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Abstract

Predicting species composition in mixed swards by

near infrared reflectance spectroscopy (NIRS) can save

labour in grassland research, provided equations are

available. This study compares calibration strategies to

predict species composition in swards with tall fescue

(Festuca arundinacea), perennial ryegrass (Lolium per-

enne) and white clover (Trifolium repens). The com-

pared calibration strategies were based on either real

or artificial samples. Real samples are samples taken

from multispecies swards; the species composition is

known by hand separating; after separating, the origi-

nal samples are recomposed. Artificial samples are

samples obtained by mixing single species grown in

pure stands in known proportions. The performance

of the equation based on real samples was significantly

better than the performance of the equation based on

artificial samples. We hypothesized that the weak per-

formance of the equation based on artificial samples

was due to a lack of environmental variation in the

spectra of the artificial samples. The hypothesis was

supported by the good performance of a novel calibra-

tion strategy based on the spectra of the artificial sam-

ples with added variation. According to the obtained

results, a calibration strategy based on few but diverse

calibration samples is discussed.
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Introduction

In research programmes dealing with mixtures of dif-

ferent forage species, the contribution of the different

species in the yield is often of interest. Visual estima-

tion of the botanical composition is a fast method, but

is very subjective. Separation of a cut sample into the

different constituents is very precise but is often too

labour intensive for large field experiments. Near

infrared reflectance spectroscopy (NIRS) can predict

the botanical composition of a sample both quickly

and precisely, provided an equation is available.

Several equations to predict the botanical composi-

tion of multi-species swards by NIRS have been devel-

oped in the past. These calibrations can be classified

according to (i) the species and the number of differ-

ent species for which the calibration was built, (ii) the

magnitude of the calibration population and (iii) the

calibration strategy used.

1 Mostly, equations were developed to discriminate

between grass and one or more leguminous spe-

cies. Discriminations have been made between a

specific grass and a specific legume, e.g. tall fescue

vs. white clover in Petersen et al. (1987); between

non-specified grasses and either white or red clo-

ver in Wachendorf et al. (1999) or between func-

tional groups e.g. grasses vs. leguminous species

in Locher et al. (2005a). Equations which aim to

discriminate between different grass species were

built by Coleman et al. (1985) and Chataigner

et al. (2010).

2 The objective of the calibration can be to predict

the composition of a ‘closed population’, e.g. a

well-defined trial with species mixtures (Surault

et al., 2006) or a ‘open population’, e.g. clover

content in swards varying in phenological growth

stages, in grass species and in nitrogen fertiliza-

tion and climatic conditions (Wachendorf et al.,

1999).
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3 Different strategies can be used to build a calibra-

tion according to the way in which the composi-

tion of the samples is determined. The most

straightforward way to build a calibration is by sep-

arating samples (harvested from multispecies

swards) into their different components, weighing

the different species, recomposing the original

samples, drying and grinding the samples and

finally recording the spectra. Calibration samples

obtained in this way are called ‘real samples’ (Shaf-

fer et al., 1990; Pitman et al., 1991; Wachendorf

et al., 1999; Surault et al., 2006). An alternative is

the mixing of dried and ground components to

provide a whole new set of samples differing in the

proportions of their components. Samples obtained

in this way are called ‘artificial samples’ (Coleman

et al., 1985; Pitman et al., 1991; Locher et al.,

2005a; Surault et al., 2006). The plant material

used in this strategy is harvested in swards sown

with a single species, which eliminates the labour-

intensive hand separation.

An even simpler strategy is to collect the NIR spec-

tra of dried and ground material of ‘botanically pure

samples’ (i.e. samples taken from swards with a single

species) and to use these spectra to estimate the com-

position of mixtures. This strategy is based on the

assumption that spectra of mixtures can be obtained

by linearly combining the spectra of the botanically

pure samples. This strategy is called ‘end point calibra-

tion’ (Coleman et al., 1990; Locher et al., 2005a,b).

