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T
he Software Shoot-Out has been 
a staple of the International Diffuse 
Reflectance Conference (IDRC), 
a biennial meeting taking place 

in Chambersburg, Pennsylvania, USA. It is 
a competition amongst participants of the 
conference that aims to acknowledge and 
reward the person who develops the best 
model(s) and obtains the lowest predic-
tion error for a particular diffuse reflectance 
dataset. Every IDRC, a new challenge is 
proposed. The conference’s website (http://
www.idrc-chambersburg.org) provides 
access to this dataset as well as those used 
for previous challenges and previous NIR 
news articles have reported results from the 
past two competitions.1,2

Two competitions took place during the 
2014 conference: as usual, a dataset was 
made available for download and comple-
tion at home while, for the first time, an 
additional, on-site competition was pro-
posed to all conferees. This on-site shoot-
out was carried out as an anonymous chal-
lenge in which students and professionals 
used their chemometric skills to come up 
with the best prediction models for two 
parameters pertaining to a single dataset. 
The top three students and the top three 
professionals were recognised during the 
conference banquet. One third of the con-
ferees participated, a very high and encour-
aging figure.

The more traditional shoot-out presenta-
tion took place following the on-site chal-
lenge and was a great occasion at which 
to learn from and interact with experienced 
chemometricians presenting their approach 
to a common multivariate analysis problem. 
For the first time, a petrochemical dataset 
was used. The conference would like to 
thank Halliburton, Christopher M. Jones 
and David Perkins for providing the data 
and Michael Myrick for facilitating the pro-
cess. However, given the nature of the data 
and the competitive nature of the research 
field, some restrictions were necessary to 

reduce the potential for competitors to use 
the data for their own commercial advan-
tage. Specifically, the wavelength scales 
were unspecified (although it covered the 
NIR), the calibration values were normalised 
and the nature of the parameters being pre-
dicted was not communicated. Two data-
sets were provided. Only one parameter 
was available per dataset.

The challenge consisted of developing 
the best model for the parameters and 
datasets provided using the calibration 
data. Because of the limited amount of 
information available, success in the shoot-
out depended on the participants’ ability to 
build models by relying only on their chemo-
metric skills and not their a priori knowledge 
of the nature of the data. However, the most 
important task was to build models that 
would be robust to the variability present in 
the validation set and possibly not present 
in calibration. In addition, the quality of the 
presentation of the results and the reason-
ing behind the approach taken were used 
to determine the winners. Participants were 
therefore required to:
1) develop the best possible models for the 

parameters using the calibration set,
2) test their models on a test set (reference 

values provided),
3) predict validation sets (reference values 

not provided) and
4) detail their reasoning when selecting pre-

treatment methods, regression method 
and number of latent variables during a 
presentation.

Datasets
Dataset 1
These samples corresponded to oils from 
petroleum reservoirs around the world. 
These particular spectra were collected 
in transmittance in the laboratory under 
various conditions of pressure and tem-
perature, using a high pressure flow cell. 
It should be noted that, as pressure and 
temperature change, so does the effective 

path length and the density of the fluid. The 
nominal path length was 1 mm. The tem-
perature and pressure at which the spectra 
were acquired were provided and the path 
length can be calculated using the follow-
ing equation (note that in the dataset, the 
temperatures are given in °C and pressures 
in psi):

d (mm) = 0.8801 + 0.000402065 × 
T (Kelvin) + 0.00060493 × P (MPa)

Data correspond to NIR and IR data and 
the axes, while not labeled, are in cm–1, lin-
early spaced (Figure 1). Finally, while most 
spectra represent mixtures, some pure 
components are provided but not identified 
as such. No pure components are present 
in the test and validation sets.

Dataset 2
These samples corresponded to gas mix-
tures in the gas phase measured in trans-
mittance. As was the case for Dataset 1, 
samples were collected in the laboratory 
under various conditions of pressure and 
temperature but these details were not pro-
vided. Data corresponded to NIR and IR 
data and the axes, in linearly-spaced nm, 
were not provided.

Note that this dataset was also used 
for the Chimiométrie conference that took 
place in Geneva (Switzerland) on 19–21 
January 2015. More information about this 
meeting is available at the following web 
address (http://chimio2015.sciencesconf.
org/resource/page/id/21).

The approaches taken by four of the five 
participants are presented below.

Participant 1
A calculation-intensive approach to model 
optimisation was selected based on Joint 
Variable Selection and Pre-processing Opti-
misation (JVSPO).3 This methodology is 
based on the following idea: pre-processing 
algorithms and variable selection are pow-
erful tools for performance improvement of 
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calibration models built on spectroscopic 
data. Typically, a pre-processing is first 
optimised and applied followed by variable 
selection. In the JVSPO approach, the pre-
processing method and its parameters as 
well as an optimal variable set are found at 
a time in the same optimisation routine, e.g. 
using a Genetic Algorithm (GA). The merit 
function used at the optimisation is custom 
and can be composed of any statistical 
criteria, such as root mean-square errors 
of calibration, validation and prediction or 
respective r2 values.

