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a b s t r a c t

The objective of this study was to discriminate by a NIR line scan hyperspectral imaging, taxonomic plant
families comprised of different grassland species. Plants were collected from semi-natural meadows of
the National Apuseni Park, Apuseni Mountains, Gârda area (Romania) according to botanical families.
Chemometric tools such as PLS-DA were used to discriminate distinct grassland species, and assign the
different species to botanical families. Species within the Poacea family and other Botanical families could
be distinguished (R2¼0.91 and 0.90, respectively) with greater accuracy than those species in the
Fabacea family (R2¼0.60). A correct classification rate of 99% was obtained in the assignment of the
various species to the proper family. Moreover a complete study based on wavelength selection has been
performed in order to identify the chemical compound related to each botanical family and therefore to
the possible toxicity of the plant. This work could be considered as a first step for the development of a
complete procedure for the detection and quantification of possible toxic species in semi-natural
meadows used by grazing animals.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Forages are valuable for providing excellent, generally dilute
sources of nutrients for ruminants, and, in general, providing
forages is more sustainable and economical than other feeds.
Feeding a mixture of hay forages rather than grass silage alone
will generally give higher dry matter intakes resulting in higher
milk production and growth, or allowing savings by reducing the
amount of concentrate required to be supplemented. However, a
number of plants that grow in pastures can be toxic to livestock,
including cattle. In some cases, the components that make these
plants toxic are still at toxic levels after being baled into hay. The
best way to assure that forage is safe is to keep these plants out of
the fields and pastures [1].

Toxicity or poisonings can often be avoided by proper manage-
ment of animals, pastures, and hay. Regular analyses of forage
plants are required in order to determine the risk of poisoning

grazing livestock, or to determine if harvested forage is likely to
poison animals. The risk of intoxication will change depending on
the phenological stage of growth of the plant [2], if forage quantity
is limited, and when animals are very thirsty or hungry [3]. Thus,
invasive and toxic plants can cause economic losses to the live-
stock industry; often these toxic plant species are aggressive
invaders and reduce optimum utilization of pasture land [4].

Up to now the analyses regarding determination of invasive
and toxic plants consisted of visual observations, indicating if the
toxic plants were identified directly in the field. Toxic plant
determination is very important not only for pasture quality, but
also for animal intake [2]. The toxicity of plants varies can vary
greatly depending on the species or variety, the concentration of
the toxin in different plant parts, and also the state of maturity.
Animals react differently depending on the plant species, age and
health status of the animal before poisoning. The sensitivity to the
toxic plant and the amount ingested are important points for
animal health [5].

As practical strategy for preventing animal poisoning, some
general guidelines are suggested: know which plants are toxic and
when they are potentially dangerous; inspect pastures to identify
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and destroy poisonous plants before initiating grazing; be sure
animals are neither starved nor thirsty when put on pasture; avoid
hay that might contain toxic plants; provide supplemental feed
and water to animals during periods of low pasture availability.

The grassland species can contain undesirable compounds from
different chemical classes: alkaloids, phenolic compounds (some toxic
phenol derivatives), as well as terpenes and sterols (terpenoids,
sesquiterpenes, sesquiterpene lactone, saponins) [6]. Alkaloids are
any chemical compound which contains group of heterocyclic nitro-
genous substances of vegetable origin [7]. The toxicity of alkaloids may
be variable, from low toxicity to fatal levels, as they are sometimes
lethal for animals and humans [8]. The phenolic compounds are not
uniformly distributed in plants at the tissue, cellular or subcellular
levels [9]. The fundamental structural elements which characterize the
phenolic compounds are important determinants in the sensory and
nutritional quality of plants. Phenolic compounds have beneficial
effects, but they may cause some allergic reactions, or can form some
mutagenic and carcinogenic metabolites [10]. Urbas [11] states that
terpene compounds represent the largest and functionally most
diversified natural group; they are also known as plant essential oils.

