical formula for cheese yield (CY)
 - Generally based on some factors:
 - ✓ Milk fat content
 - ✓ Milk protein content
 - ✓ Milk casein content
 - ✓ Moisture
 - ✓ Salt
 - **√** ...

Introduction

- Cheese yield
 - > Influence of animal selection on milk component
 - → also on milk processability
 - > Interest for determining CY at large scale and for increasing CY

Objectives

- □ To determine CY of fresh milk at large scale
 - Expressed as fresh Individual Laboratory Cheese Yield (ILCYf)
 - > Fast method using small quantity of milk
 - Adapted to Walloon dairy cattle (multi-breed)
 - > MIR spectrometry already implemented in milk labs

Objectives

- □ To determine CY of fresh milk at large scale
 - Expressed as fresh Individual Laboratory Cheese Yield (ILCYf)
 - Fast method using small quantity of milk
 - Adapted to Walloon dairy cattle (multi-breed)
 - > MIR spectrometry already implemented in milk labs
 - → MIR chemometric method for ILCYf prediction

Objectives

- □ To determine CY of fresh milk at large scale
 - Expressed as fresh Individual Laboratory Cheese Yield (ILCYf)
 - > Fast method using small quantity of milk
 - Adapted to Walloon dairy cattle (multi-breed)
 - > MIR spectrometry already implemented in milk labs
 - → MIR chemometric method for ILCYf prediction
- □ To study the genetic variability of predicted ILCYf
 - First-parity Holstein cows in Wallonia (Belgium)

- Sampling
 - Wallonia
 - Variability of spectra: several criteria
 - Milk sampling: individual or bulk milk
 - ❖ Breed: Dual Purpose Belgian Blue, Holstein,
 - Red-Holstein, Montbeliarde and Jersey
 - Time of sampling: morning milking, evening milking
 - mix of 50% morning & 50% evening milk samples
 - → 258 fresh samples collected

Analysis

- Milk lab (Comité du Lait, Battice, Belgium)
 - ❖ FT-MIR
- Fresh Individual Laboratory Cheese Yield (ILCYf)
 - g coagulum / 100 g milk
 - Determined according to Hurtaud et al. 1995

(Ann. Zootech. 44, 385-398)

- Intra-asssay variation coefficient = 3.2%
- Sample analyzed in duplicate

Methods

Modified Partial Least Square regressions

(Shenk & Westerhaux, 1991)

- > Use of a first derivative pretreatment
 - ❖ To correct the baseline drift.
- Detection of spectral outliers
 - Based on Mahalanobis distance
- Use of a repeatability file
 - Spectra from the same samples analyzed on different spectrometers

Methods

- Internal cross-validation (50 groups)
 - To determine the number of factors
 - To assess the robustness of equation
- T-outlier test
 - Compared observed and predicted values
 - ❖ Samples with T-outlier value > 2.5 were discarded
 - Maximum 5 tests performed
 - → 22 additional samples discarded

Calibration equation

> Statistical parameters of final dataset

Parameters	
Mean	26.8 g/100g
Standard deviation (SD)	6.5 g/100g
Range	34.1 g/100g (from 13.8 to 47.9)

> Calibration

Parameters		
Standard error of calibration (SE _c)	2.6 g/100g	
Calibration coefficient of determination (R ² _c)	0.83	

Calibration equation

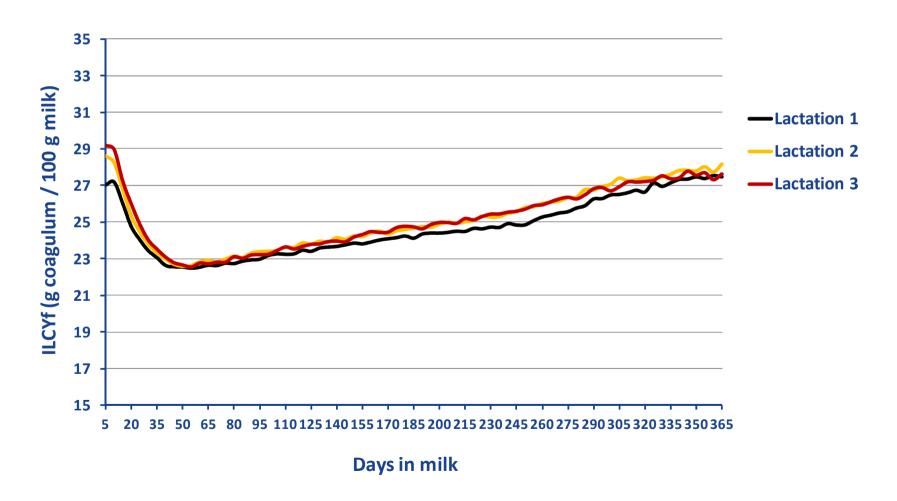
> Statistical parameters to assess the accuracy

Parameters	
Standard error of cross-validation (SE _{cv})	2.8 g/100g
Cross-validation coefficient of determination (R ² _{cv})	0.81
RPD = SD / SE _{cv}	2.27
RER = Range / SE _{cv}	12.0

- Calibration equation
 - > Statistical parameters to assess the accuracy

Parameters		
Standard error of cross-validation (SE _{cv})	2.8 g/100g	
Cross-validation coefficient of determination (R ² cv)	0.81	
RPD = SD / SE _{cv}	2.27 > 2	
RER = Range / SE _{cv}	12.0 > 10	

