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� Predictions based on the NIR spectrum were most reliable to estimate the BMP.
� NIR predictions of the BMP made by local models were reliable and quantitative.
� Non-linear models gave more reliable predictions than linear models.
� Biomass presentation form did not influence the model’s prediction performances.
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The reliability of different models to predict the biochemical methane potential (BMP) of various plant
biomasses using a multispecies dataset was compared. The most reliable prediction models of the BMP
were those based on the near infrared (NIR) spectrum compared to those based on the chemical composi-
tion. The NIR predictions of local (specific regression and non-linear) models were able to estimate quan-
titatively, rapidly, cheaply and easily the BMP. Such a model could be further used for biomethanation
plant management and optimization. The predictions of non-linear models were more reliable compared
to those of linear models. The presentation form (green-dried, silage-dried and silage-wet form) of
biomasses to the NIR spectrometer did not influence the performances of the NIR prediction models. The
accuracy of the BMP method should be improved to enhance further the BMP prediction models.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction 2012). The anaerobic digestion process consists in the anaerobic
The production of biogas by anaerobic digestion (biomethana-
tion) of plant biomasses is of growing importance in the context
of renewable energy production (Amon et al., 2007; Triolo et al.,
conversion of the organic matter into biogas by microorganisms.
The produced biogas is a mixture mainly made of methane and car-
bon dioxide (Duncan and Nigel, 2003). Plant biomasses such as
corn (Zea mays L.) and meadow (e.g. Festuca arundinacea Schreb.)
silages are commonly used feedstocks for biomethanation (Amon
et al., 2007). This type of renewable energy production is socio-
economically cost-efficient and environmentally efficient (e.g.
reduction of greenhouse gas emissions) (Amon et al., 2007; Triolo
et al., 2012). It is also a convenient source of renewable energy
as it offers the possibility to use multiple feedstocks, and to meet
different types of energy needs (heat, electricity, and fuel) and fer-
tilizers for agriculture (Ward et al., 2008; Triolo et al., 2012).

The biochemical methane potential (BMP expressed as m3 of
methane per kg of organic matter) is the most relevant method

http://crossmark.crossref.org/dialog/?doi=10.1016/j.biortech.2014.10.115&domain=pdf
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used to determine the biogas production potential of biomasses
(Grieder et al., 2011; Raju et al., 2011). It is a batch assay of
30–100 days of the sample’s anaerobic biodegradation. This assay
reproduces the biomethanation process conditions in a small
biogas fermenter and measures the methane production (Grieder
et al., 2011; Raju et al., 2011). The main drawbacks of the BMP
method are that it is generally time and resource consuming. These
are important burdens for industrial plant management and
optimization (Grieder et al., 2011; Doublet et al., 2013). Therefore,
there is a need to develop simple, fast and reliable models to
predict reliably the BMP.

The gas production by anaerobic digestion depends on the feed-
stock’s chemical characteristics such as chemical composition
(contents of lignin, cellulose, hemicelluloses, starch, total soluble
sugars, proteins and lipids) and anaerobic organic matter digest-
ibility (Grieder et al., 2011, 2012; Triolo et al., 2011). The chemical
composition can be determined in a cost-effective way in only a
few days (Raju et al., 2011). It can be used to predict the BMP in
a faster and cheaper way, as compared to the BMP measurement,
if suitable prediction models can be developed. It has been shown
for corn that the chemical composition (contents of lignin,
hemicelluloses, total soluble sugars and lipids) enables a reliable
prediction of the BMP (Rath et al., 2013). Such a model needs to
be built with more than one variable to be reliable (multivariate
models; Rath et al., 2013).

The anaerobic organic matter digestibility can be assessed by the
enzymatically digestible organic matter (eDOM) determined by the
De Boever method (De Boever et al., 1986). This relatively simple
and fast method can be used to assess the suitability of plant bio-
masses to be converted by anaerobic digestion (Godin et al.,
2013a,b,c). The eDOM can be considered as the minimum level of
anaerobic digestibility of the plant biomass. Indeed, the microor-
ganisms of the anaerobic digestion are expected to produce more
enzymes in-situ and for a longer period of time compared to the
enzyme cocktail used in the analysis. The eDOM can be predicted
from the near infrared (NIR) spectrum of the organic matter with
suitably developed models. The prediction performances of the
eDOM by models based on the NIR spectrum are known to be excel-
lent: coefficient of determination of 0.95 and ratio of the mean stan-
dard deviation of the predicted variable to the mean standard
residual error of prediction of 4.6 (Decruyenaere et al., 2009).