The toxicity of terpene compounds consist of allergic reactions at the
skin or mucus levels [6]. The sterols derived from plant sources are
named phytosterols [13]. They can be identified by the integral
constituents in the lipid layers; the sterols are involved in the regu-
lation of membranes [12]. The most often found phytosterols are
sigmasterol, sitosterol, brassinolide, clerosterol, cycloartenol and dios-
genin [13].

Near Infrared Hyperspectral Imaging (NIR-HSI) was deve-
loped for a high level and frequency of product control lea-
ding to improved food safety and quality control systems [14,15].
NIR-HSI brings a new dimension in spectroscopy: the spatial
resolution. Hyperspectral images allow identification and quanti-
fication of chemical constituents within samples [16]. With this,
both the spectral and the spatial information will be available.

The HSI system has been previously used in agronomy, for example
Suzuki et al. [17] used a ground-based HSI system to map the grass
chemical components directly in the field. Similar studies were made
by Okamoto et al. [18] for weed detection and plant classification in
grasslands. Initially, the plant species were classified before segmenta-
tion, and then the plant leaves and background soil were separated.
For plant discrimination, the Euclidean distance achieved with seg-
mentation achieved a 75–80% classification rate, whereas discriminant
analysis gave a rate of 90% of correct classification.

Recently, the discrimination technique, linear discriminant ana-
lysis (LDA) has been used on the same ground-based HSI systems for
mapping botanical composition and herbage mass in pastures [19].
The herbage mass was first measured and the plant species were
then classified as perennial ryegrass, white clover, other plants and
dead material, with a classification accuracy of 91.6%. This study was
one of the first studies regarding botanical composition discrimina-
tion directly in the field. Dale et al. [20] performed, with a laboratory
scale NIR-HSI system, the discrimination of five distinct grassland
species (Arnica montana L., Agrostis capillaries L., Hieracium aurantia-
cum L., Festuca rubra L. and Trifolium repens L.). The presence in
binary and ternary artificial mixtures of the various grassland
species was predicted by PLS-DA model, with a correct classification
rate higher than 99%.

The research objective of this paper is to use laboratory scale
NIR-HSI system to discriminate different grassland species accord-
ing to botanical family membership: Poacea family (Poa), Fabaceae
family (Faba) and other botanical families (OBF).

Table 1
Grassland species used in the study to test the NIR-HSI technique. These species
were harvested from a semi-native meadow in Romania, Gârda area, GPS
coordinates of Gheƫari Research Centre: latitude: 46.500, longitude: 22.816,
elevation: 1212 m.

Poa Faba OBF

Agrostis capillaries L. Lathyrus pratensis L. Adonis verinalis L.
Anthoxanthum odoratum L. Lotus corniculatus L. Arnica montana L.
Briza media L. Trifolium montanum L. Clematis integriforia L.
Cynosurus cristatus L. Trifolium pratense L. Clematis recta L.
Festuca pratensis L. Trifolium repens L. Conium maculatum L.
Festuca rubra L. Datura stramonium L.
Trisetum flavescens L. Equisetum palustre L.
Nardus stricta L. Euphorbia cyparissias L.
Deschampsia flexuosa L. Hieracium aurantiacum L.

Hypericum perforatum L.
Pteridium aquilinum L.
Stellaria media L.
Veratrum album L.

Legend: Poa, Poaceae family, Faba, Fabaceae family, OBF, other botanical families.

Table 2
List of toxic grassland species, their identified toxic compounds and some reactions that are caused by each toxic compound group [19].