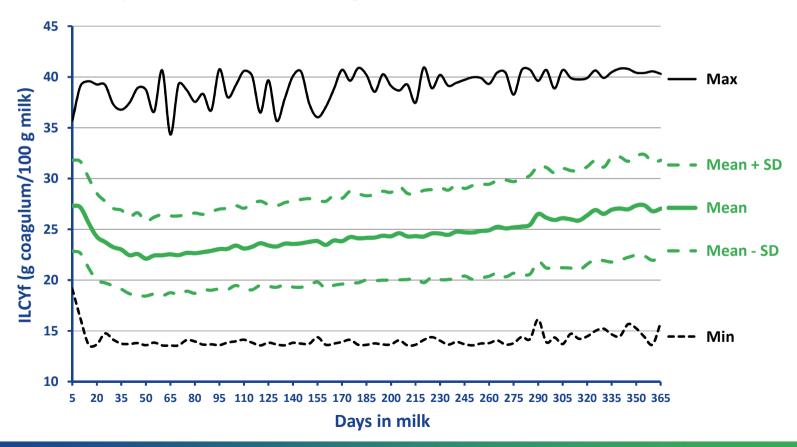
→ Calibration equation: good practical utility


Result: Prediction

- Data editing
 - Walloon MIR spectral database
 - ❖ > 2 500 000 spectra
 - Routinely collected since 2007 by milk recording
 - Outliers discarding
 - ❖ Based on Mahalanobis distance computing using 234 MIR spectra of the final calibration dataset as reference
 - ✓ Upper standardized Mahalanobis distance cut off : 3
 - ❖ Below 0.5 percentile and above 99.5 percentile

Result: Prediction

Averaged MIR predicted ILCYf throughout first three lactations



- Data editing
 - > After edits:
 - ❖ 7 870 first-parity Holstein cows from 101 herds
 - ✓ Cows with ≥ 4 predicted ILCYf and known parents
 - √ > 58 000 animals in extracted pedigree file
 - ❖ > 51 000 records for MIR predicted ILCYf

Data

- \rightarrow Average MIR predicted ILCYf = 24.2 g/100g (± 4.5 g/100g)
- MIR predicted ILCYf throughout first lactation

□ Single-trait random regression animal test-day model

$$y = X\beta + Q(Zp + Za) + e$$

□ Single-trait random regression animal test-day model

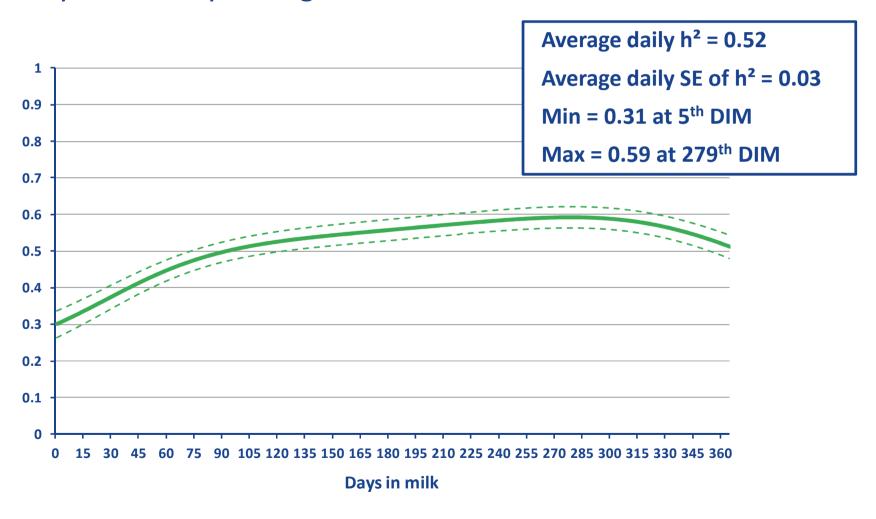
$$y = X\beta + Q(Zp + Za) + e$$

- \triangleright β = fixed effects
 - Herd x test day
 - Lactation stage (classes of 5 days)
 - Gestation stage
 - ❖ Age at calving x season of calving x lactation stage

□ Single-trait random regression animal test-day model

$$y = X\beta + Q(Zp + Za) + e$$

- > **p** = permanent environment random effect
- > **a** = additive genetic random effect
 - Regression curves modelled with 2nd order Legendre polynomial


□ Variances components estimated by AIREMLF90

(Misztal, 2012)

ILCYf heritability

□ Daily heritability throughout first lactation

Conclusions

- □ MIR chemometric methods
 - Developed equation
 - $R^2_{CV} = 0.81$
 - ❖ RPD > 2 and RER > 10
 - **→** Good practical utility
 - → Results are promising for the prediction of fresh Individual Laboratory Cheese Yield from MIR spectrum
- Genetic variability study
 - Moderate daily heritability
 - **→** Potential of selection for ILCYf

Next steps

- □ Improvement with new samples
- □ Study of phenotypic and genetic correlations of ILCYf with
 - milk production traits
 - other milk components
 - milk technological properties
- □ Feasibility/opportunity to develop a genetic evaluation?

Thank you for your attention

Acknowledgments for financial support

 Service Public de Wallonie SPW – DGO3 and European Commission (ERDF) through projects D31-1255/S1 ProFARMilk and INTERREG IVA BlueSel

Acknowledgments

- CECI for computational resources
- Milk Committee of Battice
- Walloon Breeding Association (AWE asbl)
- Walloon dairy breeders