The variables can be selected individu-
ally or as intervals of different widths to take 
into account possible correlations between 
adjacent spectral variables. The variables 
within an interval can be optionally aver-
aged. This approach can be thought of as 
a generalisation and extension of the well-
known interval PLS (iPLS) algorithm. Model 
computation times were about 2 h and 1 h 
for datasets 1 and 2, respectively.

Despite the trial-based approach, 
exploratory data analysis was always per-
formed prior to the calibration, because 
understanding of the data structure is 
critical for modelling success. Investiga-
tion of spectra in Dataset 1 revealed two 
different regions, which might be a result 
of augmentation of different data sources. 
One part of the data exhibited intensities 
and shapes characteristic of transmission 
spectra (variables 1–4150). Data linearisa-
tion through absorbance transformation 
was tested along with using the raw data. 

Additionally, the path length correction 
was used. Neither of those transforma-
tions was justified for the second spectral 
region (variables above 4150). Considering 
dramatic intensity differences between the 
parts, auto-scaling was performed prior to 
modelling. All combinations of the above 
transforms were tested followed by the 
whole model optimisation cycle. The best 
results were obtained for raw (transmit-
tance) data of the first part after correction 
for path length. The best model was built 
with 30 intervals of 7 averaged variables 
each; pre-processing involved Savitzky–
Golay 1st derivative (polynomial order = 1, 
window = 7 points).

Principal component analysis (PCA) 
exploration of Dataset 2 revealed that the 
validation spectra were completely differ-
ent from the rest of the data. Only one 
sample presenting the variability of the 
validation set was present in the test set. 
In fact, the validation set provided was 
not representative of the calibration set. 
To overcome this inconsistency, the refer-
ence y-value distribution of the calibration 
set was integrated into the merit function 
along with RMSE of calibration and test. 
This approach ensured that predicted 
y-values of the test set were reasonably 
similar, which was a natural assumption. 
The best model in Dataset 2 was built with 
20 intervals of 21 variables each (no aver-
aging); pre-processing involved Savitzky–
Golay 1st derivative (polynomial order = 1, 
window =18 points).

Participant 2
Two regression models were developed 
for Dataset 1: principal component regres-
sion (PCR) was used to model spectral 
data with associated reference values 
ranging from 0.0 to 0.3 and a partial least 
squares (PLS) model was used with sam-
ples and reference values above 0.3. After 
a visual inspection of the spectral data, 
three regions were selected for modelling 
(1160–1640, 2610–3000 and 3200–3900 
variable points), corresponding to regions 
with transmittance values below 100 (arbi-
trary unit). Reference values were corrected 
for path length differences by the equation 
provided with the sample measurement 
temperature and pressure. None of the test 
samples were used in calibration; however, 
they were utilised for determining model 
suitability limits. Hotelling’s T2 and Q-resid-
ual were employed for prediction suitability 
testing in order to assign a model (PCR or 
PLS) to the unknown samples in the valida-
tion set.

For the PCR model, 13 principal compo-
nents were used to fit a total of 1306 cali-
bration samples, which had y reference val-
ues ranging from 0.0 to 0.3. Some samples 
presenting a reference value of zero were 
excluded to avoid overweighting the model. 
Spectral data were pre-treated by transmit-
tance to absorbance conversion followed 
by baseline offset correction. A suitability 
limit for y-deviation in The Unscrambler® 
was determined as 0.03 from the test data-
set.

For the PLS model, 9 factors were used 
to fit a total of 124 calibration samples 
with y reference values of 0.3 and above. 
Spectral data were pre-treated as follows: 
transmittance to absorbance conversion, 
baseline offset correction, unit-vector nor-
malisation and Savitzky–Golay 2nd derivative 
(21 points, 3rd order polynomial smoothing). 
Nine wavelengths were selected by forward 
stepwise regression in MATLAB. During 
prediction, the PCR model was applied 
first. For each sample of the validation set, if 
the y-deviation was less than 0.03, the pre-
dicted value was recorded otherwise, the 
PLS model was applied instead. Predicted 
values were scaled back by their individual 
measurement temperature and pressure.

For Dataset 2, a 7-factor PLS model 
was built from 130 calibration samples and 
spectral data were pre-treated by transmis-
sion to absorbance conversion and Sav-
itzky–Golay 2nd derivative (21 points, 3rd 
order polynomial smoothing). Three spectral 

Figure 1. Overlay of the calibration (black), test (red), and validation (green) data for Dataset 1. (Note 
that not all available variables were displayed.)
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regions (101–1651, 1851–2201 and 2511–
3101) were selected for modelling.

