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Prediction of chemical characteristics of 
fibrous plant biomasses from their near 
infrared spectrum: comparing local versus 
partial least square models and cross-
validation versus independent validations
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The reliability of local and partial least square (PLS) near infrared (NIR) models to predict the chemical characteristics of fibrous plant 
biomasses was compared. Validations with different degrees of independence were used. The developed NIR models were reliable for 
the prediction of different main chemical characteristics of various fibrous plant species using multispecies datasets. The local models 
were more reliable in terms of prediction error compared with the PLS models because the local method appears to cope with the non-
linearity and non-homogeneity associated with a large multispecies dataset. The degree of independence of samples in the validation 
set relative to samples used in the calibration set had a major impact on the prediction performance, especially for the local method. It 
affected the local method more because of the lower number of samples used in its specific regressions. There was a decrease in the 
reliability of local and PLS models according to the increase in the degree of independence of the validation set (i.e. the similarity of 
the predicted samples in regard to the calibration samples). The additions of a few independent samples of the predicted plant-species 
group to their calibration set that did not contain samples of the predicted plant-species group improved the prediction performance of 
multispecies models, especially for the local method. The type of NIR models developed in the present study can be used for screening , 
ranking and quantitative analyses of the main chemical components contents in fibrous biomasses, and for the assessment of their 
suitability  to be converted into biofuels.
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Introduction
Fibrous plant biomasses are an important potential source of 
renewable fuels and chemicals because of their great availa-
bility and sustainability.1–3 They represent therefore an impor-
tant biomass resource for a bio-based economy. The chemical 
characteristics (e.g. cellulose, hemicelluloses, lignin, starch, 
soluble sugars, protein and mineral compounds) of fibrous 
plant biomasses vary widely depending on genetics, growth 

environments, storage conditions, harvesting methods and 
periods.4 This variability in chemical characteristics is diffi-
cult to control, but it determines the suitability of fibrous 
plant biomasses to be converted by biological (e.g. ethanolic 
and methanogenic fermentation) and thermochemical (e.g. 
combustion, pyrolysis and gasification) processes, and the 
efficiency of these conversion processes.2,3,5
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2 Prediction of Chemical Characteristics of Fibrous Plant Biomasses

To monitor the variability in plant biomass chemical char-
acteristics amounts and composition (e.g. monosaccharidic 
composition of hemicelluloses) and to adjust the process 
parameters of their conversion, robust analytical methods 
are needed.4 Currently, standard wet chemical methods are 
used to determine the chemical characteristics of plant 
biomasses. These methods are reliable, but they are also 
often tedious, resource- and time-consuming, and expensive, 
and/or use hazardous chemicals. A broad chemical charac-
terisation of plant biomasses using standard wet chemical 
methods costs US$800–2000 per sample and takes numerous 
days to complete.4 Thus, reliable alternative methods without 
the disadvantages of wet chemical methods are needed 
for screening large numbers of samples and for industrial 
process optimisation.

Near infrared (NIR) spectroscopy is one such alternative 
method. This simple, fast, cheap, clean, non-destructive and 
reliable method is widely used for the quantitative and qualita-
tive analysis of pharmaceutical, food, feed and plant products.6 
This method can predict different variables for about US$10 
(1–5% of the wet chemistry procedure cost) per sample and 
can be used for online process control.4 The main disadvan-
tage of the NIR method is that it is a secondary analytical 
method. Consequently, it must be calibrated to a primary 
(reference) analytical method. For this calibration, advanced 
multivariate models are now used.6 To calculate a reliable 
value of a chemical characteristic based on information 
obtained from an NIR spectrum, the calibration model must 
be built with:7 (1) data determined by an accurate primary 
(reference) method; (2) a dataset containing a large variability 
of the predicted population (spectral variability) and of the 
chemical characteristic (large concentration range). At least 
100–300 samples are usually used to build a robust prediction 
model of a chemical characteristic for a given population of 
an agricultural product. Therefore, the development of such 
NIR models for a broad chemical characterisation of a given 
population of plant biomasses is expensive and resource- and 
time-consuming, costing about US$300,000.4

NIR predictions are generally based on linear multivar-
iate models such as partial least square (PLS) regression. To 
obtain a realistic prediction performance in terms of prediction 
error, these models require a large number of samples that 
are representative of the whole population variability to cover 
its spectral space. A large number of samples will usually 
reduce the accuracy in terms of the prediction error of these 
models.7 One technique that can improve the accuracy of a 
prediction model when there are a large number of samples 
in the dataset (e.g. multiproduct) is to split the samples into 
small specific datasets (e.g. per type of product or species). 
This procedure will reduce the non-linearity present in a large 
dataset.7 To solve the issue of splitting a dataset into small 
specific datasets, the local (specific regression and non-linear) 
method can be used, for example the local method of Shenk 
et al.8 This local method builds a specific PLS regression with 
a low number of samples for each sample by selecting its 
most similar spectral neighbours from the library based on 

the highest correlation between spectra. To minimize the 
under- and overfitting of local prediction models, the optimum 
number of selected samples and the minimum and maximum 
PLS components for its specific regressions have to be deter-
mined.8 The local method enables a large dataset (e.g. multi-
product) to be used to obtain accurate predictions, in terms of 
prediction error, and to have realistic prediction performance 
because a specific regression is built for each sample. The 
prediction model is less influenced by non-linearity and non-
homogeneity present in a large dataset.7,9 Local prediction 
models are considered to be 10–30% more reliable depending 
on the spectral diversity of the dataset, as compared with the 
PLS prediction models.7,9,10

The aim of this study was to compare the reliability of local 
(specific regression and non-linear) and PLS (linear regres-
sion) NIR models to predict the chemical characteristics of 
fibrous plant biomasses. The study also used multispecies 
datasets, to predict numerous chemical characteristics and to 
test the influence of the type of validation on the parameters 
used to assess the prediction performance of the models.

The chemical characteristics that have been considered in 
the present study were: (1) cellulose and hemicelluloses, the 
most abundant structural carbohydrates in nature and the 
resource for the production of cellulosic ethanol; the optimal 
conversion of the hemicelluloses into fuels and chemicals 
depends on its monosaccharidic composition;2,3,5 (2) lignin, 
the most abundant component in nature with an aromatic ring 
structure;3 (3) water-soluble glucose, fructose and sucrose, 
non-structural carbohydrates that can be fermented without a 
complex pretreatment of the biomass;3 (4) protein, the source of 
organic nitrogen of plant biomasses;3 (5) mineral compounds, 
which represent the inorganic part of plant biomasses and 
its complement, which is the organic matter; (6) the higher 
heating value (HHV), which can be used to assess the thermal 
energy of biomasses;2,5 (7) the enzymatically digestible organic 
matter (eDOM) and the biochemical methane potential (BMP), 
which are relevant methods to assess the suitability of the 
plant biomasses to be converted by anaerobic digestion.5,11