Pitman et al. (1991) compared the three strategies

mentioned above: equations based on real, artificial

and pure samples were built and validated with the

same, independent set of actual pasture samples

(which are real samples). Despite the excellent calibra-

tion statistics of the equations based on the artificial

samples, the validation statistics were very poor. Using

a calibration based on pure samples improved the

results but validation statistics remained poor. Calibra-

tion based on real samples gave the best results. The

comparison between the methods was not entirely

justified, as the numbers of calibration samples and

the origins of the material were not equal in the tested

strategies. To date, there is no explanation as to why

calibrations based on artificial samples and/or pure

samples mostly fail to predict the composition of real

pasture samples.

To disentangle this problem, we repeated the

comparison made by Pitman et al. (1991) using fully

comparable plant material and using equal numbers of

samples with a fully comparable botanical composi-

tion. The equations were validated with the same set

of real samples. In addition, we developed a calibra-

tion strategy, based on adding variation to the spectra

of artificial samples. The rationale for this fourth strat-

egy was based on our own observation that spectra of

artificial samples contain less variation than spectra of

real samples (Cougnon et al., 2012)

The aim of our research was

1 To compare the performance of equations based

on a same number of either real or artificial sam-

ples with the same botanical composition;

2 To explain the difference in performances in dif-

ferent calibration strategies;

3 To develop and assess a novel calibration strategy

based on adding spectral variation to the spectra

of artificial samples and/or botanical pure sam-

ples.

Materials and methods

Plant material

The plant material was collected from two trials com-

paring the yield and botanical composition of peren-

nial ryegrass (Lolium perenne L.; Lp) or tall fescue

(Festuca arundinacea Schreb.; Fa) with white clover

(Trifolium repens L.; Tr) or mixtures of both grass spe-

cies with white clover. Both trials were established in

the spring of 2009 on a sandy-loam soil in Merelbeke,

Belgium. The mixtures sown in both trials differed in

the ploidy level of the ryegrass component: diploid

(Lp2) or tetraploid (Lp4) and in the proportion of Lp

in the sown mixture as indicated in Table 1. The two

trials differed in the management, the number of rep-

licates and in the plot size. The first trial was managed

under a cutting-only management with five cuts per

year; individual plot size was 7�8 m² and there were

three replicates. In the second trial, apart from the

spring growth which was cut, a grazing-only manage-

Table 1 Species composition of the mixtures sown in the

trials.

Sowing density

(viable seeds per m2)

Fa Lp2 Lp4 Tr

2 grass species and clover

1/4Lp2 + 3/4Fa 750 250 0 700

1/4Lp4 + 3/4Fa 750 0 250 700

1/8Lp2 + 3/8Fa 875 125 0 700

1/8Lp4 + 3/8Fa 875 0 125 700

1 grass species and clover

Fa 1000 0 0 700

Lp2 0 1000 0 700

Lp4 0 0 1000 700

Fa, tall fescue; Lp2, diploid perennial ryegrass; Lp4, tetraploid

perennial ryegrass; Tr, white clover.
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ment was applied. Plot size in the second trial was

49 m² and there were four replicates.

At each cut (five cuts per year for the first trial;

one cut per year for the second trial), a representa-

tive sample (150–300 g of fresh material) of the har-

vested material of each plot was separated into the

different species and the fresh weights of the species

were recorded. After the separation, mixtures con-

taining two grass species (both Fa and Lp) were trea-

ted differently from mixtures containing only one

grass species. The separated material from the plots

with Fa + Lp + Tr was recomposed. The separated

material from the plots with Fa + Tr or Lp + Tr was

not recomposed, but pooled per species over the rep-

lications resulting in one pure sample for each of the

four species (Fa, Lp2, Lp4 and Tr) per cut and

per trial. Finally, all samples were dried (16 h, 75°C)
and ground (Brabender shear mill) to pass a 1-mm

sieve.