Prediction models based on the NIR spectrum can also be very
useful to rapidly, cheaply and easily predict the BMP of feedstocks.
The NIR-based prediction models have been shown to be reliable
for the BMP prediction of meadow grasses (Raju et al., 2011),
fibrous plant biomasses, (Triolo et al., 2014) and a wide range of
organic substrates (Lesteur et al., 2011; Doublet et al., 2013). The
prediction models were based on the linear regression of the par-
tial least square (PLS). However, the NIR predictions can also be
made by non-linear models. The local (specific regression and
non-linear) model is one of those models which are able to
improve the prediction performances of a variable based on the
NIR spectrum (Shenk et al., 1997). The local model builds a regres-
sion for each sample separately by selecting its most similar spec-
tral neighbors in the used dataset. This selection is then used to
develop a specific PLS model for the predicted sample (Shenk
et al., 1997). While linear models are commonly used to develop
prediction models from the NIR spectrum, to our knowledge,
non-linear models have not been used to predict the BMP of plant
feedstocks.

To have a reliable prediction model of a secondary method (NIR
spectrum and chemical composition in the present study) based on
the reference method (BMP and eDOM in the present study), it is
important to have: (1) an accurate reference method; (2) a large
variability for the values of the reference and secondary methods.
The use of a multiproduct (multispecies) dataset with similar plant
species helps to enlarge this variability (Berzaghi et al., 2000). The
presentation form (eg. water content and particle size) of a sample
to the NIR spectrometer is known to affect the prediction perfor-
mances of a NIR prediction model. A higher water content and/or
a bigger particle size tend to decrease the reliability of the NIR
prediction model because they tend to hide the NIR spectral
information (Bertrand and Dufour, 2006).

The aim of this paper is to compare the reliability of the BMP of
plant biomasses predicted by models using the chemical composi-
tion or the NIR spectrum as predictor and also to use a multiprod-
uct (multispecies) dataset, to test the influence of the state of the
biomass when recording NIR spectrum (green-dried, silage-wet
or silage-dried), and to assess the influence of the model used to
make the prediction (linear models: PLS models and multivariate
linear regression models with a linear matrix; non-linear models:
local models and multivariate linear regression models with a
non-linear matrix).
2. Methods

2.1. Biomass material

Miscanthus giganteus (Miscanthus x giganteus J.M. Greef &
Deuter ex Hodk. & Renvoize), switchgrass (Panicum virgatum L.),
spelt straw (Triticum aestivum L. ssp. spelta (L.) Thell.), fiber
sorghum (Sorghum bicolor (L.) Moench), tall fescue (F. arundinacea
Schreb.) with 3 harvests per year, immature rye (Secale cereale L.),
and fiber corn (Z. mays L.) came from randomized block designed
crop trials performed in 2008, 2009, 2010 and/or 2011 at Libra-
mont (498 m above sea level (asl); average annual temperature:
8.6 �C; average annual precipitation: 1260 mm; 49�550N, 05�240E;
Belgium), Gembloux (161 m asl; average annual temperature:
9.8 �C; average annual precipitation: 856 mm; 50�330N, 04�430E),
Tinlot (255 m asl; average annual temperature: 9.7 �C; average
annual precipitation: 871 mm; 50�280N, 05�230E; Belgium), Mötsch
(330 m asl; average annual temperature: 8.4 �C; average annual
precipitation: 675 mm; 49�570N, 06�330E; Germany) or Gerbéviller
(260 m asl; average annual temperature: 9.9 �C; average annual
precipitation: 1022 mm; 48�290N, 06�310E; France). Depending on
the crop, trials were performed with different harvest periods
(details in Table 1), cultivars (details in Table 1) and/or nitrogen
fertilization levels (from 0 to 240 kg of nitrogen per hm2). From
plots between 9 and 24 m2, the whole above ground biomass
was harvested at 10 cm from the ground and chopped (particle size
1–2 cm). Details about the investigated plant biomasses are pre-
sented in Table 1.