Material and methods
Biomass material
The analysed samples consisted of a “grass–alfalfa” mixture 
(Dactylis glomerata L.– Medicago sativa L.; cultivar Terrano—
Medicago sativa L. cultivar Europe; three harvest cycles late 
spring–late summer–late autumn; 38–30–30 samples), cocks-
foot (Dactylis glomerata L.; cultivar: Terrano; three harvest 
cycles late spring–late summer–late autumn; 6–6–2 samples), 
fibre corn (Zea mays L.; cultivars: Aayrton, Athlético, Aventura, 
Beethoven, Cannavaro, Coryphée, Dominator, Franky, 
Ladifférence, LG Azelo, Olympus, Ricardinio and Ronaldinio; 
early autumn and late winter harvest, respectively, 237 and 17 
samples), fibre sorghum [Sorghum bicolor (L.) Moench; culti-
vars: CA25, ENR10, H133, Maja and Zerberus; early autumn 
and late winter harvest, respectively, 179 and 58 samples], 
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hemp (Cannabis sativa L.; cultivars: Epsilon 68, Fedora 17 
and Futura 75; early autumn harvest; 109 samples), imma-
ture rye (Secale cereale L.; cultivars: Protector and Vitalio; 
early spring harvest; 45 samples), immature spelt [Triticum 
aestivum L. ssp. spelta (L.) Thell.; cultivars: Badengold and 
Cosmos; late spring harvest; nine samples], Jerusalem arti-
choke leaves and stalks (Helianthus tuberosus L.; cultivar: 
Volkenroder spindel; early autumn harvest; 62 samples), 
miscanthus giganteus (Miscanthus × giganteus J.M. Greef & 
Deuter ex Hodk. & Renvoize; cultivars: Bical; early autumn 
and late winter harvest, respectively, 34 and 178 samples), 
spelt straw (Triticum aestivum L. ssp. spelta (L.) Thell.; culti-
vars: Badengold and Cosmos; late summer harvest; 95 
samples), switchgrass (Panicum virgatum L.; cultivars: Alamo, 
Blackwell, Cave-in-Rock, Dacotah, Kanlow, Nebraska 28, 
Shelter and Traiblazer; early autumn and late winter harvest, 
respectively, 25 and 186 samples) and tall fescue (Festuca 
arundinacea Schreb.; cultivars: Hykor, Jordane, Kora, Perun 
and Soni; three harvest cycles late spring–late summer–late 
autumn; 215–217–212 samples). These samples came from 
randomised block trials performed in 2008, 2009, 2010 and/or 
2011 at Libramont [498 m above sea level (asl); average annual 
temperature: 8.6°C; average annual precipitation: 1260 mm; 
49°55¢N, 05°24¢E; Belgium], Gembloux (161 m asl; average 
annual temperature: 9.8°C ; average annual precipitation: 
856 mm; 50°33¢N, 04°43¢E), Tinlot (255 m asl; average annual 
temperature: 9.7°C; average annual precipitation: 871 mm; 
50°28¢N, 05°23¢E; Belgium), Mötsch (330 m asl; average 
annual temperature: 8.4°C; average annual precipitation: 
675 mm; 49°57¢N, 06°33¢E; Germany) or Gerbéviller (260 m 
asl; average annual temperature: 9.9°C; average annual 
precipitation: 1022 mm; 48°29¢N, 06°31¢E; France). The crops 
came from trials that were performed with different harvest 
periods, cultivars and/or nitrogen fertilisation levels (0–240 kg 
of nitrogen per hm2). From plots between 9 m2 and 24 m2, the 
whole above-ground biomass was harvested at 10 cm from 
the ground and chopped (particle size 1–2 cm).

For the data analyses, the small groups of cocksfoot, “grass–
alfalfa” mixture, immature spelt and immature rye samples 
were incorporated into the large group of tall fescue. These 
samples of plant species were merged together into one group 
of plant species because they are similar plant species. This 
enabled the prediction of these small groups of plant species. 
This group of merged samples of similar plant species is 
called the grasses group.

Two representative fresh subsamples of 750 g each were 
dried at 60°C for 72 h in a forced air oven immediately after 
the harvest. After the drying process, the two subsamples of 
the green-dried form of biomass were milled first using a BOA 
hammer mill (Waterleau, Herent, Belgium) through a 4 mm 
screen and then milled using a Cyclotec cyclone mill (FOSS, 
Hillerød, Denmark) through a 1 mm screen. For the storage of 
the samples, airtight bags were used, kept at room tempera-
ture and protected from the light in a dark box.

In addition, a third sample was packed in a plastic bag under 
vacuum to simulate the silage process. The vacuum-sealed 

plastic bag containing the silage-wet form of biomass was 
stored at room temperature for at least 3 weeks before the 
laboratory analysis. If gas was produced during silaging, the 
plastic bag was opened and put again under vacuum.

Chemical reagents and analyses
All chemicals were of analytical grade or equivalent. Various 
chemical characteristics were determined for the analysed 
biomasses.

Neutral detergent fibre (NDF) residue corrected for its mineral 
compound), acid detergent fibre (ADF) residue corrected for its 
mineral compounds and acid detergent lignin (ADL) residue 
corrected for its mineral compounds were determined by the 
Van Soest (VS) method.12–15 These residues were used to esti-
mate the cellulose VS (ADF–ADL), hemicelluloses VS (NDF–
ADF) and lignin VS (ADL) content of plant biomasses.12–15 
The sulfuric acid hydrolysis (SAH) method of Godin et al.5,14,16 
was used to determine the cellulose SAH, hemicelluloses SAH, 
xylan, arabinan, mannan, galactan, hemicellulosic glucan and 
insoluble Klason lignin (corrected for its mineral compounds) 
content. The cellulose SAH (cellulosic glucan; i.e. d-glucose 
of cellulose in its polymeric form) content was calculated as 
the difference between the total glucan (cellulosic and hemi-
cellulosic glucan) and hemicellulosic glucan content. The 
hemicelluloses SAH content was calculated as the sum of the 
xylan, arabinan, galactan, mannan and hemicellulosic glucan 
content. The monosaccharidic compounds (d-xylose, l-arab-
inose, d-glucose, d-mannose and d-galactose) of hemicellu-
loses were expressed in their polymeric form (xylan, arabinan, 
hemicellulosic glucan, mannan and galactan).5,14,16

The total soluble sugars were determined by the Luff–
Schoorl method.5,17 The water-soluble sucrose, glucose and 
fructose content were measured by a liquid chromatography 
method.5 The protein content was measured by the Kjeldahl 
method using 6.25 as a conversion factor of nitrogen to 
protein.5,18 The mineral compounds content was determined 
by the use of a muffle furnace set at 550°C for 3 h. The organic 
matter (OM) content was the complement of the mineral 
compounds (calculated as 100 minus mineral compounds 
content). The HHV was measured using a Parr controlled 
oxygen bomb calorimeter.5,19 The HHV can be used to assess 
the thermal energy of biomasses.5 The enzymatically digest-
ible organic matter (eDOM) was determined by the De Boever 
method.20 This relatively simple and fast method can be used 
to assess the suitability of the plant biomasses to be converted 
by anaerobic digestion.5,21,22 The eDOM can be considered 
as the minimum level of anaerobic digestibility of the plant 
biomass. Indeed, the micro-organisms of the anaerobic diges-
tion are expected to produce more enzymes in situ and for a 
longer period of time compared with the enzyme cocktail used 
in the analysis.5,21,22 The BMP was determined according to the 
VDI 4630 standard as described by Mayer et al.23 The volumes 
of biomethane were normalised at 0°C and 1013 hPa according 
to the temperature and pressure conditions of each measure-
ment. BMP is the most relevant method used to determine the 
biogas production potential of biomasses.11
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All the measurements were carried out on the green-dried 
form of the biomass, except for the BMP analysis, which was 
carried out on the silage-wet form of the biomass because 
this form of biomass is closer to the industrial biomethanation 
process. Duplicate aliquots were measured on each sample, 
except for the BMP analysis, for which one aliquot was meas-
ured on each sample. The dry matter (DM) content of the 
samples dried at 60°C for 72 h was determined at 103°C for 4 h.