Results presented in this study are based on data

of 2011 only. The origin and the construction of the

samples are presented in Table 2. Each cut in both

trials delivered one pure sample for each of the four

single species. In addition, we collected 83 separated

and recomposed samples with three constituent spe-

cies: 60 samples came from the cutting trial (4 mix-

tures Fa + Lp + Tr * 3 replicates * 5 cuts); the spring

cut in the grazing trial resulted in 23 samples. As the

botanical composition within the plots was expected

to be less homogenous due to the grazing manage-

ment, two samples were taken per plot on two of

the four blocks. As one sample was misplaced, we

ended with 23 samples: 4 mixtures * 4 reps + (4

mixtures * 2 reps) � 1.

Four calibration sets

Four different sets of calibration samples were built

with the available plant material (Figure 1). The first

set consisted of the 83 hand-separated and recom-

posed samples; these samples are ‘real samples’ (Fig-

ure 1a). As hand separating is the reference method

to determine the botanical composition, equations

should always be validated with real samples. There-

fore, the set of 83 real samples was split into a cali-

bration set and a validation set. Half of the samples of

each cut were assigned to the calibration set (42 sam-

ples) and the remaining 41 samples were assigned to

the validation set.

A second calibration set consisted of artificial sam-

ples (Figure 1b): for each of the 42 real samples in the

calibration set, an artificial sample with the same

botanical composition was made, by physically mixing

the ground material of pure samples in the propor-

tions found in the real sample. As a result the number

of samples and the botanical composition were identi-

cal in both the real and artificial calibration set.

A third calibration set (again with the same num-

ber of samples and identical botanical composition as

the real calibration set) was built by making linear

combinations of the spectra of the pure samples. This

third calibration set therefore had no physical samples

but was a set of spectra. The spectra were calculated

as (aiXFa,j + biXLp2,j + ciXLp4,j + diXTr,j); ai, bi, ci, di,

being the proportion of Fa, Lp2, Lp4 and Tr respec-

tively in the i-th sample of the 42 real samples and

XFa,j XLp2,j XLp4,j XTr,j being the spectra of the four

pure species in the j-th cut (Figure 1c). We called

these linear combinations of spectra ‘artificial spectra’.

Table 2 Number of samples used and their origin.

Post-harvest treatment

Trial 1
Trial 2

TotalC1 C2 C3 C4 C5 C1

2 grass species and clover

1/4Lp2 + 3/4Fa Separated, recomposed,

dried, ground

3 3 3 3 3 6 21

1/4Lp4 + 3/4Fa 3 3 3 3 3 6 21

1/8Lp2 + 3/8Fa 3 3 3 3 3 5* 20

1/8Lp4 + 3/8Fa 3 3 3 3 3 6 21

Total 12 12 12 12 12 23 83

1 grass species and clover

Fa Separated, pooled per species

over replicates, dried, ground

1 1 1 1 1 1 6

Lp2 1 1 1 1 1 1 6

Lp4 1 1 1 1 1 1 6

Tr 1 1 1 1 1 1 6

Total 4 4 4 4 4 4 24

*One lost sample.C1–C5, first to fifth cut.
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A fourth calibration set was obtained by adding

variation to the spectra of the artificial samples (Fig-

ure 1d). The added variation was the difference found

between spectra of real and artificial samples with the

same botanical composition. Among the spectra of the

real calibration samples, twelve spectra (two from

each cut of the first trial and two from the single cut

in the second trial) were chosen randomly and cor-

rected by subtracting the spectra of the 12 correspond-

ing artificial samples resulting in 12 spectra

differences. These 12 spectra differences were added to

each of the spectra of the 42 different artificial calibra-

tion samples, resulting in 504 (12 * 42) new spectra.

This set of spectra was called ‘artificial spectra with

added variation’.

Collection of spectra and calibration

The spectra of the pure species and of the real and

artificial samples were collected on the same day with

a Foss NIRSystems 5000 (Foss, Hillerod, Denmark)

and ISIscan 2.85.1 (Infrasoft, Port Mathilda, PA, USA)

software. One quartercup was scanned per sample.