For each biomass analyzed under its green-dried form, two rep-
resentative subsamples were dried at 60 �C for 72 h in a forced air
oven immediately after the harvest. After the drying process, the
two subsamples were milled first with a 4 mm screen BOA ham-
mer mill (Waterleau, Herent, Belgium) and then with a 1 mm
screen Cyclotec cyclone mill (FOSS, Hillerød, Denmark). For the
storage of the samples, airtight bags were used. They were kept
at room temperature and were protected from light in a dark box.

For each biomass analyzed under its silage-wet form, one repre-
sentative sample was packed in a plastic bag under vacuum. This
enabled silaging of the sample. The vacuum sealed plastic bag
was stored at room temperature for at least 3 weeks before the lab-
oratory analysis. If gas was produced during silaging, the plastic
bag was opened and put again under vacuum.

For each biomass analyzed under its silage-dried, one represen-
tative sub-sample of its silage-wet form was taken just before the
laboratory analysis. It was dried at 70 �C for 48 h in a forced air
oven. The dried sub-sample was milled with a 1 mm screen
Cyclotec cyclone mill (FOSS, Hillerød, Denmark). It was then stored
at room temperature in airtight bags.



Table 1
Details about the investigated plant biomasses.

Plant species Cultivar Harvest
period

Near infrared spectrum Chemical
composition

Green-dried
form
n = 588

Silage-dried
form
n = 428

Silage-wet
form
n = 465

Green-dried form
n = 569

Miscanthus
giganteus

Miscanthus x giganteus J.M. Greef
&
Deuter ex Hodk. & Renvoize

Bical Early
autumn

24 23 24 17

Switchgrass Panicum virgatum L. Cave-in-Rock Early
autumn

16 8 8 16

Spelt straw Triticum aestivum L. ssp. spelta (L.)
Thell.

Badengold and
Cosmos

Late
summer

37 36 37 36

Fiber sorghum Sorghum bicolor (L.) Moench H133 Late winter 8 0 0 8
Fiber sorghum Sorghum bicolor (L.) Moench H133 Early

autumn
32 28 28 29

Tall fescue Festuca arundinacea Schreb. Kora and Soni Spring 118 80 90 117
Tall fescue Festuca arundinacea Schreb. Kora and Soni Summer 125 112 123 122
Tall fescue Festuca arundinacea Schreb. Kora and Soni Autumn 133 88 118 130
Immature rye Secale cereale L. Protector and Vitalio Early spring 22 2 2 21
Fiber corn Zea mays L. LG Azelo and

Ronaldinio
Late winter 14 0 0 9

Fiber corn Zea mays L. LG Azelo and
Ronaldinio

Early
autumn

59 51 35 64

n, number of samples
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2.2. Chemical reagents and analyses

All chemicals regents were of the analytical grade or equivalent.
The main chemical components (lignin, cellulose, hemicellu-

loses, starch, total soluble sugars, proteins, mineral compounds) of
the assessed biomasses were determined. The Van Soest (VST)
method was used to determine lignin VST, cellulose VST and hemi-
celluloses VST (Van Soest and Wine, 1967; Van Soest, 1973; Godin
et al., 2011a,b, 2014). The Van Soest method was achieved with a
reflux apparatus using crucibles. The neutral detergent extraction
step of the Van Soest method was achieved with the use of a-amy-
lase and sodium sulfite. The acid detergent extraction step of the
Van Soest method was realized with the first preliminary extraction
step by the Van Soest neutral detergent with the use of a-amylase
but without sodium sulfite. The concentrated acid extraction of
the Van Soest method was accomplished with sulfuric acid. The fiber
residues of the Van Soest method were corrected by their mineral
compound content. The starch content was determined by the
Ewers method (European Union, 2009). The starch content was only
measured for the corn biomasses. It was considered as zero for other
analyzed biomasses based on preliminary analyses. The total solu-
ble sugars were determined by the Luff-Schoorl method (European
Union, 2009). The proteins’ content was determined by the Kjeldahl
method using 6.25 as a conversion factor of nitrogen to proteins
(AOAC, 1990). The mineral content was determined by the use of a
muffle furnace set at 550 �C for 3 h. The organic matter (VS) content
was the complement of the mineral compounds (1-content of min-
eral compounds). The dry matter (DM) content was measured at
103 �C for 4 h to express the results relatively to the dry matter.