Toxic
compounds

Grassland species

Alkaloids C. maculatum L. produces two types of intoxication (a) CNS depression, and (b) teratogenicity. The plant contains volatile pyridine alkaloids, primarily
coniine, N-methylconiine, and gamma-coniceine. Other pyridines as well, but of much less importance
D. stramonium L. is a neurotoxin, causing reduced GI mobility and appetite. Contains potent anticholinergic tropane alkaloids L-hyoscyamine and
scopolamine. Similar toxicity to Atropa belladonna L. May also contain calystegin B2 in low concentrations
V. album L. has toxic and medicinal effects. Causes nausea, vomiting, abdominal pain, hypotension, and cardiac effects also. Contains a series of
nitrogenous steroidal alkaloids termed azasteroids, veratranine, cevanines, jervanines. Cyclopamine is probably most important of the jervanines, as it
is most abundant and produces fetal deformities

Phenol
derivates

H. perforatum L. can typically cause photosensitization but it can be used medicinally also. Glands in plant surface contain hypericine (a
naphthodianthrone) and pseudohypericin (all highly condensed quinones)

Terpenoids E. palustre L. is neurotoxic and can cause muscle weakness, trembling and collapse. Toxins are primarily a thiaminase (inactivate thiamine). Does
contain small amounts of pyridine alkaloids that are probably not involved in the toxicity
C. integriforia L. and C. recta L. can produce some digestive disturbances and gastrointestinal (GI) irritation. Toxin may be protoanemonin; may also
contain glycosidic derivatives of oleanolic acid terpenoids, similar to Ranunculus
P. aquilinum L. provokes toxicity in ruminants as bone marrow depression and/or neoplasia; in horses as thiamine deficiency. The other toxicity
problems (i.e., carcinogenesis and hematologic effects) result from ptaquiloside, an unstable norsesquiterpene glycoside with an illudane skeleton
A. verinalis L.—causes digestive disturbances. Contains a series of potent 23-C cardenolides: adonitoxin (a mannoside of adonitoxigenin); cymarin; and
K-strophanthin. Concentrations of these glycosides are highest in leaves and flowers, may also contain other toxins such as protoanemonin
E. cyparissias L. have irritant properties in sap. Irritation of skin, mucous membranes, conjunctiva and GI tract. Contain complex diterpenoid euphorbol
esters (e.g., esulones A–C, esulatins A–C); ungenols (e.g. miliamines). Great variation in which diterpenoids are present in these plants
S. media L.—annual weed, is not known to be toxic but is an invasive plant for meadows. Related genera (e.g., Saponaria) contain steroidal saponins
(often githagenin) that are glycosides of pentacyclic oleananes
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2. Material and methods

For this study, species used for each group are species growing
in the Apuseni Mountains, more precisely in a semi-natural
grassland of National Apuseni Park, Gârda area (Romania) (GPS
coordinates of Gheƫari Research Centre: Latitude: 46.500–Long-
itude: 22.816): Poa, Faba and OBF collected samples are presented
in Table 1.

Regarding the grassland species chosen for OBF group, they are
of special interest because many of them are toxic. In Table 2, the
grassland species were grouped according to the toxic compounds
they may contain: alkaloids, phenolic compounds, terpenes and
sterols; further some reactions that can be caused by the toxic
compounds are shown [20].

The grassland plants species were collected directly in the field
after the grassland botanical composition determination. The
samples were air-dried and then prepared using the protocol for
NIRS analysis adapted on the scanning linear system [21].

The NIR-HSI system used was a push-broom system (SWIR
Hyperspectral ImSpector N25E Burgermetrics, Riga, Latvia); the
NIR-HSI analyses were performed at the Walloon Agricultural
Research Centre in (CRA-W Gembloux). The wavelength range
used was 1100–2400 nm with a spectral resolution of 10 nm. The
images consist in lines of 209 channels of wavelength and each
image is a mean of 32 scans. For image acquisition, the Hyper See
program (Burgermetrics, Riga, Latvia) was used.