The inverse reflectance [log(1/R)] was measured from

1100 to 2500 nm in steps of 2 nm, resulting in 700

datapoints per spectrum. All equations were calculated

with WinISI II 1.5 (Infrasoft, Port Mathilda, PA, USA)

using the partial least squares regression method. A

data pre-treatment was performed before regression:

the first derivative of the spectra was taken (with gap

4 and smoothing 4) and scatter correction using stan-

Figure 1 Calibration strategies for distinction of two species A and B based on: (a) real samples, (b) artificial samples, (c) artifi-

cial spectra, (d) artificial spectra with added variation. H, harvest; S, separate; R, recompose; D, dry; G, grind; N, collection of

NIR spectrum; M, mixing powders in known proportions; L, making linear combinations of spectra with scalars (a, b); V, adding

variation.
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dard normal variate (SNV) and detrend was applied.

Principal component analysis and calculation of Maha-

lanobis distance were performed in WinISI (Shenk

and Westerhaus, 1991).

Linear combinations and adding variation

The linear combinations of the spectra of the botani-

cally pure samples, needed to create the artificial sam-

ples, were calculated in R (R Development Core Team,

2011). The 24 (6 cuts * 4 species) spectra of botani-

cally pure species were exported from WiniISI as a

24*700 matrix, which was imported in R using the

read.table() function. This matrix was split into six

700*4 matrices, each containing the spectra of Fa,

Lp2, Lp4 and Tr for one cut). The 42*4 matrix with

the proportions of Fa, Lp2, Lp4 and Tr for each of the

42 real calibration samples was also imported. Using a

loop, each row of the matrix with the proportions was

multiplied with the matrix containing the pure spectra

of the appropriate cut, resulting in a 42*700 matrix.

This matrix was exported using the write.table() func-

tion and imported in WinISI.

The addition of spectral variation to each of the

artificial samples, creating the artificial spectra with

added variation, was also performed in R. A 24*700
matrix including the spectra of the 12 selected real

samples and the 12 corresponding artificial samples

and the 42*700 matrix containing the spectra of the

42 artificial samples were imported in R using the

read.table() function. The 12 spectra of the artificial

samples were subtracted from the 12 corresponding

real samples, resulting in a 12*700 matrix containing

the spectral differences between real and artificial

samples. Using a loop, these 12 spectral differences

were added to each of the 42 spectra of the artificial

samples, resulting in a 504 (12*42) new spectra of

artificial samples with added variation. This 504*700
matrix was exported using the write.table() function.

Comparison of the models

For each of the calibration sets, an equation for the pre-

diction of the proportion Fa, Lp and Tr in the dry matter

was built (Equations 1 to 4) (Table 3). Standard errors

of calibration (SEC), standard errors of cross-validation

(SECV) and the determination coefficient of the linear

regression between the predicted and the reference val-

ues (RSQ) were calculated for the four equations. The

four equations were validated with the validation set of

41 real samples. Root mean square error of prediction

(RMSEP), bias and the ratio of prediction to deviation

(RPD), which is the ratio of the standard deviation of

the reference values to the RMSEP, were calculated

(Shenk and Westerhaus, 1993). For each of the spectra

of the real calibration samples, artificial calibration sam-

ples and artificial calibration spectra, the Neighbour-

hood H (NH) value, which is the Mahalanobis distance

of a spectrum to its closest neighbour, was calculated

(Shenk and Westerhaus, 1993).

The different calibration strategies were compared

statistically by calculating confidence intervals for the

ratios of the standard errors of the prediction errors

(SEP), taking into account the paired nature of the

prediction errors (Fearn, 1996; Naes et al., 2002). Con-

fidence intervals for the ratios of the SEPs obtained

with the equation based on real samples (Equation 1)

and each of the three other equations were calculated.

If a confidence interval excluded 1, the SEPs were dif-

ferent at the 5% significance level, and the results

obtained with the two methods were considered as

different.

Results and discussion

As the calibration strategies used to build Equations 1,

2 and 3 were based on an equal amount of calibration

points with the same composition, a direct comparison

of these strategies was appropriate. Both the calibra-

tion sets and the validation set contained samples with

a very diverse composition (Table 4). The validation

set used to compare the different calibration strategies

was a subset of our real samples. Hence, the validation

set was not completely independent. The results

shown here are only valuable in the closed population

of samples of the concerned trials. This is not problem-

atic as it was not the aim of this experiment to present

the performance of the calibrations, but merely to

compare different strategies to develop calibrations.