The biochemical methane potential (BMP) was determined
according to the VDI 4630 standard described by Mayer et al.
(2014). Briefly, samples were digested by a mesophilic anaerobic
inoculum coming from the wastewater treatment plant of Schiff-
lange (SIVEC, Luxembourg). This inoculum was first stabilized by
incubating it at 37 �C for 4 days. An inoculum to substrate ratio
of 2 (VS basis) was used to start the anaerobic digestion of the sam-
ple. The sample (30 g of wet weight) was digested at 37 �C for a
period of 42 days in 2 L digester with a working volume of 1.6 L.
The produced biogas was regularly collected and cooled down to
6 �C (to condense water vapor). Then, the volume and methane
content of the biogas were measured with a wet drum-type gas
meter (TG05, Ritter, Germany) and near infrared sensor (Dyna-
ment, UK), respectively. The volumes of biomethane were normal-
ized at 0 �C and 1013 hPa according to the temperature and
pressure conditions of each measurement. For each batch (series)
of analyses, a triplicate assay was carried out on the inoculum
alone and on microcrystalline cellulose. The inoculum alone assays
of each batch were carried out to measure its biomethane pro-
duced solely. The microcrystalline cellulose assays of all the
batches of the present study were used as a control substrate
and to determine the standard error of the laboratory (SEL) of
the BMP. The BMP value corresponds to the sum of all the partial
measurements. The biomethane volumes produced by an inocu-
lum solely were subtracted from this sum.

The enzymatically digestible organic matter (eDOM) was mea-
sured by the De Boever method (De Boever et al., 1986). Briefly,
samples were incubated, in chronological order, with pepsin in
0.1 mol L�1 HCl for 24 h at 40 �C, with 0.1 mol L�1 HCl for 45 min
at 80 �C, and with cellulase in an acetate buffer at pH 4.8 for 24 h
at 40 �C.

All the measurements were carried out on the green-dried (and
milled through a 1 mm screen) form of the biomass; except for the
BMP analysis which was carried out on the silage-wet (and ground
to a particle size of 1–2 cm) form of the biomass because this form
of the biomass is closer to the industrial biomethanation process.
Duplicate aliquots were measured on each sample, except for the
BMP analysis for which one aliquot was measured on each sample.

2.3. Near infrared analysis

For the biomass analyzed under its green-dried form, the near
infrared (NIR) reflectance spectra were taken by a NIRSystems
5000 (FOSS, Hillerød, Denmark) NIR spectrometer. Each spectrum
was collected in the range of 1100–2498 nm and was the average
of 32 scans.

For the biomass analyzed under its silage-wet and silage-dried
form, the NIR reflectance spectra were taken by a MPA (Bruker,
Billerica, USA) NIR spectrometer. Each spectrum was collected in
the range of 1000–2778 nm (10,000–4000 cm�1) with a resolution
of 16 cm�1 and was the average of 64 scans.

For each presentation form (green-dried; silage-dried;
silage-wet) of the biomass, the spectra were first trimmed to
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1100–2498 nm. Then, they were normalized by a standard normal
variate (SNV) transformation followed by a first order derivation
(1, 4, 4, 1; 1st derivative, 4 nm gap, 4 points of first smoothing, 1
point of second smoothing). These treatments were performed
using WinISI 4.6.8 (FOSS, Hillerød, Denmark).

2.4. Statistical analysis

Descriptive statistics, Pearson correlations and Tukey–Kramer
multiple mean comparison tests (with a = 0.05) based on the
ANOVA of these means of the data were performed using JMP 11
(SAS Institute, Cary, USA). The differences (with a = 0.05) between
two MedRE were assessed using an F-test of variances using JMP 11
(SAS Institute, Cary, USA).

The non-linear matrix of the chemical composition corresponds
to the full factorial design with the square terms of the chemical
composition variables (lignin VST, cellulose VST, hemicelluloses
VST, starch, total soluble sugars, proteins and mineral compounds).
The matrix with the 7 chemical composition variables is referred as
the linear matrix. Each independent variable of the linear and non-
linear matrix was normalized by its mean and standard deviation
(Eq. (1)) to have predictors with the similar weight.

X � l
r

ð1Þ

where X = the independent variable, l = the mean of the indepen-
dent variable, r = the standard deviation of the independent
variable.