Once the images were random acquired on a species by species
basis (over two consecutive days), a total of 750 spectra (250
spectra in 3 repetition images) were selected in order to build and
validate PLS-DA (Partial Least Squares Discriminant Analysis)
discrimination models under MatLab R2010a program (Math-
works, Natick, MA) to discriminate different grassland species.
The 1st and 3rd repetition images (500 spectra per sample) were
used to construct the calibration models (training set) and the 2nd
repetition images (250 remaining spectra) as external validation
(test) set.

The calibration algorithm was carried out on absorbance spectra
pre-treated by normalization and 1st Savitzky–Golay derivative
(window¼11, polynomial¼2). The values were normalized to (divide
each variable by) the sum of the absolute value of all variables for the
given sample. The normalization of samples returns a vector with
unit area (area¼1) “under the curve” [22]. The PLS-DA calibration
model created was validated using “leave one out” cross validation
and 12 latent variables (LVs) were chosen to build the discriminant
equation. The optimal LVs depend on the specific objectives of the
modelling project, and the number chosen, as addition of other LVs
does not greatly improve the performance of the model [22]. Outliers
were detected by using score, residual, and leverage plots, and
outliers were eliminated to achieve robustness and to increase the
accuracy of the estimation [23].

3. Results and discussion

In order to discriminate between Poa vs. Faba vs. OBF the PLS-
DA algorithm was applied. The PLS-DA algorithm is based on the
classical PLS regression algorithm and is performed to construct
models to discriminate nonviable and viable classes [24].

The PLS-DA results are expressed in terms of correct classifica-
tion rates for each class. These rates are grouped into the so-called
confusion table as shown in Table 3 for the training set, cross
validation and test set., This table shows that, for the test set, 100%
of Poa, 96.2% of Faba and 99.9% of OBF samples have been
respectively correctly detected as such.

The outlier elimination plays an important role in the NIR-HSI
discrimination model developments [25]. The results indicated

that after the outliers were eliminated (2% of all spectra), the
determination coefficients (R2) of the discrimination models of
Poa, Faba and OBF were 0.91, 0.60 and 0.90, respectively (Table 4);
the root mean square error of calibration (RMSEC) of the three
models were 0.148, 0.210 and 0.157, respectively; and root mean
square error of cross validation (RMSECV) of the three models
were 0.149, 0.211 and 0.157, respectively. The R2 found for Faba was
lower (P¼0.05) in comparison with Poa and OBF, while the RMSEC
and RMSECV were higher. The poor results in Faba discrimination
could not be fully explained, but may be linked to the lower
number of samples taken in the study (five distinct grassland
species).

For the estimation of the predictive capacity of the discrimina-
tion model the external validation procedure was applied. The
coefficients of determination for the calibration and cross validation
compared to the prediction set were similar: R2 Pred¼0.89 for Poa,
0.46 for Faba and 0.86 for OBF. The statistics obtained for prediction
efficiency of the models could be expressed by the value of the root
mean squared error of the prediction (RMSEP¼0.158 for Poa, 0.241
for Faba, and 0.186 for OBF).

The differences among the botanical families were assessed
using PLS-DA scores plots; complete and significant (P¼0.05)
separation of Poa, Faba and OBF groups was shown (Fig. 1). When
the PLS-DA model is complete, the score plot can be visualised for
qualitative results of discrimination model, each data point repre-
senting one sample. In the corresponding PLS-DA score plot the

Table 3
Confusion matrix for the Poaceae family vs. Fabaceae family vs. other botanical
families PLS-DA model.

Calibration results (%) Poa Faba OBF

Predicted Poa 100 0 0
Predicted Faba 0 100 0
Predicted OBF 0 0 100

Cross validation results (%)
Predicted Poa 100 0.09 0
Predicted Faba 0 99.91 0
Predicted OBF 0 0 100

External validation results (%)
Predicted Poa 100 1.20 0
Predicted Faba 0 96.20 0.09
Predicted OBF 0 2.60 99.91

Legend: Poa, Poaceae family, Faba, Fabaceae family, OBF, other botanical families.