The same principles would apply to a larger data set,

validated with a real, independent data set (e.g. plant

material harvested on a different site).

Real samples vs. artificial samples and artificial
spectra

The SEC was higher for the equation based on the real

samples (Equation 1) compared to those for the cali-

brations based on artificial samples (Equation 2) or

artificial spectra (Equation 3) (Table 5). The RMSEP,

Table 3 Calibration sets on which different equations were

based.

Equation Calibration set

1 42 real samples

2 42 artificial samples

3 42 artificial spectra

4 504 artificial spectra with added variation
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on the other hand, was lower for Equation 1 com-

pared to Equations 2 and 3 for the three species

involved. For the three equations, Tr was the species

which was best predicted (the lowest RMSEP, highest

RPD) (Table 5), which was no surprise as the differ-

ence in chemical composition between clover and

grass is higher than between two grass species.

Equation 1 had an RPD higher than 2 for Fa, Lp

and Tr; for Equations 2 and 3, the RPD was below 2

for the three species. As an RPD of 2 is generally

regarded as the minimum for a suitable calibration,

only Equation 1 was considered as suitable to predict

the composition of the validation set (Table 5).

Confidence intervals for the ratio of the SEPs

obtained with Equations 1 and 2 were [0�35, 0�60],
[0�41, 0�68] and [0�26, 0�48] for Fa, Lp and Tr respec-

tively. For Equations 1 and 3, the confidence intervals

of the ratio of the SEPs were [0�33, 0�61], [0�26, 0�49]
and [0�20, 0�36] for Fa, Lp and Tr respectively. This

means that the standard deviations of the prediction

errors obtained with the calibrations based on artificial

samples or on artificial spectra were significantly higher

for the three species. Hence, the equation based on real

samples predicted the botanical compositions of the

samples in the validation set significantly better.

The different performances of the equations based

on artificial samples and artificial spectra on the one

hand and the real samples on the other hand can be

understood from a principal component analysis (Fig-

ure 2). Two clear trends can be observed. First, the

scores of the artificial samples and the artificial spectra

almost overlapped, indicating that the spectral infor-

mation contained in both types of spectra was very

similar. This was confirmed by the study of the NH

distances, the Mahalanobis distance between a sample

Table 4 Distribution of the botanical composition (% by dry weight) of the samples in the calibration sets and in the common

validation set.

Calibration set Validation set

Mean Stdev Min Max Mean Stdev Min Max

Fa 49�3 16�9 18�4 89�0 53�5 15�2 26�5 93�9
Lp 32�4 11�8 11�0 60�1 28�2 13�8 5�7 66�9
Tr 18�2 11�7 0�0 41�3 18�3 10�9 0�4 41�1

Table 5 Calibration and validation statistics of four equations

for the prediction of the botanical composition of forage sam-

ples.

Calibration Validation

SEC RSQ SECV RMSEP Bias RPD

Equation 1

Fa 3�7 0�92 6�1 5�4 �1�2 2�8
Lp 5�0 0�87 7�8 6�1 1�4 2�3
Tr 2�5 0�95 3�9 2�9 0�4 3�8

Equation 2

Fa 3�6 0�94 4�9 15�6 �9�1 1�0
Lp 3�3 0�94 5�0 15�9 7�4 0�9
Tr 1�4 0�98 1�9 6�8 0�7 1�6

Equation 3

Fa 1�8 0�98 2�3 14�3 0�6 1�1
Lp 1�8 0�98 2�2 21�7 �6�8 0�6
Tr 0�7 0�99 0�9 13�9 8�0 0�8

Equation 4

Fa 1�9 0�98 2�4 6�0 0�3 2�5
Lp 1�9 0�98 2�4 7�7 0�5 1�8
Tr 0�6 0�99 0�8 3�5 �0�7 3�1

SEC, standard error of calibration (%); SECV, standard error

of cross-validation (%); RSQ, R squared value; RMSEP root

mean square error of prediction (%); Bias, average difference

between the predicted values and the reference value of the

validation samples; RPD, ratio of standard deviation of valida-

tion samples and RMSEP; Fa, tall fescue; Lp, perennial rye-

grass; Tr, white clover.