The local (specific regression and non-linear procedure; Shenk
et al., 1997), partial least square (PLS) (modified-PLS algorithm;
linear regression model) and multiple linear regression (MLR; lin-
ear regression model) techniques were used to develop prediction
models. The local and PLS models were performed with WinISI
4.6.8 (Infrasoft International LLC, State College, PA) and the MLR
models were built with the Unscrambler X 10.3 (CAMO Software,
Oslo, Norway).

The specific parameters to each local and PLS model were opti-
mized according to the used software. The aim of this optimization
was to build models with the best prediction performances (stan-
dard residual error of prediction of leave-one-out full cross-valida-
tion) that minimizes the under and over fitting of the model. These
parameters were the optimum number of selected samples, and
the minimum and maximum PLS components for the local predic-
tion models. The parameter to optimize for the PLS prediction
models was the number of PLS components. The MLR models were
built with the most statistically significant independent variables.
To select them, a mixed stepwise regression was performed where
only the independent variables with a p-value < 0.001 were kept.

To prevent overestimation of the prediction performances of
the models, each of them was evaluated using an independent val-
idation (Val.) dataset in addition to a leave-one-out full cross-val-
idation (C.-V.). The independent validation dataset was built by
splitting the whole dataset into a calibration sub-set (used to build
the model) and a validation sub-set (which is predicted). The vali-
dation sub-set contained approximately 20% of total samples
(approximately 20% per biomass group) and was made out of rep-
resentative and independent samples in regards to the calibration
sub-set. These two sub-sets are considered as independent
because, for each species, the samples of these two sub-sets never
came from the same cropping site-year-harvest period.

To estimate the prediction performances of the models, the
following parameters were determined for C.-V. and Val.: the
coefficient of determination of prediction based on medians
(R2Med) (Eq. (2)); the median standard residual error of prediction
(MedRE) (Hampel, 1974) (Eq. (3)); the ratio of the median
standard deviation (SDMed) of the variable to MedRE
(RPDMed = SDMed ⁄MedRE�1); the ratio of MedRE to the standard
error of laboratory (SEL) (MedRE ⁄ SEL�1). These parameters were
calculated based on medians to be robust and to avoid deleting
subjectively outlier samples (which have high residual values) of
one dataset without deleting them of the other datasets or to have
to also delete them of all the other datasets. Therefore, the R2Med,
MedRE, RPDMed and MedRE ⁄ SEL�1 were determined based on
medians.

R2Med ¼ SDMed2 �MedRE2

SDMed2 ð2Þ

where SDMed = median standard deviation of the variable,
MedRE = median standard residual error of prediction.

MedRE ¼MAD�1:4826 ðHampel;1974Þ ð3Þ

where MAD = median of the absolute deviation of the residues.
In order to evaluate R2Med and RDPMed of each prediction

model, the guidelines suggested by Malley et al. (2005) were
followed: excellent prediction model, R2Med P 0.95 and RPD-
Med P 4.0; successful prediction model, R2Med P 0.90 and
RPDMed P 3.0; moderately successful prediction model,
R2Med P 0.80 and RPDMed P 2.3; moderately useful prediction
model (semi-quantitative for screening purpose), R2Med P 0.70
and RPDMed P 1.8.

3. Results and discussion

3.1. Chemical characteristics

The chemical characteristics of the analyzed biomasses are
shown in Fig. 1a (chemical composition: lignin VST, cellulose
VST, hemicelluloses VST, starch, total soluble sugars, proteins, min-
eral compounds) and Fig. 1a (eDOM and BMP). The eDOM has been
considered because it is a relatively simple and fast method to
assess the suitability of the plant biomasses to be converted by
anaerobic digestion (Godin et al., 2013a,b,c). Furthermore, the
eDOM will be used to have a better understanding and to compare
the prediction performances of the BMP.

The chemical composition and the eDOM of the analyzed bio-
masses have already been reviewed by Godin et al. (2013a,b,c).
Briefly, in the context of the present study, 3 distinctive types of
plant biomass profiles can be observed based on the chemical com-
position (Fig. 1a) and the Tukey–Kramer multiple mean compari-
son tests: (1) fibrous plant biomasses (Miscanthus giganteus,
switchgrass, spelt straw and fiber sorghum late winter) which have
higher cellulose VST, hemicelluloses VST and lignin VST contents
and lower total soluble sugars, proteins and mineral compounds
contents; (2) less fibrous plant biomasses (fiber sorghum early
autumn, tall fescue and immature rye) which have lower cellulose
VST, hemicelluloses VST and lignin VST contents and higher total
soluble sugars, proteins and mineral compounds contents; (3) rich
in starch plant biomasses (fiber corn) which have a similar chem-
ical composition to the less fibrous plant biomasses except that
they have a high content of starch. The non-identified fraction
(Fig. 1a) of the analyzed biomasses is most probably composed of
soluble polysaccharides (such as pectins), acetyl groups of struc-
tural carbohydrates, acid soluble lignin, organic acids, alcohols,
pigments and lipids, as also suggested by Hames (2009).

