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NIR news 2014 Data Analysis Challenge: results
Juan Antonio Fernández Pierna and Philippe Vermeulen
Walloon Agricultural Research Centre (CRA-W), 24 Chaussée de Namur, 5030 Gembloux, Belgium

You will remember, I am sure, the challenge which we set you in the last issue of 2014 dedicated to the memory of Jim Burger. This 
used a dataset supplied by Juan Antonio Fernández Pierna and Philippe Vermeulen of CRA-W, Belgium, a dataset which they had 
actually generated and used in a real application. Somewhat to our disappointment, we only received two responses to our challenge, 
and neither of the scientists involved belong to our normal NIR community. They were Xavier Hadoux and Taylor Glenn. However, 
it seems that they have added to the repertoire of strategies and methods available to imaging NIR spectroscopists since some of 
the approaches they used were not familiar to the CRA-W scientists. The approaches taken together with the reported results are 
described and discussed in this article. Given that we only had the two applicants and they both produced interesting and improved 
solutions, we have decided to award the prize jointly—Ed.

T
he damage caused by nematode 
infestations of sugar beet roots 
eventually leads to a reduction in 
sugar yield. The size of this reduc-

tion is related to the number of cysts pre-
sent. The current challenge was to detect 
and quantify by hyperspectral NIR imaging 
the presence of cyst nematodes on sugar 
beet root samples.

For this experiment, 20 sugar beet plants 
with different levels of resistance were grown 
in a soil support, spread in plastic plates 
and infested with nematodes. The number 
of cysts in each sample was independently 
counted by optical microscopy. Then, one 
image for each plant was acquired with a 
pushbroom NIR hyperspectral imaging sys-
tem. All the images consisted of lines of 320 
pixels acquired at 209 wavelength channels 
(1100–2400 nm) with a spectral resolution of 
6.3 nm and result from averaging 32 scans 
at each line. Around 300 lines (100,000 pix-
els) were acquired for each sample.

Images 1 to 14 include reference val-
ues and are to be used to develop mod-
els for quantifying cysts. Samples 1 to 4 
also include two RGB images (A: original 
image; B: image with cysts identified in red). 
Images 15 to 20 are blind samples, which 
are to be used to check whether the devel-
oped model is consistent (reference values 
are not included). A summary of the avail-
able samples is provided in Table 1.

The challenge was to provide estimates 
of the number of cysts for a blind test set 
(Images 15–20).

Two participants reported results which 
are summarised in Table 2 and Figure 1. 
In this commentary, these results are com-
pared to those published by CRA-W,1 sup-
pliers and originators of the original data-
set.

Both participants gave very good results 
and in all cases, the predicted values for the 
tolerant plants were lower than for their sus-
ceptible counterparts.

The originality of the two approaches pro-
posed by the participants is the application 
of methods generally used on the images 
acquired by spatial or aerial remote devices. 
That was not the case for the results pub-
lished by Fernandez et al.1

The next sections give a more detailed 
description of the overall approach and 

methodology used. Additionally, for sample 
19 which is a tolerant plant, RGB images 
and predicted images indicate, for each 
approach, the locations of the predicted 
cysts.

CRA-W
For detection and possible quantifica-
tion, a complete spectral library, includ-
ing spectra from the background (includ-
ing a water feedstrip and a plastic box), 
soil support, roots and cyst nematodes, 

Sample number Number of cysts RGB image NIR image Set

1 24 yes yes Cal

2 49 yes yes Cal

3 70 yes yes Cal

4 82 yes yes Cal

5 33 no yes Cal

6 35 no yes Cal

7 43 no yes Cal

8 50 no yes Cal

9 51 no yes Cal

10 51 no yes Cal

11 55 no yes Cal

12 66 no yes Cal

13 76 no yes Cal

14 77 no yes Cal

15 yes Test

16 yes Test

17 yes Test

18 yes Test

19 yes Test

20 yes Test

Table 1. Summary details of sample set.
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was built by selecting around 500 pixels 
in each region of interest on the images 
of 10 plants (five tolerant and five suscep-
tible). In total, more than 2000 spectra 
were used to build the SVM discrimination 
models. The spectra dataset was pre-
processed using smoothing (window = 5), 
SNV and first derivative Savitzky–Golay 
(window = 5, polynomial = 2). A dichoto-
mist classification tree was built including 
the following steps:
(1)	 Detection of pixels in the image, showing 

a higher absorbance around 1690 nm 
than around 1970 nm, corresponding to 
the conveyor belt;