Near infrared analysis
The near infrared (NIR) reflectance spectra were obtained 
using an NIRSystems 5000 (FOSS) on the biomass samples 
in green-dried form in a Black Metal Ring Cup (FOSS). Each 
spectrum was collected in the range of 1100–2498 nm and 
was the average of 32 scans. The spectra were normalised by 
a standard normal variate (SNV) transformation followed by 
a first-order derivation (1, 4, 4, 1; first derivative, 4 nm gap, 4 
points of first smoothing, 1 point of second smoothing).

Statistical analysis
Descriptive statistics were obtained using JMP 11 (SAS 
Institute, Cary, NC). The local (specific regression and non-
linear procedure)8 and PLS (Modified-PLS algorithm; linear 
regression model) techniques were used to develop prediction 
models. The spectral preprocessing, local and PLS proce-
dures were performed with WinISI 4.6.8 (FOSS)

The specific factors for each local and PLS model were 
optimised according to the software (WinISI 4.6.8). The aim 
of this optimisation was to build models with the best predic-
tion performance in terms of prediction error to minimize the 
under- and overfitting of the model. These factors were the 
optimum number of selected samples and the minimum and 
maximum PLS components for the local prediction models 
(details in Table S1 of the supplementary data). The factor to 
optimise for the PLS prediction models was the number of 
PLS components (details in Table S1 of the supplementary 
data). The local models used a higher number of PLS compo-
nents than the PLS models (details in Table S1 of the supple-
mentary data). For the local method, the final prediction PLS 
component number for a given sample was calculated using 
the weighted average of all the prediction values obtained 
from the minimum to the maximum PLS. The weights calcu-
lated were inversely proportional to the value of the b-coeffi-
cients and the residuals of the PLS regressions.8

To prevent an overestimation of the prediction performance 
of the models, each was evaluated using independent valida-
tion (V) datasets in addition to a leave-one-out cross-validation 
(CV-LOO). In a leave-one-out cross-validation, each sample 
was predicted by an equation developed from whole the other 
samples. Cross-validation CV-LOO was used to assess the 
prediction error for the samples of the library. For independent 
validation, a group of independent samples (validation set) 
was predicted by a model developed using other samples 
(calibration set). Samples in a validation set did not come from 
the same cropping site, year, harvest period and/or species as 
the samples of the calibration set.24

The independent validation dataset V1 contained samples 
of each plant-species group and was built by manually split-
ting the whole dataset into a calibration set and a valida-
tion set. The validation set contained approximately 20% of 
total samples (approximately 20% per plant-species group) 
and comprised representative and independent samples with 
regard to the calibration set. These two sets were consid-
ered independent because, for each plant-species group, the 
samples of these two sets were not from the same cropping 
site, year or harvest period. Validation V1 was designed to 
assess the prediction error of future new samples of plant 
species contained in the library.

For each of the eight other independent validation datasets 
(fibre corn, fibre sorghum, grasses, hemp, Jerusalem arti-
choke, miscanthus giganteus, spelt straw and switchgrass), 
V2 only contained the samples of one plant-species group. All 
the samples of one plant-species group were predicted using 
all the samples of the seven other plant-species groups. For 
the independent validation V2, the predicted values of each 
plant-species group were corrected by the median prediction 
bias of its plant-species group. The bias correction made it 
possible to eliminate the systematic error that can occur when 
a plant species is predicted without being in the calibration 
set. The prediction results of each of the eight independent 
validation datasets V2 were pooled to assess the prediction 
performance of the models. Validation V2 was designed to 
assess the prediction error of future samples of plant species 
that were similar to but not contained in the library used to 
develop the calibration model.

The samples of validation V2 were the most independent 
with regard to the samples of their respective calibration set. 
To reduce this degree of independence of validation V2, a few 
independent samples (5, 10, 15, 20 and 25) of the predicted 
plant-species group were added to their calibration sets. For 
each plant-species group, these 25 samples were randomly 
selected and excluded from being in the validation V2 before 
their addition to their respective calibration set. For each 
level of addition, the prediction results of each of the eight 
new independent validations were pooled together to assess 
the prediction performance of the models. This analysis was 
conducted for only a few chemical characteristics: NDF, ADF, 
ADL and mineral compounds. These characteristics were 
chosen because many of the samples had data for these 
constituents enabling estimates of cellulose, hemicelluloses, 
lignin and mineral compounds of fibrous biomass.

To evaluate the prediction performance of the models, the 
following parameters were determined for the cross-validation 
CV-LOO, validation V1 and validation V2: the coefficient of deter-
mination of prediction based on medians (r2Med) [Equation 
(1)]; the median standard residual error of prediction (MedRE) 
[Equation (2)] (instead of the root mean square error of predic-
tion, RMSEP);25 the ratio of the median standard deviation 
(SDMed) of the variable to MedRE (RPDMed = SDMed*MedRE–1); 
the ratio of MedRE to the standard error of laboratory (SEL); 
and the median spectral distance of Mahalanobis (GHMed). 
These parameters were calculated based on medians to be 
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robust and to avoid deleting subjectively outlier samples (which 
have high residual values) of a given model without deleting 
them from other models. Therefore, the statistical parameters 
(r2Med, MedRE, RPDMed, MedRE*SEL–1 and GHMed) used to 
qualify the models were determined based on medians:
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where SDMed = median standard deviation of the variable; 
MedRE = median standard residual error of prediction:

 MedRE = MAD *1.4826 (2)

where MAD = median of the absolute deviation of the resid-
uals.25

In order to evaluate the reliability of the prediction perfor-
mance, the r2Med and the RDPMed of each prediction model 
were used. The following guidelines for agricultural prod-
ucts were suggested by Malley et al.26 for these parameters: 
excellent prediction model, r2Med ≥ 0.95 and RPDMed ≥ 4.0; 
successful prediction model, r2Med ≥ 0.90 and RPDMed ≥ 3.0; 
moderately successful prediction model, r2Med ≥ 0.80 and 
RPDMed ≥ 2.3; moderately useful prediction model (semi-
quantitative), r2Med ≥ 0.70 and RPDMed ≥ 1.8.