The fibrous crops which are more lignified (important propor-
tion of stems) have a lower eDOM and the less fibrous or rich in
starch crops which are less lignified (important proportion of
leaves or of starch storage organs) and have more cells rich in cyto-
plasm (containing mineral salts) have a higher eDOM (Fig. 1b). The
same trend can be observed for the BMP, except for the late winter



Fig. 1. (a) Chemical composition of the analyzed biomasses. Error bars correspond to standard deviation, n to the number of samples; (b) biochemical methane potential
(BMP) and enzymatically digestible organic matter (eDOM) of the analyzed biomasses. Error bars correspond to standard deviation, n to the number of samples.
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fiber corn which has a quite low BMP whereas the eDOM has a high
value. This could be explained by less accessible carbohydrates to
hydrolysis in the late winter fiber corn because of a more advanced
stage of lignification, as compared to early autumn fiber corn. It is
only observed for the BMP and not for the eDOM because the
grinding of the samples for the eDOM gives a much smaller particle
size (dried and milled with a 1 mm screen) compared to the sam-
ples for the BMP (ensiled with a particle size of 1–2 cm). The BMP
has been determined on the silage (wet) samples with a particle
size of 1–2 cm because it enables to be closer to the industrial bio-
methanation process.

Nearly all the correlations of the chemical components with the
BMP and eDOM are significant (p-value < 0.05) (Table 2). Indeed,
the BMP and eDOM are known to depend on the chemical compo-
sition of the plant biomasses (De Boever et al., 1986; Grieder et al.,
2011, 2012; Triolo et al., 2011; Godin et al., 2010, 2013a,b,c). The
Table 2
Correlation of the biochemical methane potential (BMP) and the enzymatically digestibl
n = 73).

Lignin VST Cellulose VST Hemicelluloses VST

BMP �0.58 �0.46 �0.47
eDOM �0.92 �0.92 �0.73

n, number of samples.
* Not significant (p-value P 0.05).
fibrous components (cellulose VST, hemicelluloses VST and lignin
VST) are correlated negatively to the BMP and eDOM whereas the
non-fibrous components (starch, total soluble sugars and proteins)
are correlated positively to the BMP and eDOM. This can be
explained by the distinction of biomasses mainly made of stems,
of leaves or of starch storage organs, as previously mentioned.

The content of lignin has the highest correlation with both BMP
and eDOM, and it is negative (Table 2). It can be explained by the
fact that lignin is not biodegradable under anaerobic conditions
and that an increasing degree of lignification increases the inhibi-
tion of the anaerobic digestion (Klimiuk et al., 2010; Rath et al.,
2013). Therefore, lignin is obviously a key parameter of the chem-
ical composition to explain the inhibition of the anaerobic
digestion.

There is only one correlation which is not significant
(p-value P 0.05). It is the correlation between starch and BMP
e organic matter (eDOM) with the chemical composition (n = 569, except for starch

Starch Total soluble sugars Proteins Mineral compounds

0.19* 0.54 0.39 0.32
0.77 0.62 0.64 0.24
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(Table 2). This exception can be explained by the fact the late winter
fiber corn has a high content of starch but not a high value of BMP. It
is due to the less accessible carbohydrates to hydrolysis for BMP
method, as previously mentioned.