(2)	 Detection of pixels in the image, 
detected as soil support, roots or cysts 
by the SVM model “background vs soil 
support+root+cyst”;

(3)	 Detection of pixels in the image, 
detected as roots or cysts by the SVM 
model “soil support vs root+cyst”);

(4)	 Detection of pixels in the image, 
detected as cysts by the SVM model 
“root vs cyst”;

(5)	 Removal of the pixels classified as 
outliers according to rules based on 
the comparison of absorbance at sev-
eral wavelengths; the cysts showing a 
lower absorbance around 1734 nm than 
around 1715 nm and 1765 nm;

(6)	 Application of the Density-Based Spa-
tial Clustering of Applications with Noise 
(DBSCAN) method to study the neigh-
bourhood of the pixels detected as 
cysts in step (5). Using this technique, 
pixels within 1 pixel of each other and 
with a minimum of two neighbour pixels 
were placed in a single class and identi-
fied as a cyst. Pixels that did not meet 
these conditions were identified as outli-
ers. Once the models were constructed 
and validated, the complete discrimina-
tion tree, including the three equations 

and the spectral rules, was applied suc-
cessively to all the pixels in the images 
of the 20 plants in order to estimate the 
number of pixels detected as cysts by 
surface unit.

This method is described in detail in Ref-
erence 1.

T. Glenn (USA)
A single prototype target signature for the 
cysts was extracted from one of the calibra-
tion images and used in a target detection 
algorithm in each of the images.

The detection prototype spectrum was 
extracted from the CC4 image by using the 
pixel value at row 92, column 143.

The best results were found by setting a 
high threshold to achieve a low false-positive 
rate. However, this resulted in fewer of the 
cysts being detected than were given as the 
calibration number. To provide an estimate of 
the population, a scale factor was estimated.

#Cysts Ref #Cysts CRA-W #Cysts Participant 1 #Cysts Participant 2

  Code   Pred diff. Pred diff. Pred diff.

Tolerant 1 24 8 17 21 3 23 1

Tolerant 2 49 12 37 40 9 47 2

Susceptible 3 70 79 –9 79 –9 65 5

Susceptible 4 82 82 0 71 11 72 10

Tolerant 5 33 24 9 45 –12 33 0

Tolerant 6 35 15 20 33 2 36 –1

Tolerant 7 43 27 16 61 –18 40 3

Tolerant 8 50 17 33 46 4 55 –5

Tolerant 9 51 49 3 53 –2 53 –2

Susceptible 10 51 26 25 45 6 50 1

Susceptible 11 55 63 –8 47 8 52 3

Susceptible 12 66 32 34 61 5 61 5

Susceptible 13 76 53 23 74 2 74 2

Susceptible 14 77 71 7 79 –2 74 3

Tolerant 15 24 20 4 36 –12 28 –4

Susceptible 16 60 29 31 56 4 48 12

Tolerant 17 37 5 32 37 0 34 3

Susceptible 18 69 71 –2 61 8 65 4

Tolerant 19 49 31 18 55 –6 33 16

Susceptible 20 80 80 0 77 3 60 20

Mean susceptible   69 58   65   62  

Mean tolerant 40 21 43 38

RMSEC Cal     20.7   8.1   3.9

RMSEP Test     19.7   6.7   11.8

Table 2. Summary of results.
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■■ Reduce dimensionality to 50 bands by 
hierarchical band merging based upon 
mutual information, this is done mostly 
to reduce processing time, but it also 
slightly improves performance.

■■ Difference along spectral dimension, this 
slightly reduces the noise sensitivity.

■■ Use the ACE (Adaptive Cosine Estimator) 
target detection statistic where the mean 

and covariance are estimated from the 
entire image.