Results and discussion
Predicted chemical characteristics
The chemical characteristics of the analysed samples are 
listed in Table 1. The samples were fibrous plant biomasses: 
fibre corn, fibre sorghum, grasses, hemp, Jerusalem arti-
choke leaves and stalks, miscanthus giganteus, spelt straw 
and switchgrass. Chemical characteristics have been 
analysed by two different methods, because they are both 
often used in commercial laboratories, in the case of cellu-
lose, hemi celluloses, lignin and water-soluble sugars, and 
the suitability to be converted by anaerobic digestion (eDOM 
and BMP). The analysis of hemicelluloses by the SAH method 
had the advantages of yielding carbohydrate composition and 
being more accurate, compared with the VS method. For the 
analysis of the water-soluble sugars, the liquid chromatog-
raphy method had the same advantages as the Luff–Schoorl 
method.5,14,16

The content and variability of the determined chemical char-
acteristics of the analysed biomasses have been reported 
previously5,21,22,27 and are related to the plant species, harvest 
periods (autumn and winter) and cropping conditions (year, 
area, cultivar and nitrogen fertilisation levels).

Table 1. Whole dataset summary of the reference values of the chemical characteristics.

Chemical characteristic n Min. Max. Median Median 
SD

Interplant-
species 

group SD

Intraplant-
species 

group SD

Relative  
SEL (%)

NDFa (g 100 g–1 DM) 1169 29.59 91.40 66.77 18.04 59.69 7.01 0.6
ADFa (g 100 g–1 DM) 1167 17.15 70.91 42.31 15.08 50.04 6.31 0.7
ADLa (g 100 g–1 DM) 1167 1.13 13.59  6.54  3.91 12.99 1.41 2.3
Insoluble Klason lignina (g 100 g–1 DM)  112 2.62 17.01  8.92  4.39 4.38 1.86 3.4
Cellulose SAH (g 100 g–1 DM)  413 13.32 50.63 28.47  8.79 21.26 3.80 2.8
Hemicelluloses SAH (g 100 g–1 DM)  413 7.16 34.30 21.68  4.42 13.20 1.99 2.8
Xylan (g 100 g–1 DM)  413 4.22 27.80 15.12  4.80 12.06 1.92 3.3
Arabinan (g 100 g–1 DM)  413 0.31  4.28  2.51  0.59 2.21 0.35 4.8
Mannan (g 100 g–1 DM)  413 0.01  2.74  0.57  0.22 1.14 0.20 11
Galactan (g 100 g–1 DM)  413 0.25  3.43  0.87  0.46 1.41 0.31 11
Hemicellulosic glucan (g 100 g–1 DM)  413 0.63 05.26  1.95  0.64 1.03 0.62 10
Total soluble sugars (g 100 g–1 DM)  643 0.01 38.23  5.50  7.44 17.97 5.90 4.5
Sum of soluble sucrose + glucose 
+ fructose (g 100 g–1 DM)

 269 0.19 17.18  5.23  2.75 34.65 27.54 3.8

Soluble sucrose (g 100 g–1 DM)  269 0.01  8.12  1.85  1.71 16.75 14.90 4.3
Soluble glucose (g 100 g–1 DM)  269 0.06  5.49  0.95  0.62 13.86 7.89 7.4
Soluble fructose (g 100 g–1 DM)  269 0.03  5.51  1.80  1.18 10.72 10.74 6.1
Protein (g 100 g–1 DM)  864 0.62 23.03  5.64  3.87 11.41 3.07 3.5
Mineral compounds (g 100 g–1 DM) 1377 0.84 20.09  6.53  3.38 11.01 2.17 1.5
HHV (MJ kg–1 DM)  810 16.74 19.73 18.34  0.61 1.45 0.41 0.3
eDOM (g 100 g–1 OM)  484 7.29 83.59 38.64 23.26 1.16 0.26 1.9
BMP (dm³ kg–1 OM)  587 147 635 387 80 205 56 5.2

aResidue corrected for its mineral compounds.
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For each chemical characteristic, the number of analysed 
samples was generally high (n = 269–1377), except for the 
insoluble Klason lignin (n = 112). The concentration range of 
each chemical characteristic was usually very wide, except 
for the HHV. The HHV is known to have a relatively stable 
value.5,21,22 The interplant-species group SD of the analysed 
chemical characteristic was generally considerably higher 
than the intraplant-species group SD, except for the sum of 
soluble sucrose + glucose + fructose, soluble sucrose, soluble 
glucose and soluble fructose because the analysed plant-
species groups had similar concentration ranges for these 
parameters. The data for each chemical characteristic were 
therefore well spread across its concentration range. This 
can be explained by the diversity of the whole dataset, which 
comprised samples of various plant species coming from 
different harvest periods and cropping conditions (year, area, 
cultivar, nitrogen fertilisation levels). To develop reliable NIR 
prediction models, it is important to have a large number 

of samples uniformly distributed over a wide concentration 
range.

The relative values of the SEL (relative SEL = SEL*median–1) 
were usually low, except for the contents of mannan, galactan, 
hemicellulosic glucan, soluble glucose, soluble fructose and 
the BMP where the relative SEL values were above 5% (Table 
1). Having a low relative SEL of the primary method is also a 
critical precursor for achieving a reliable NIR prediction model.

Thus, based on the aforementioned criteria (number of 
analysed samples, concentration range, distribution of the 
data around the concentration range and SEL), the whole 
dataset used to build NIR prediction models was quite suit-
able.

Comparison of local and partial least square 
models
The prediction performances (r2Med, RPDMed, MedRE, 
MedRE*SEL–1 and GHMed) of the NIR predicted chemical 

Table 2. r2Med and RPDMed for the cross-validation CV-LOO, validation V1 (calibration containing samples of the predicted plant-species 
group) and validation V2 (calibration not containing samples of the predicted plant-species group) of the prediction models of the assessed 
chemical characteristics.

Chemical  
characteristic

r2Med RPDMed
Cross-

validation
CV-LOO

Validation
V1

Validation
V2

Cross-
validation

CV-LOO

Validation
V1

Validation
V2

Local PLS Local PLS Local PLS Local PLS Local PLS Local PLS

NDFa 0.997 0.994 0.997 0.996 0.990 0.990 19 13 19 15 9.4 9.2
ADFa 0.997 0.995 0.996 0.994 0.990 0.990 19 14 15 13 9.5 8.7
ADLa 0.995 0.987 0.98 0.98 0.97 0.97 14 8.9 7.9 7.9 6.0 5.6
Insoluble Klason lignina 0.97 0.97 0.97 0.96 0.95 0.92 6.2 5.9 5.7 5.1 4.5 3.6
Cellulose SAH 0.991 0.990 0.97 0.97 0.98 0.97 11 8.5 5.6 5.5 6.5 5.8
Hemicelluloses SAH 0.98 0.97 0.95 0.93 0.950 0.90 6.5 5.4 4.6 3.8 4.5 3.2
Xylan 0.990 0.98 0.98 0.96 0.97 0.96 8.9 7.3 7.1 4.8 5.3 5.1
Arabinan 0.93 0.88 0.93 0.91 0.74 0.79 3.7 2.8 3.7 2.0 2.0 2.2
Mannan 0.85 0.60 0.92 0.83 0.00 0.00 2.6 1.6 3.6 2.4 0.8 0.7
Galactan 0.93 0.84 0.79 0.77 0.55 0.68 3.8 2.5 2.2 2.1 1.5 1.8
Hemicellulosic glucan 0.81 0.70 0.59 0.30 0.34 0.17 2.3 1.8 1.6 1.2 1.2 1.1
Total soluble sugars 0.994 0.990 0.991 0.98 0.97 0.94 13 8.6 10 7.9 5.6 4.1
Sum of soluble sucrose + 
glucose + fructose