Participant 3
The first step of the data exploration con-
sisted in looking at the available reference 
data. The y vector presented a very dis-
symmetric distribution and temperature 
and pressure were provided. 2D and 3D 
plots with the reference values, pressure 
and temperature did not show any corre-
lation but rather some type of orthogonal 
experimental design. Before looking at the 
spectra, the transmittance data were cor-
rected with the pathlength changes arising 
from temperature and pressure according 
to the equation provided. The corrections 
varied from 0% to 16%. As more absorption 
occurs with larger pathlengths, transmit-
tance values would have been higher with 
shorter path lengths; therefore, this cor-
rection increased the transmittance values. 
The corrected spectra were then converted 
to absorbance.

A global plot of the spectra was unread-
able due to the variability in terms of peak 
positions and absorbance values (Figure 
1). A PCA on the calibration set showed 
well-separated groups of spectra (Figure 
2a) and the groups seemed to be sequen-
tially merged in the common data set. A 
projection of the test set indicated three 
main groups of spectra (1–99, 100–162, 
163–269).

For each group, several multiple linear 
regression (MLR) step-up models were 
tested with the most common region from 
variables between 580 and 2000. Models 

obtained involved between five and seven 
predictors with only a short smoothing of 
three data points as pre-processing. For 
each group, the final model retained was the 
one presenting the smallest Mahalanobis 
distances. The prediction errors (RMSEPs) 
were 0.002, 0.006 and 0.102, respectively, 
for the three sub-groups of the test set with 
a global r2 of 0.996.

The validation set had a structure again 
different from the calibration and test sets. 
A PCA revealed five groups of rather differ-
ent spectral features from the calibration 
set (Figure 2b). So the models selected for 
the test set were not going to be useful for 
predicting the validation set. Each validation 
group was treated individually. For groups 
1, 3, 4 and 5, a local approach was used 
(Foss WinISI 4 – Local calibration) with the 
following respective ranges, the number of 
selected spectra, the number of PLS terms 
and the pre-processing: G1: 650–1900, 50 
spectra, 5 factors, 1st gap derivative, 11 
point window; G3: 2150–3100, 30 spectra, 
4 factors, 1st gap derivative, 11 point win-
dow; G4 and G5: 700–1380, 50 samples, 5 
factors, 1st gap derivative, 5 point window. 
For G2, the spectra were too far apart to 
find any common spectral region so the 
Local methodology was unusable. Models 
for that group were then developed by MLR 
step-up and by trial and error to select a 
model with the minimum of the Mahalano-
bis distances. The averaged Mahalanobis 
distance values for the five groups were, 
respectively: #1–26, 0.8; #27–73, 2.7; #17–
113; 2.1; #114–163, 1.9 and #164–208, 
1.2.

The current exercise emphasised the 
importance of the Mahalanobis distances, 
confirming once more that empirical mod-
els only work if the spectral data to be pre-
dicted are close to the variance included in 
the calibration set.

Participant 4
Dataset 1 exhibited a skewed distribution 
with many samples presenting values under 
0.1, with a few at “fixed levels” 0.3 and 
above 0.7. After pressure and temperature 
normalisation of the spectra, a simple PLS 
model did not work at all. So a selection of 
the spectral region specific to the analyte of 
interest was performed. A correlation plot of 
the reference values versus variables for the 
calibration and test set was calculated. Only 
the samples with values above 0.3 with 
pressures at 6000 psi and temperatures at 
150°C were used for this evaluation. The 
region around data point 1500 was chosen 
for further investigation. A stepwise MLR 
was calculated using the data points 1495 
and 1252; no scatter correction or deriva-
tive was used. The model was biased and 
slope corrected for the samples with a ref-
erence value above 0.1 and used to predict 
the validation set.

Dataset 2 exhibited significant spectral 
differences between the calibration and 
validation sets in the 1500–2000 variables 
region and above 3000. A local regression 
model was used with 100 samples chosen 
and 20–30 factors.

Figure 2. Dataset 1 PCA plot of the calibration and test samples (a) and validation samples (b).

continued on page 14
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Results
Table 1 presents the validation results for 
each participant. Root mean square errors 
(RMSEP), standard errors (SEP) and bias 
values are presented along with coefficients 
of determination.

The participants chose quite different 
approaches to get prediction results that 

also varied significantly. With the overall 
best statistics, participant 3 won the 2014 
IDRC Shoot-Out, followed by participant 1 
and 2.

The data are available on the IDRC web-
site (http://www.idrc-chambersburg.org). 
The authors would like to thank the 2014 
IDRC chair Dr Rodolfo J. Romañach and 

the Council for Near-Infrared Spectroscopy 
for providing funding and support for the 
conference. The next conference will take 
place from 30 July to 5 August 2016.
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Participant 1 Participant 2 Participant 3 Participant 4

Set 1

RMSEP 0.119 0.567 0.105 0.202

SEP 0.112 0.523 0.099 0.193

Bias –0.039 0.220 –0.035 –0.059

r2 0.935 0.002 0.984 0.921

Set 2

RMSEP 0.014 0.017 0.017 0.031

SEP 0.014 0.005 0.007 0.012

Bias –0.003 0.016 0.016 0.029

r2 0.570 0.968 0.916 0.665

Table 1. Validation statistics for sets 1 and 2.
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