■■ Mask off detection into a region of inter-
est. This is mostly to avoid the “hotspot” 
found within top 50–75 rows of the im-
age that causes several false detections.

■■ Threshold the detection output to form 
detection blobs.

■■ Select regional maxima of semi-thresh-
olded detection output as the hit loca-
tions.

■■ Estimate true population count from de-
tections.

■■ Multiply detection count by a scale factor 
to estimate the population count.
For best performance, a detection 

threshold was selected that gave detection 
counts which best correlated to the cali-
bration population counts. The threshold 
was found by seven-fold (leave two out) 
cross-validation of the calibration set. The 
threshold that minimised squared error of 
the population estimate in cross-validation 
was selected. Then, with the threshold level 
selected, a simple scale factor estimator 
was trained on the entire calibration set.

The best correlation between detection 
counts and population counts was found by 
setting the detection threshold to 0.55, this 
implied a scale factor of 1.48 to estimate 
the population count.

X. Hadoux (France)
■■ Camera radiometric calibration. The first 
row of the first image was used to esti-
mate the difference in spectral responses 
between the columns. The white back-
ground represented in the first row which 
was, of course, supposed to be homo-
geneous. For the columns in which the 
root was overlapping the white back-
ground, the estimation was made using 
another image. A relative correction (to 
the left column) was thus performed by 
subtracting the difference between each 
column to the left column.

■■ Reflectance calibration. To compensate 
for the lighting differences between im-
ages, a logarithm transformation of the 
radiance image Li,j(l) (i and j are the pixel 
coordinates and l the wavelength) was 
performed. After centring, the additive 
part log E(l) cancelled out thus leading 
to images that are independent of the 
lighting conditions.

■■ Also, because of low values (log), spec-
tral bands <10 and >180 were removed.

Figure 1. Predicted versus actual results reported by (a) Fernandez et al.,1 (b) participant 1 and (c) 
participant 2. By comparing the three results, those obtained by participant 2 gave the best deter-
mination coefficient (0.88) and the best RMSEC calculated on the calibration set (3.9). However, the 
RMSEP calculated on the six samples of the test set was three times higher (11.8). The results from 
participant 1 gave quite a good determination coefficient (0.81) and a very low RMSEP (6.7). The 
published results (Fernandez et al.)1 indicated a lower determination coefficient (0.71) and higher 
RMSEP (19.7). 

(a)

(b)

(c)

continued on page 15
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■■ Background removal. Specific combina-
tions of wavelengths were manually cho-
sen. The removed parts of the images 
were: the white background, the pot, 
some roots with very low spectral values 
(dead?) and other soil related pixels with 
very low spectral responses.

■■ Classification. Pixels that corresponded 
to cysts had to be manually extracted. 
Some pixels (the obvious one) were first 
extracted according to four classes: cyst, 
taproot, fibrous and soil.
A PLS-LDA (LDA on PLS scores) was 

performed using five LV and three discrimi-
nant vectors (DV). The resulting LDA scores 
(that well separate different classes) were 
then used to create a false-RGB image with 
enhanced contrast between classes.

The complete ground truth creation using 
the first four images was then manually 
made with the help of these RGB images.

■■ Classification Models. A single model 
was not satisfactory to correctly classify 
the cysts because of high similarity be-
tween spectral responses of every class. 
I thus used three different PLS-LDA mod-
els to increase the discriminatory power:

■■ Model 1: PLS-LDA four classes with 
five LV and four DV.

■■ Model 2: PLS-LDA two classes (cyst 
versus the rest) with seven LV and one 
DV.

■■ Model 3: PLS-LDA two classes (cyst 
versus taproot) with four LV and one 
DV.

■■ Class decision (model fusion). Probability 
maps were computed of observing class 
cyst for with the three models. Then, be-
cause outliers were present in the three 
models (but were usually situated at dif-
ferent spatial positions), the cyst were 
detected on the product of the three 
probability maps.
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Figure 2. (a) RGB image, (b) predicted image (CRA-W), (c) predicted image (Glenn), (d) predicted 
image (Hadoux).
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