0.94 0.91 0.88 0.87 0.63 0.62 4.0 3.2 2.9 2.8 1.6 1.6

Soluble sucrose 0.92 0.80 0.64 0.59 0.58 0.43 3.5 2.2 1.7 1.6 1.5 1.3
Soluble glucose 0.79 0.59 0.83 0.53 0.00 0.00 2.2 1.6 2.4 1.5 0.6 0.7
Soluble fructose 0.93 0.88 0.82 0.92 0.53 0.25 3.7 2.9 2.3 3.5 1.5 1.2
Protein 0.993 0.990 0.98 0.97 0.97 0.97 12 8.4 7.2 6.0 6.1 6.0
Mineral compounds 0.990 0.96 0.97 0.95 0.93 0.92 8.3 5.1 5.8 4.3 3.9 3.6
HHV 0.96 0.94 0.91 0.87 0.80 0.86 4.7 4.2 3.4 2.8 2.3 2.6
eDOM 0.993 0.990 0.98 0.97 0.98 0.96 12 8.7 6.7 5.8 6.6 4.8
BMP 0.85 0.80 0.81 0.83 0.49 0.25 2.6 2.2 2.3 2.4 1.4 1.2

aResidue corrected for its mineral compounds.
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characteristics  of local and PLS models for each type of vali-
dation (cross-validation CV-LOO, validation V1 and validation 
V2) are listed in Table 2 for r2Med and RPDMed, Table 3 for 
MedRE, Table 4 for MedRE*SEL–1 and Table 5 for GHMed. To 
obtain a good prediction model for a given characteristic and 
dataset, the aim was to have the lowest MedRE and GHMed. To 
compare the performances of prediction models of different 
characteristics and datasets, the r2 and RPD were considered 
because they are independent of the used units. The r2 and 
RDP are directly linked to each other. The RDP was interesting 
in addition to the r2 because the RPD is more discriminatory 
than the r2 when r2 is close to 1.24

For each type of validation, the local prediction models 
were generally more reliable than the PLS prediction models, 
because with the local method, a specific regression with a 
low number of samples was built for each sample by selecting 
its most similar spectral neighbours from the library based 
on the highest correlation between spectra. In the present 
study, the optimum number of selected samples based on 

the median was 100 samples (Table S1 of the supplementary 
information). The similar spectral neighbours were presum-
ably samples of the same nature and plant species (i.e. lower 
independence between samples). This enabled a prediction to 
negate non-linearity and non-homogeneity associated with a 
large multispecies dataset.7,9

The chemical characteristics that had a lower predic-
tion performance for each type of validation were arabinan, 
mannan, galactan, hemicellulosic glucan, sum of soluble 
sucrose + glucose + fructose, soluble sucrose, soluble 
glucose and soluble fructose and BMP (Tables 2–5). They had 
high relative SEL and low concentration levels. The relative SEL 
and concentration levels are linked together by the Horwitz 
curve.28 This curve shows that the relative SEL increases with 
decreasing levels of concentration. Therefore, chemical char-
acteristics with low levels of concentration were predicted less 
reliably because of the high relative SEL of the primary analyt-
ical methods used to build the prediction models. This was 
especially the case for mannan, which had the highest relative  

Table 3. Median standard residual error of prediction (MedRE) for the cross-validation CV-LOO, validation V1 (calibration containing samples 
of the predicted plant-species group) and validation V2 (calibration not containing samples of the predicted plant-species group) of the 
prediction models of the assessed chemical characteristics.

Chemical characteristic MedRE
Cross-validation

CV-LOO
Validation

V1
Validation

V2
SEL Local PLS Local PLS Local PLS

NDFa (g 100 g–1 DM) 0.40 0.96 1.41 1.06 1.28 1.92 1.96
ADFa (g 100 g–1 DM) 0.30 0.81 1.05 1.01 1.17 1.58 1.73
ADLa (g 100 g–1 DM) 0.15 0.29 0.44 0.50 0.50 0.65 0.70
Insoluble Klason lignina (g 100 g–1 DM) 0.30 0.71 0.75 0.76 0.85 0.97 1.23
Cellulose SAH (g 100 g–1 DM) 0.80 0.83 1.04 1.50 1.53 1.36 1.52
Hemicelluloses SAH (g 100 g–1 DM) 0.60 0.68 0.81 0.74 0.90 0.99 1.37
Xylan (g 100 g–1 DM) 0.50 0.54 0.66 0.58 0.86 0.90 0.95
Arabinan (g 100 g–1 DM) 0.12 0.16 0.21 0.22 0.24 0.30 0.27
Mannan (g 100 g–1 DM) 0.06 0.09 0.14 0.13 0.19 0.28 0.31
Galactan (g 100 g–1 DM) 0.10 0.12 0.18 0.23 0.24 0.31 0.26
Hemicellulosic glucan (g 100 g–1 DM) 0.20 0.28 0.35 0.37 0.48 0.52 0.58
Total soluble sugars (g 100 g–1 DM) 0.25 0.59 0.86 0.74 0.97 1.34 1.81
Sum of soluble sucrose + glucose + fructose 
(g 100 g–1 DM)

0.20 0.69 0.85 0.81 0.85 1.68 1.69

Soluble sucrose (g 100 g–1 DM) 0.08 0.49 0.76 1.12 1.20 1.11 1.29
Soluble glucose (g 100 g–1 DM) 0.07 0.29 0.40 0.36 0.60 1.11 0.92
Soluble fructose (g 100 g–1 DM) 0.11 0.32 0.41 0.50 0.34 0.81 1.02
Protein (g 100 g–1 DM) 0.20 0.33 0.46 0.45 0.54 0.63 0.65
Mineral compounds (g 100 g–1 DM) 0.10 0.41 0.67 0.58 0.77 0.87 0.95
HHV (MJ kg–1 DM) 0.06 0.13 0.15 0.15 0.18 0.27 0.23
eDOM (g 100 g–1 OM) 0.75 2.01 2.68 3.38 3.94 3.54 4.80
BMP (dm³ kg–1 OM) 20 31 36 32 30 57 69

aResidue corrected for its mineral compounds.
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SEL and lowest concentration. In addition, at low levels of 
concentration, the absorbance of the NIR peaks was reduced. 
Thus, the prediction models became less accurate for these 
low concentration levels.

The local prediction models of hemicellulosic glucan and 
soluble glucose for each type of validation had a considerably 
higher prediction performance than the PLS prediction models 
(Tables 2–5). Furthermore, the prediction performance for 
these chemical characteristics of validation V2 (calibration not 
containing samples of the predicted plant-species group) was 
especially low because these validation samples were highly 
independent relative to the calibration samples. The prediction 
models of hemicellulosic glucan and soluble glucose must 
have been impacted by the high cellulose content (Tables 2–5). 
This glucose polymeric carbohydrate was present in much 
higher amounts in the analysed biomasses, compared with 
hemicellulosic glucan and soluble glucose. Therefore, using 

NIR spectra, it is difficult to distinguish the lower contents of 
hemicellulosic glucose and soluble glucose from the much 
higher content of cellulosic glucose. With the local method, 
it was most likely possible to manage this issue because for 
each sample, a specific regression was built, as previously 
explained.