Figure 2 Scores of spectra of real and artificial samples and

of artificial spectra plotted in their first three principal compo-

nents.
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and its closest neighbour. Averaged over all cuts, the

NH values between the artificial samples and the arti-

ficial spectra were almost equal (Table 6).

Second, the real samples occur in larger, wider

clouds than the artificial samples or artificial spectra.

The mean NH distance was at least twice as high for

the real samples compared to the artificial samples.

The standard deviation on the NH distances between

the points was also larger for the real samples, except

for the fifth cut of the first trial. Averaged over all

cuts, the mean NH distance between the real samples

was four times higher than the distance between arti-

ficial samples; standard variation was twice as high.

We can conclude that less variation is present in

the spectra of artificial samples and artificial spectra

compared to real samples even though the botanical

composition of both types of samples was the same.

The variation present in the validation samples is not

spanned by the cloud of artificial samples which

explains the weak performance of Equation 2. To test

this hypothesis, we tried to add relevant variation to

the artificial samples and compared the performance

of the resulting equation with the equation based on

real samples.

Artificial spectra with added variation

Adding relevant spectral variation to the artificial sam-

ples was expected to enhance the prediction ability of

the calibrations based on these samples. Indeed, the

equation based on the artificial spectra with added

variation (Equation 4) performed well: RMSEPs were

on the same levels as these obtained with the real

samples (Table 5) and the RPD’s were higher than 2

for Fa and Tr. Confidence intervals for the ratio of the

standard deviations of the prediction errors of Equa-

tions 1 and 4 were [0�82, 1�39], [0�76, 1�24] and

[0�69, 1�16] for Fa, Lp and Tr respectively, which

means that there was no significant difference in the

performance of the equation based on real samples

and the equation based on artificial spectra. The val-

ues of the artificial spectra with added variation

spanned the whole space filled by the real (validation)

samples in the first three principal components (Fig-

ure 3).

From the observations above, we concluded that

the weak performance of Equations 2 and 3 was based

on a lack of variation in the spectra of the artificial

samples and artificial spectra. As the variation in

botanical composition in both sets of samples was

exactly the same, the difference has to be explained

by environmental variation. However, the main

Table 6 Neighbourhood H values (means and standard deviation) of real samples, artificial samples and artificial spectra calcu-

lated in their principal components.

Trial 1
Trial 2

MeanC1 C2 C3 C4 C5 C1

Real samples

Mean 0�096 0�110 0�091 0�086 0�122 0�185 0�126
Stdev 0�061 0�040 0�048 0�041 0�050 0�120 0�086

Artificial samples

Mean 0�013 0�011 0�024 0�028 0�074 0�025 0�028
Stdev 0�065 0�007 0�009 0�017 0�060 0�019 0�031

Artificial spectra

Mean 0�014 0�010 0�025 0�023 0�072 0�027 0�028
Stdev 0�021 0�008 0�008 0�023 0�052 0�021 0�031

C1–C5, first to fifth cut.

Figure 3 Scores of the artificial spectra with added variation

(artif. spect. + var.) plotted in the first three principal compo-

nents of the spectra of the real and the artificial samples.
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sources of environmental variation (different cuts,

different trials, ploidy of the perennial ryegrass,

drying, grinding) were identical for both sets. The only

source of environmental variation present in the real

samples and absent in the artificial samples was the

variation caused by different plots. As indicated above,

the pure material from the plots sown with only one

grass species and clover was pooled over the replicates

of the same cut, resulting in one pure sample per cut

for each species. By acting like this, we diminished the

labour which was one of the prerequisites of our

research. We did not expect this to have any effect on

the calibration, as the trials were very uniform, and

the variation coefficients for dry matter yield, crude

protein content and digestibility of the organic mate-

rial were very low (data not shown). The difference

between the real and the artificial samples may find

its origin in the post-harvest handling and behaviour

of the plant material. Different authors (Coleman

et al., 1990; Locher et al., 2005a) suggest that there is

a difference in particle size distribution whether a spe-

cific species was ground solely or in a mixture, but

these effects are believed to be largely eliminated by

the mathematical treatment applied on the spectra.

