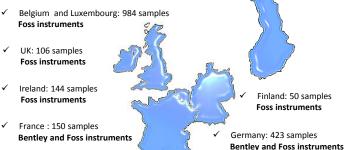
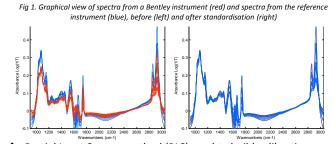


C. Grelet¹, J.A. Fernández Pierna¹, H. Soyeurt², F. Dehareng¹, N. Gengler², P. Dardenne¹


¹ Walloon Agricultural Research Center (CRA-W), 24 Chaussée de Namur, 5030 Gembloux, Belgium ; ² University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium ;

Context and objectives


- Fatty acid (FA) content of cow milk can be predicted by Mid-Infrared (MIR), however to build robust MIR equations, large spectral datasets with samples covering the maximum chemical variability is needed
- The sharing of data is a potential solution, but due to the existing differences between each MIR instrument, a step of spectral standardisation is necessary
- The goal of this research is to correct the differences in instrumental responses from different types and brands of MIR instruments, by using a standardisation method, in order to build and use common MIR calibrations predicting fatty acids content of milk

Fatty acids analysis and standardisation of MIR instruments

- 1827 milk samples selected, based on spectral variability, and analyzed in MIR with Foss (FT+, FT6000) and Bentley (FTS) instruments and in GC to obtain fatty acid profile (since 2006).
- Dataset covering large variability of breeds (17), seasons, feeding systems and geographical areas:

- Method used: Piecewise Direct Standardisation
- Milk MIR spectra from all instruments are mathematically corrected to match the instrumental response of a reference instrument, via analysis of common milk samples

Partial Least Square method (PLS) used to build calibrations
1371 samples used as calibration dataset (including 66 Bentley)
456 samples used as validation dataset (including 22 Bentley)

·	Bentley and Foss instruments	•						
Results and discussion								

- Standardisation allows to bring all the spectra from different instruments into the reference instrument spectral format, and to group them into a common database
- Common FA equations where created for all instruments, including Foss and Bentley
- Validation results (with Foss and Bentley), show the good ability of the equations to be used on all instruments (even on Bentley standardized spectra)

L	e	7	е	n	10	1

terms = number of terms (latent variable) SD = standard deviation of reference values SEC = standard error of calibration

- SEC = standard error of R²c = R² of calibration
- SEP = standard error of prediction

 $R^2p = R^2$ of prediction

RPDp =	ratio	of SD	/SEP.	See	RPD cl	ass

RPD		Class	Application	Cumpheal				
RE	νŪ	Class	Application	Symbol				
0	2	Very poor	Allows to compare groups of cows,					
0	2	very poor	distinguish high or low values					
2	3	Poor	0					
3	5	Fair	Qualitative screening	+				
5	6.5 Good		Good Quality control					
6.5	+	Excellent	As precise as reference value	+++				

Conclusion

Tabl 1. Statistical parameters of	FA equations,	calibration and validation

	Calibration using 1371 samples			Validati	on (456 s	amples)			
Constituents (g/100 ml milk)	#terms	Mean	SD	SEC	R ² c	SEP	R²p	RPDp	Us
Fat	7	3.906	0.981	0.007	1.00	0.007	1.00	140.11	++
Total of Saturated FA	8	2.694	0.757	0.072	0.99	0.082	0.99	9.23	++
Total of Mono-unsaturated FA	10	1.073	0.344	0.059	0.97	0.066	0.97	5.20	++
Total of Poly-unsaturated FA	11	0.159	0.045	0.021	0.79	0.023	0.75	1.97	-
Total of Unsaturated FA	10	1.233	0.379	0.064	0.97	0.076	0.96	4.99	+
Total of Short chain FA	9	0.348	0.097	0.025	0.93	0.027	0.92	3.59	+
Total of Mid chain FA	11	1.988	0.606	0.104	0.97	0.123	0.95	4.93	+
Total of Long chain FA	10	1.579	0.498	0.110	0.95	0.126	0.95	3.95	+
Total of branched FA	9	0.091	0.026	0.013	0.77	0.015	0.64	1.74	-
Total of odd FA	10	0.156	0.041	0.016	0.84	0.019	0.76	2.14	0
Total of trans FA	13	0.159	0.068	0.029	0.82	0.036	0.76	1.90	-
C4:0	11	0.104	0.029	0.008	0.93	0.009	0.90	3.21	+
C6:0	8	0.072	0.021	0.006	0.91	0.007	0.89	2.97	0
C8:0	9	0.047	0.014	0.004	0.91	0.005	0.88	2.78	0
C10:0	12	0.111	0.035	0.010	0.92	0.011	0.89	3.17	+
C12:0	12	0.134	0.043	0.011	0.93	0.013	0.90	3.29	+
C14:0	9	0.447	0.123	0.030	0.94	0.036	0.91	3.42	+
C14:1 cis	10	0.038	0.014	0.008	0.71	0.009	0.63	1.59	-
C16:0	10	1.192	0.400	0.091	0.95	0.106	0.92	3.77	+
C16:1 cis	10	0.065	0.024	0.013	0.73	0.016	0.63	1.51	-
C17:0	8	0.027	0.008	0.003	0.81	0.005	0.67	1.60	-
C18:0	12	0.394	0.137	0.056	0.84	0.064	0.84	2.14	0
C18:1 cis9	9	0.744	0.261	0.061	0.95	0.068	0.95	3.84	+
Total C18:1 trans	13	0.125	0.056	0.025	0.80	0.032	0.73	1.75	-
Total C18:1 cis	9	0.801	0.286	0.063	0.95	0.070	0.95	4.09	+
Total C18:1	10	0.931	0.314	0.060	0.96	0.071	0.96	4.42	+
C18:2 cis9, cis12	10	0.061	0.022	0.011	0.75	0.014	0.65	1.56	-
C18:2 cis 9, Trans 11	10	0.028	0.020	0.010	0.74	0.013	0.69	1.54	-
Total C18:2	9	0.096	0.026	0.014	0.71	0.017	0.63	1.55	-
C18:3 cis9, cis12, cis 15	11	0.020	0.008	0.004	0.69	0.005	0.60	1.56	-
Total of omega 3	11	0.026	0.010	0.006	0.68	0.006	0.64	1.68	-
Total of omega 6	11	0.103	0.028	0.014	0.74	0.018	0.66	1.57	-

Standardisation allows to merge MIR milk spectra from different instruments together

Common equations were built and can be used in routine by all MIR instruments participating to the standardisation

LAFC

S

Ð