Comparison of cross-validation and 
independent  validations
The three validations (cross-validation CV-LOO, validation V1 
and validation V2) and their prediction performance (r2Med, 
RPDMed, MedRE, MedRE*SEL–1 and GHMed) of the NIR 
predicted chemical characteristics of local and PLS models 
are shown in Tables 2–5. Figure 1 shows the cross-validation 
CV-LOO, validation V1 and validation V2 of the local prediction 
models for hemicelluloses SAH, protein and HHV. These three 
validations were evaluated to prevent an overestimation of 

Table 4. Ratio of the median standard residual error of prediction (MedRE) to the SEL for the cross-validation CV-LOO, validation V1 
(calibration  containing samples of the predicted plant-species group) and validation V2 (calibration not containing samples of the 
predicted  plant-species group) of the prediction models of the assessed chemical characteristics: ratio of MedRE of validation to MedRE of 
cross-validation  CV-LOO for these models.

Chemical characteristic MedRE*SEL–1 MedREv*MedREcv–1

Cross-
validation

CV-LOO

Validation
V1

Validation
V2

Validation
V1

Validation
V2

Local PLS Local PLS Local PLS Local PLS Local PLS

NDFa 2.4 3.5 2.7 3.2 4.8 4.9 1.10 0.91 2.00 1.39
ADFa 2.7 3.5 3.4 3.9 5.3 5.8 1.25 1.11 1.95 1.65
ADLa 1.9 2.9 3.3 3.3 4.3 4.7 1.72 1.14 2.24 1.59
Insoluble Klason lignina 2.4 2.5 2.5 2.8 3.2 4.1 1.07 1.13 1.37 1.64
Cellulose SAH 1.0 1.3 1.9 1.9 1.7 1.9 1.81 1.47 1.64 1.46
Hemicelluloses SAH 1.1 1.4 1.2 1.5 1.7 2.3 1.09 1.11 1.46 1.69
Xylan 1.1 1.3 1.2 1.7 1.8 1.9 1.07 1.30 1.67 1.44
Arabinan 1.3 1.7 1.8 2.0 2.5 2.3 1.38 1.14 1.88 1.29
Mannan 1.5 2.4 2.2 3.2 4.7 5.2 1.44 1.36 3.11 2.21
Galactan 1.2 1.8 2.3 2.4 3.1 2.6 1.92 1.33 2.58 1.44
Hemicellulosic glucan 1.4 1.7 1.9 2.4 2.6 2.9 1.32 1.37 1.86 1.66
Total soluble sugars 2.3 3.5 3.0 3.9 5.4 7.2 1.25 1.13 2.27 2.10
Sum of soluble sucrose + 
glucose + fructose

3.5 4.3 4.0 4.2 8.4 8.5 1.17 1.00 2.43 1.99

Soluble sucrose 6.1 9.5 14.0 15.0 13.8 16.2 2.29 1.58 2.27 1.70
Soluble glucose 4.1 5.7 5.2 8.6 15.9 13.2 1.24 1.50 3.83 2.30
Soluble fructose 2.9 3.7 4.5 3.0 7.4 9.3 1.56 0.83 2.53 2.49
Protein 1.6 2.3 2.3 2.7 3.2 3.3 1.36 1.17 1.91 1.41
Mineral compounds 4.1 6.7 5.8 7.7 8.7 9.5 1.41 1.15 2.12 1.42
HHV 2.2 2.4 2.5 3.0 4.5 3.8 1.15 1.20 2.08 1.53
eDOM 2.7 3.6 4.5 5.3 4.7 6.4 1.68 1.47 1.76 1.79
BMP 1.5 1.8 1.6 1.5 2.9 3.5 1.03 0.83 1.84 1.92

aResidue corrected for its mineral compounds.
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the performances of the prediction models. Cross-validation 
CV-LOO was designed to assess the prediction error for the 
samples of the library. Validation V1 was designed to assess 
the prediction error of future new samples of plant species 
contained in the library. Validation V2 was designed to assess 
the prediction error of future new samples of plant species 
not contained in the library but similar to the plant species 
contained in the library.

The ratio of MedRE (median standard residual error of 
prediction) to SEL was used to compare the accuracy of local 
and PLS prediction models with the primary analytical method 
and according to the type of validation (Table 4). This ratio 
was independent of the units used. Based on this ratio, the 
following observations were made: (1) for the cross-validation 
CV-LOO, the predictions were 2.4 times less accurate than the 
primary analytical methods based on their median value and 
local models were 23% more accurate than PLS models based 
on their median value; (2) for the validation V1, the predic-
tions were 2.9 times less accurate than the primary analytical 
methods based on their median value and local models were 

14% more accurate than PLS models based on their median 
value; (3) for the validation V2, the predictions were 4.5 times 
less accurate than the primary analytical methods based on 
their median vale and local models were 8.7% more accurate 
than PLS models based on their median value.

The ratio of MedRE of validation (validation V1 or V2) to 
MedRE of cross-validation CV-LOO was used to compare the 
overestimation of the prediction performance of local and 
PLS models of cross-validation CV-LOO with regards to the 
independent validations (validation V1 and V2) (Table 4). This 
ratio was independent of the units used. Based on this ratio, 
the following observations were made: (1) for the validation V1 
in regard to the cross-validation CV-LOO, the predictions were 
1.25 times less accurate based on their median value and PLS 
models showed 14% less accuracy than local models based 
on their median value; (2) for the validation V2 in regard to 
the cross-validation CV-LOO, the predictions were 1.86 times 
less accurate based on their median value and PLS models 
showed 18% less accuracy than local models based on their 
median value.

Table 5. Median spectral distance of Mahalanobis (GHMed) for the cross-validation CV-LOO, validation V1 (calibration containing samples 
of the predicted plant-species group) and validation V2 (calibration not containing samples of the predicted plant-species group) of the 
prediction  models of the assessed chemical characteristics.