Table 4
Calibration performance for the Poaceae family vs. Fabaceae family vs. other
botanical families PLS-DA model.

Calibration performance Poa Faba OBF

R2 Cal 0.909 0.601 0.900
R2 CV 0.908 0.598 0.899
R2 Pred 0.889 0.463 0.859
RMSEC 0.148 0.210 0.157
RMSECV 0.149 0.211 0.157
RMSEP 0.158 0.241 0.186

Legend: Poa, Poaceae family, Faba, Fabaceae family, OBF, other botanical families, R2

Cal, coefficient of determinations for calibration model, R2 CV, coefficient of
determinations for cross validation model, R2 Pred coefficient of determinations
for external validation model, RMSEC, root mean square error of calibration,
RMSECV, root mean square error of cross validation, RMSEP, root mean squared
error of the prediction.
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calibration (grey marks) and external validation (black marks)
samples can be displayed together.

The score plot of the 2nd and the 3rd latent variable (LV 2 and
LV 3) presented a good discrimination between the botanical
groups. Because Faba contain similar crude fiber content as Poa
and similar crude protein content as OBF it was not possible to
characterize the Faba group. Interestingly, examining the score
plot showed that the primary differences accounting for the
separation between Poa and OBF was the 2nd latent variables.
However, regarding the loadings of 2nd latent variables, the
important bands for Poa and OBF (not shown), which correspond
to chemical components are shown in Table 5.

According to the loading plot 2nd latent variables, the bands
correlated with Poa group were located in the negative part (LV 2
[−]), while the bands correlated to OBF group were found in the
positive part (LV 2 [+]). The important NIR absorption bands found
in loading were presented and a tentative chemical interpretation
was proposed on the basis of the information available in the
literature [26].

The differences between Poa and OBF could be partly related to
potential toxicity and secondary compounds contained within each
botanical group. The specific bands registered in OBF belongs to
vibration combination band of C–H stretching and deformation
vibration in CH3 (1356 nm), combination band of C–H stretching and
deformation vibration in CH2 (1395 nm) and following by combination
band of O–H stretching and deformation vibration (1482 nm) have
been associated to constituents as: polyphones, alkaloids, protein and
volatile and non-volatile acid [27] (Fig. 2). The same combination
bands have been correlated to constituents observed by Chan et al.
[27] (2275 nm, 2320 nm and 2090 nm, respectively), because both
present bands of combination and of hydroxyl groups. The band
around 1193 nm (C–H stretching vibration) has been included in the
discrimination model of both Poa and OBF groups. It is interesting to
mention that Wu et al. [28] have correlated a band in the vicinity of
1197 nm (8351 cm−1) to alpha-pinene alkaloid (Fig. 2).

Regarding the spectral regions close to 1564 nm LV 2 (+),
1777 nm LV 2 (−) and 2154 nm LV 2 (+), these regions provided
an important contribution to the loading, and the spectral regions
could be related to the combination band of N–H stretching and
deformation vibration, combination band of C–H stretching, and
deformation vibration and combination band of amide vibration
[29] (Fig. 2). The combination bands can be attributed to the
chemical structure of total tannins (2150[−] and 2318 [+]) and total
phenols (2150[−], 1772[+] and 1560[−]) [27]. Roberts et al. [30]
noted that the main interest in identification of tannins in Lotus
corniculatus L. was in the vicinity of 2140 nm wavelength range,
which in our case could be the 2154 nm.

Another similar study to Roberts et al. [30] was performed by
Sinnaeve et al. [31] and the specific wavelengths for condensed
tannins were reported at 1460 nm and 2144 nm for bands of O–H
bonds and 1132, 1650, 2144, 2306 and 2350 for bands of C–H
bonds. The 2154 nm, 1652 nm and 2293 nm wavelengths have
been also highlighted in the discrimination PLS-DA model and are
similar wavelengths to 2150 nm, 1604 nm and 2312 nm, respec-
tively which were attributed by Goodchild et al. [29] below to
condensed tannins (Fig. 2).