Another source of variation between the real and arti-

ficial samples might by due to the interaction of spe-

cies growing together in a mixture compared to

species growing in a pure stand. A similar suggestion

was made by Surault et al. (2006), who explained the

difference between real and artificial samples by stat-

ing that the spectral signatures of grasses growing in

pure stands and mixtures are different. This interac-

tion effect is especially true when one of the species is

clearly dominant. Indeed, there is a clear morphologi-

cal difference between a species growing in a mixture

where it is dominated by another species, and the

same species growing in a pure stand. Whether the

spectra of species growing in pure stands or in mix-

tures are different remains to be proven.

Whatever the reason or origin may be, it is

remarkable that apparently small differences in envi-

ronmental variation in the calibration samples have a

huge influence on the resulting equations.

One way to increase the environmental variation

in the artificial samples is to harvest pure material

from more plots as apparently a pure sample for each

species in the real samples is needed to obtain the

same amount of environmental variation in the artifi-

cial samples as in the real samples.

Surault et al. (2006) noticed that broadening a

calibration based on artificial samples with some real

samples greatly improved the performance of their

calibration. The strategy we used to improve the

performance of the artificial samples was to increase

the variation in the spectra of the artificial samples by

adding the variation present in the spectra between

real and artificial samples with an identical botanical

composition. No new reference values were added,

just differences between spectra. The number of spec-

tra in the fourth calibration strategy was inflated a lot,

but the number of reference values did not change.

Implications for practise

Although good calibrations for botanical composition

based on botanical pure samples were described

(Locher et al., 2005a,b), our findings suggest there is

more advantage in taking time and effort to use real

samples, which represent all the variables that would

affect the NIRS spectra, rather than creating artificial

samples. The labour required to separate samples can

be reduced by following a strategy in which relevant

environmental variation is added to the available ref-

erence values (Fern�andez Pierna et al., 2010). By scan-

ning a restricted set of samples for example on

different days (with different temperature and humid-

ity), the variation due to different scanning circum-

stances can be added to all the reference samples. The

variation present between the spectra of a particular

species grown as a single species in different locations

or managed under different circumstances is another

source of variation that may be added to make a cali-

bration more robust for botanical composition.

In some cases, the use of a calibration strategy

based on real samples is not possible (e.g. because the

species for which the calibration is built are very diffi-

cult to separate). In that case, a calibration strategy

based on botanically pure samples can be used keep-

ing some important points in mind.

There is not much gain in mixing physically only a

few botanically pure samples to obtain series of artifi-

cial samples with a whole range of compositions. Our

results and results of Locher et al. (2005a) and Cole-

man et al. (1990) and Pitman et al. (1991) indicate

that acting like this merely creates linear combinations

of spectra of pure samples. It is the environmental var-

iation in the pure samples that is of the greatest

importance, and environmental variation can be

added to the spectra using a strategy as presented in

this article.

Conclusion

The performance of equations for the prediction of

botanical composition based on artificial samples or

artificial spectra was not satisfactory. This weak perfor-

mance could be explained by a lack of environmental

variation in the artificial samples relative to the real

samples. Adding the variation among artificial and real

samples to the artificial calibration samples resulted in

© 2013 John Wiley & Sons Ltd. Grass and Forage Science, 69, 167–175
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a calibration which performed nearly as well as the

calibration based on real samples. Based on this expe-

rience, we recommend a calibration strategy based on

diverse hand-sorted samples, rather than making a lot

of artificial samples that contain relatively little spec-

tral information. Adding environmental variation to

the spectra of the calibration samples allows obtaining

a robust calibration with a minimum of hand-sepa-

rated samples.
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