Chemical characteristic GHMed
Cross-validation

CV-LOO
Validation

V1
Validation

V2
Local PLS Local PLS Local PLS

NDFa 0.73 0.74 0.91 0.84 1.56 1.20
ADFa 0.70 0.70 0.89 0.85 1.39 1.19
ADLa 0.73 0.81 0.91 0.91 1.83 1.39
Insoluble Klason lignina 0.83 0.81 1.10 0.98 1.08 1.00
Cellulose SAH 0.71 0.81 0.71 0.81 0.91 1.29
Hemicelluloses SAH 0.80 0.84 0.83 0.86 1.56 1.28
Xylan 0.68 0.85 0.82 0.83 1.13 1.43
Arabinan 0.84 0.88 0.84 0.88 1.98 1.90
Mannan 0.82 0.89 0.92 0.95 2.87 2.40
Galactan 0.81 0.90 0.96 0.98 2.60 2.33
Hemicellulosic glucan 0.82 0.89 1.09 0.95 4.17 3.04
Total soluble sugars 0.79 0.81 1.00 0.95 1.19 1.31
Sum of soluble sucrose + glucose + fructose 0.85 0.83 1.01 0.93 2.50 2.14
Soluble sucrose 0.84 0.85 0.98 0.98 2.77 4.01
Soluble glucose 0.84 0.84 1.17 1.08 2.54 4.12
Soluble fructose 0.91 0.82 1.55 0.96 3.22 2.34
Protein 0.73 0.77 0.94 0.84 1.65 1.19
Mineral compounds 0.81 0.80 0.86 0.78 1.82 1.56
HHV 0.84 0.87 1.05 1.00 2.85 1.97
eDOM 0.56 0.83 0.96 1.73 1.10 1.09
BMP 0.81 0.87 1.80 1.25 9.48 11.1

aResidue corrected for its mineral compounds.
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The analysis of the ratios of MedRE to SEL and of MedRE of 
validation (validation V1 or V2) to MedRE of cross-validation 
CV-LOO showed three interesting points about the accuracy 
and overestimation of the prediction performance (in terms 
of prediction error) of local and PLS models according to the 
type of validation.

First, the local models were more reliable than PLS models 
independently of the type of validation, as explained in the 
previous section. Furthermore, there was a decrease in the 
accuracy of local and PLS models according to the increase 

in the degree of independence of the validation set (i.e. the 
similarity of the predicted samples in regard to the calibration 
samples). This is illustrated by Figure 1, which shows that the 
prediction error increased according to the degree of inde-
pendence of the validation. The degree of independence of the 
validation set was the lowest for the cross-validation CV-LOO, 
increased for validation V1 and was the highest for validation 
V2, as explained in the “Statistical analysis” section.

Second, the difference in accuracy between local and PLS 
models decreased according to the increase in the degree 

Figure 1. Reference values versus the predicted values for the cross-validation CV-LOO, validation V1 (calibration containing samples of 
the predicted plant-species group) and validation V2 (calibration not containing samples of the predicted plant-species group) for the 
local prediction models of hemicelluloses SAH, protein and HHV. The black dashed line in each plot is the line of equality (y = x). The 
grey plain line in each plot is the regression line. The dashed grey line in each plot is the 95% confidence line of the regression.
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of independence of the validation set. The local method was 
more affected by the degree of independence of the valida-
tion set than the PLS method. This can be explained by the 
fact that, with the local method, a specific regression was 
built for each sample, as explained in the previous section. 
An additional explanation was that the regressions of the PLS 
models were built with many more samples than the specific 
regressions of the local models. This enabled the PLS method 
to be less optimistic with multispecies predictions while losing 
some accuracy, as compared with the local method.

Third, the prediction performance of the cross-validation 
CV-LOO was too optimistic (overestimated) compared with an 
independent validation set such as validation V1, especially 
for the local method. This explained why some MedRE values 
of cross-validation CV-LOO of local models were very close to 
their respective SEL value (Table 3). The samples of validation 
V2 were too independent (different plant-species groups) in 
regard to the calibration samples. Therefore, the prediction 
performance of validation using a V2 approach should not be 
questioned. The prediction performance of a validation such 
as validation V1 should therefore be considered for future new 
samples of plant species contained in the library.

Thus, the degree of independence of samples in the valida-
tion set relative to samples used in the calibration set had 
a major impact on the results of prediction performance of 
multispecies models. The prediction performance of multi-
species model for agricultural products should be estimated 
with an independent validation set such as validation V1: a 
small set of representative samples (independent in regard 
to the calibration samples; not from the same cropping site-
year-harvest period) containing all types of plant-species 
groups that are predicted by the remaining samples set (which 
contains samples of all the predicted plant-species groups). 
This is specially the case for local models.

The prediction models of the chemical characteristics with 
high reliability (r2Med ≥ 0.80 and RPDMed ≥ 2.3 of cross-vali-
dation CV-LOO, validation V1 and validation V2) can be used for 
quantitative purposes owing to their r2Med and RPDMed (Table 
2). These models were those of the main chemical character-
istics of a fibrous biomass: NDF, ADF, ADL, insoluble Klason 
lignin, cellulose SAH, hemicelluloses SAH, xylan, total soluble 
sugars, protein, mineral compounds, HHV and eDOM. The 
high reliability of these models can be explained by the more 
accurate primary analytical methods because of the low rela-
tive SEL and high concentration level of the main chemical 
characteristics, as explained in the previous section. These 
reliable models enable the use of NIR for screening, ranking 
and quantitative analyses of the main chemical components 
contents in fibrous biomasses, and for the assessment of 
their suitability to be converted into biofuels. Normally, these 
fibrous biomasses should be the same plant species as those 
of the library because a prediction model is specific to the 
types of samples with which it is built. However, the validations 
V2 of these reliable models still had quantitative prediction 
performance (r2Med ≥ 0.80 and RPDMed ≥ 2.3 of validation V2). 
This validation V2 involved predicting a fibrous plant species 

by other fibrous plant species. The prediction performance of 
a validation such as validation V2 should therefore be consid-
ered for future new samples of plant species not contained in 
the library but similar to plant species contained in the library. 
Nevertheless, validation V1 and validation V2 showed that the 
prediction models were, respectively, 2.9 and 4.5 times less 
accurate than the primary analytical methods based on their 
median value, as previously mentioned. Yet, even with such a 
loss of accuracy, NIR prediction models can still be used for 
screening and ranking purposes to detect statistical differ-
ences in the chemical composition of biomasses.29

The prediction models of the chemical characteristics with 
low reliability (r2Med < 0.80 or RPDMed < 2.3 of cross-valida-
tion CV-LOO, validation V1 or validation V2) cannot be used 
for quantitative purposes owing to their r2Med and RPDMed. 
However, these prediction models can be used for semi-
quantitative screening and ranking of future new samples of 
plant species contained in the library. These models were 
those of the minor chemical characteristics of a fibrous 
biomass: arabinan, mannan, hemicellulosic glucan sum of 
soluble sucrose + glucose + fructose, soluble sucrose, soluble 
glucose, soluble fructose and BMP. The low reliability of these 
models was explained in the previous section. The prediction 
models of mannan, hemicellulosic glucan and soluble glucose 
were those with an even lower reliability (r2Med and RPDMed), 
as explained in in the previous section.

The median spectral distance of Mahalanobis (GHMed) of the 
prediction models is shown for each chemical characteristic 
and type of validation in Table 5. The GHMed had a median 
value of 0.82 for the cross-validation CV-LOO, 0.95 for valida-
tion V1 and 1.83 for validation V2. The increases in GHMed 
according to the type of validation can be explained by the 
degree of independence of the validation set, as previously 
explained. NIR prediction models must have a low GHMed 
to yield reliable values. In the present study, the prediction 
models with a high reliability (as defined above) generally had 
a GHMed value smaller than 2, whereas those models with a 
low reliability (as defined above) generally had a GHMed value 
above 2.