Phenolic compounds are omnipresent in most plant species
and play an important role in resistance of plant disease [32].
The spectral bands between 8000–4000 cm−1 (1250–2500 nm)
were mainly caused by the stretching or deformation vibration
of C–H, O–H and N–H groups; these groups are abundant in
phenolic acids [33]. The wavelengths close to 1100–1300 nm
present an important contribution to the LV loading and are
mainly related to the combination band of O–H symmetric and
anti-symmetric stretching vibration, the combination band of C–H
aromatic second overtones, and C–H third overtone vibration.
These can be attributed to the chemical structure of phenolic
compounds [34,35].

The terpenoid concentration in plants is also a component that
helps the OBF and Poa separation. All terpenoids are derived by
repetitive fusion of carbon units based on isoprene skeletons [36–39].
Isoprene spectra are combinations of C–H stretching and deforma-
tion vibrations from –CH3 groups (1696 nm), C–H stretching and
deformation vibrations from ¼CH2 groups (1614 nm) [35] (Fig. 2).
Also the combinations and overtones of more fundamental bands
such as C–H stretching and deformation vibrations –CH3 groups
(1696 nm), C–H stretching and deformation vibrations ¼CH2 groups
(1614 nm) and C–O stretching and deformation vibrations CO2R
groups (1953 nm) can be considered as fatty acids [36] (Fig. 2).

On the basis of the relation existing between spectral finger-
print enhanced by discriminant models and chemical groups, it
can be stated that the toxic constituents of plants provided a
partial basis on which the discrimination between plant species
and families was achieved. The OBF plants are both invasive and
toxic plants, and could be discriminated from nontoxic plants.

Fig. 1. PLS-DA score plot—LV2 (2.07%) vs. LV3 (0.46%).

Table 5
Specific bands and related vibration of Poaceae family and other botanical families
registered in LV 2 (2.07%) loading.

Constituents Wavelengths (nm) Bond vibration

Poa LV 2 (−)
Carbohydrate 1212 C–H str. second overtone

Protein
1432 N–H str. second overtone
2050 N–H sym. str.+amide II

Fiber
1777 C–H str. first overtone
1816 O–H str.+2�C–O str.

Alcohols 2073 O–H str.+ O–H def.
Starch 2253 O–H str.+O–H def.

OBF LV 2(+)

Carbohydrate

1193 C–H str. first overtone
1356 2�C–H str.+C–H def.
1395 2�C–H str.+C–H def.
1482 O–H str. first overtone
1614 C–H str. first overtone
1652 C–H str. first overtone
1696 C–H str. first overtone
1953 C–O str. second overtone

Protein

1501 N–H str. first overtone
1564 N–H str. first overtone
2154 2� amide I+amide III
2292 N–H str.+C¼O str.

Starch 1540 O–H str. first overtone (intermol. H-bond)

Legend: Poa, Poaceae family, OBF, other botanical families.
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4. Conclusion

The PLS-DA model was successfully performed to discriminate
the grassland species according to botanical families by NIR-HSI
system. This work is a first step for the development of a
procedure for detection and quantification of toxic species in
forages harvested from semi-native grasslands. The NIR-HIS tech-
nique has the ability to discriminate the floristic composition of
plants harvested from grazing lands. The technique could be used
to determine if invasive and toxic plant species are present or not.
To affirm this, the next step should chemical analysis of all the
samples for all the targeted compounds, which would help to
confirm the discrimination seen in the NIR images. Further studies
are still necessary to refine the discrimination between Poa vs.
Faba and Faba vs. OBF, respectively, as well as to demonstrate
unequivocally the chemical compounds responsible for the dis-
crimination. It is important to underline that the floristic composi-
tion of a meadow could be determined only if the spectra of each
identified species are included in the databases used to calibrate
the system.
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