Addition of a few samples of the predicted 
plant-species group into their calibration set
The samples of validation V2 had the specificity of being 
highly independent (different plant species) in regard to their 
respective calibration set. Thus, the reliability of the predic-
tion models of the validation V2 was consistently lower than 
the cross-validation CV-LOO and validation V1, as explained in 
the previous section. To reduce the degree of independence 
of validation V2, a few independent samples (5, 10, 15, 20 and 
25) of the predicted plant-species group were added into their 
calibration sets corresponding to validation V2.

Table 6 shows that such additions of a few samples to the cali-
bration sets of validation V2 led to improved prediction perfor-
mances (MedRE, MedRE*SEL–1 and GHMed). The improvement 
can be explained by the fact that, with such additions, the 
calibration sets also contained plant-species samples that 
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were the same as the plant species in the prediction set. The 
first of these samples additions consistently improved these 
performances (decrease in MedRE, MedRE*SEL–1 and GHMed), 
whereas these performances began to stabilize with the addi-
tions of the last of these samples. Beyond the addition of more 
than 25 samples, the improvement in these performances 
would probably be minimal.

Based on the ratio of MedRE to SEL (Table 6), the mean 
accuracy of prediction (in terms of prediction error) of valida-
tion V2 after the addition of 25 samples was improved by 28% 
for local models and by 11% for PLS models. The mean GHMed 
of validation V2 after the addition of 25 samples decreased by 

26% for local models and 12% for PLS models. The increase in 
the prediction performance was superior for local models, as 
compared with PLS models. This can be explained by the fact 
that, with the local method, a specific regression was built for 
each sample, as explained previously. Thus, the addition of a 
few samples of the same plant species in the calibration sets 
(not containing samples of the predicted plant-species group) 
had a much more important impact on the local models, as 
compared with the PLS models.

Therefore, it is interesting to use the local method to predict 
a given plant species, even if there are only a few samples of 
them that are present in a large multispecies dataset with 

Table 6. Performances of validation V2 (calibration not containing samples of the predicted plant-species group) with the addition of a few 
samples of the predicted plant-species group into their calibration set for the prediction models of the NDF, ADF, ADL and mineral com-
pounds.

Chemical  
characteristic

Number of samples  
added for the  
predicted group

SEL Local
MedRE

PLS
MedRE

Local
MedRE
*SEL–1

PLS
MedRE
*SEL–1

Local
GH

Med

PLS
GH

Med(g 100 g–1 DM)
NDFa 0 (Validation V2) 0.40 1.92 1.97 4.8 4.9 1.56 1.20

5 0.40 1.60 1.94 4.0 4.9 1.45 1.18

10 0.40 1.49 1.92 3.7 4.8 1.39 1.16

15 0.40 1.45 1.79 3.6 4.5 1.37 1.13

20 0.40 1.41 1.75 3.5 4.4 1.28 1.11

25 0.40 1.38 1.74 3.5 4.4 1.21 1.09

Validation V1 0.40 1.06 1.28 2.7 3.2 0.91 0.84

ADFa 0 (Validation V2) 0.30 1.58 1.73 5.3 5.8 1.39 1.19

5 0.30 1.42 1.70 4.7 5.7 1.25 1.14

10 0.30 1.38 1.68 4.6 5.6 1.23 1.13

15 0.30 1.29 1.66 4.3 5.5 1.25 1.15

20 0.30 1.22 1.63 4.1 5.4 1.16 1.13

25 0.30 1.21 1.60 4.0 5.3 1.12 1.11

Validation V1 0.30 1.01 1.17 3.4 3.9 0.89 0.85

ADLa 0 (Validation V2) 0.15 0.65 0.70 4.3 4.7 1.83 1.39

5 0.15 0.60 0.65 4.0 4.3 1.68 1.27

10 0.15 0.52 0.63 3.5 4.2 1.54 1.26

15 0.15 0.48 0.61 3.2 4.1 1.41 1.25

20 0.15 0.47 0.60 3.1 4.0 1.29 1.24

25 0.15 0.47 0.60 3.1 4.0 1.20 1.22

Validation V1 0.15 0.50 0.50 3.3 3.3 0.91 0.91

Mineral compounds 0 (Validation V2) 0.10 0.87 0.95 8.7 9.5 1.82 1.56

5 0.10 0.79 0.89 7.9 8.9 1.71 1.48

10 0.10 0.72 0.88 7.2 8.8 1.56 1.42

15 0.10 0.66 0.88 6.6 8.8 1.47 1.41

20 0.10 0.63 0.86 6.3 8.6 1.40 1.33

25 0.10 0.60 0.85 6.0 8.5 1.35 1.28

Validation V1 0.10 0.58 0.77 5.8 7.7 0.86 0.78

aResidue corrected for its mineral compounds.
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similar plant-species samples. This approach is very practical 
for cost-effective and fast NIR screening of plant biomasses 
for  which the specific NIR prediction models are not yet 
available .

Conclusions
The developed NIR models were reliable for the prediction 
of different main chemical characteristics of various fibrous 
plant species using multispecies datasets. The types of 
NIR models developed in the present study can be used for 
screening, ranking and quantitative analyses of the main 
chemical components contents in fibrous biomasses, and for 
the assessment of their suitability for conversion into biofuels.

The local models were more reliable in terms of prediction 
error compared with the PLS models. The local method, by 
developing specific regressions for each sample, appears to 
cope with the non-linearity and non-homogeneity associated 
with a large multispecies dataset.

The degree of independence of samples in the validation set 
(cross-validation CV-LOO, validation V1, validation V2) relative 
to samples used in the calibration set had a major impact on 
the prediction performance, especially for the local method. It 
affected the local method more because of the lower number 
of samples used in its specific regressions. There was a 
decrease in the reliability of local and PLS models according 
to the increase in the degree of independence of the validation 
set (i.e. the similarity of the predicted samples in regard to 
the calibration samples). An independent validation such as 
V1 should be used to determine the prediction performance 
of NIR models for agricultural products. The validation V1 
set contained independent and representative samples that 
did not come from the same cropping site, year or harvest 
period in regard to the samples of the calibration set. Owing 
to their degree of independence, the prediction performance 
of a validation such as validation V1 should be considered for 
future new samples of plant species contained in the library, 
whereas a validation such as validation V2 should be consid-
ered for future new samples of plant species not contained in 
the library but similar to the plant species contained in the 
library.

The additions of a few independent samples of the predicted 
plant-species group to their calibration set of validation V2 
(calibration not containing samples of the predicted plant-
species group) resulted in improved prediction performances 
of multispecies models, especially for the local method. 
However, these performances began to stabilize with the last 
sample additions (20 and 25 samples). Thus, the use of the 
local method is also interesting for predictions of a given 
plant species when there are only a few samples of them 
that are present in a large multispecies dataset of similar 
plant-species samples. This approach will enable fast cost-
effective NIR screening, ranking and quantitative analyses of 
the chemical characteristics of new plant biomasses that are 
similar to those of the library.

Supplementary data
The optimum number of selected samples, minimum and 
maximum PLS components for the local models, and number 
of PLS components for the PLS models are shown in Table S1 
of the supplementary information.

The number of samples of each plant-species group for 
each predicted chemical characteristics is shown in Table S2 
of the supplementary information.
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