To enhance the understanding and to improve the correlations
between the chemical composition and the BMP, the BMP should
be determined on dry samples milled through a 1 mm screen.
However, this new presentation form of the biomass would be less
close to industrial conditions of biomethanation

3.2. Chemical composition as a predictor

The descriptive statistics for the BMP and eDOM datasets of the
analyzed biomasses used to build prediction models with the
chemical composition as a predictor are shown in Table 3. The
ranges of the BMP and eDOM are quite wide 0.488 m3 kg�1 VS
and 0.733 kg eDOM kg�1 VS, respectively (Table 3). The inter bio-
mass group SD of the BMP and eDOM is approximately 4 and 2.5
times higher than the intra biomass group SD, respectively
(Table 3). Having such a wide range of values with data well spread
around the range is important to develop reliable prediction mod-
els. This is due to the use of a multispecies (multiproduct) dataset
with similar plant species coming from different harvest periods
and cropping conditions (year, area, cultivar, nitrogen fertilization
level). Another major point to have reliable prediction models is to
have a low standard error of laboratory (SEL) of the analytical
method for the predicted variable. This is the case for the SEL of
the present study’s BMP and eDOM measurements of which the
relative SEL of 5.1% and 1.1% (Table 3), respectively, are comparable
with the best relative SEL of the BMP and eDOM observed in the
Table 3
Whole dataset summary for the analysis of the biochemical methane potential (BMP) and

Biomass form Near infrared spectrum

Green-dried n = 588 Silage-dried n = 428

Predicted variable BMP (m3 kg�1 VS)

Minimum 0.147 0.147
Maximum 0.635 0.635
Median 0.387 0.379
SDMed 0.080 0.076
Inter biomass group SD 0.139 0.114
Intra biomass group SD 0.056 0.055
SEL 0.020 0.020
CV SEL 5.2% 5.3%

n, number of samples.

Table 4
Prediction performances for the cross-validation (C.-V.; n = 569) and the validation (Val.; n
organic matter (eDOM) based on the chemical composition.

Prediction of the BMP (m3 kg�1 VS) by the chemical composition

MLR PLS Local

C.-V. Val. C.-V. Val. C.-V. Val.

Linear matrix
R2Med 0.441 0.557 0.402 0.650 0.710 0.731
MedRE 0.057 0.055 0.058 0.049 0.041 0.044
Relative MedRE 15% 14% 15% 12% 10% 11%
RPDMed 1.3 1.5 1.3 1.7 1.9 1.9
MedRE ⁄ SEL�1 2.9 2.7 2.9 2.4 2.0 2.2

Non-linear matrix
R2Med 0.618 0.497 0.721 0.527 0.758 0.719
MedRE 0.047 0.058 0.040 0.057 0.038 0.044
Relative MedRE 12% 15% 10% 14% 9.8% 11%
RPDMed 1.6 1.4 1.9 1.5 2.0 1.9
MedRE ⁄ SEL�1 2.3 2.9 2.0 2.8 1.9 2.2

n, number of samples.
literature (Decruyenaere et al., 2009; Doublet et al., 2013; Pham
et al., 2013). Usually, the BMP method is performed on dry samples
milled through a 1 mm screen. However, the present study
intended to be closer to the industrial biomethanation process thus
the BMP has been performed on silage (wet) samples with a parti-
cle size of 1–2 cm. Considering the sample’s higher degree of het-
erogeneity, the present study’s SEL is remarkably performant.

Owing to their prediction performances (R2Med P 0.70 and
RPDMed P 1.8 of cross-validation and validation) (Table 4), the
local (specific regression and non-linear) models of the BMP with
the chemical composition as a predictor are reliable enough to be
used for semi-quantitative screening using a multispecies (multi-
product) dataset. The median standard residual errors of prediction
(MedRE) of these local models are between 0.038 and
0.044 m3 kg�1 VS (Table 4). Owing to their R2Med and RPDMed
of cross-validation and validation values of R2Med < 0.70 and/or
RPDMed < 1.8, the PLS (linear regression) and the MLR (linear
regression) models give unsuccessful estimates of the BMP
(Table 4). The ratio of MedRE to SEL is lower for the local models
as compared to the MLR and PLS models (Table 4). Therefore,
MedRE of the local models are closer to SEL compared to the PLS
and MLR models. The higher prediction performances (R2Med,
RPDMed and MedRE) of the local models compared to the MLR
and PLS models can be explained by the fact that with the local
models a specific regression is built for each sample by selecting
its most similar spectral neighbors in the used dataset (Shenk
et al., 1997). Another advantage of non-linear models such as the
local model is that they are able to take into account non-linearity
present in the data and non-homogeneity of samples, as compared
to linear models such as the MLR and the PLS model.
the enzymatically digestible organic matter (eDOM).

Chemical composition

Silage-wet n = 465 Green-dried n = 569

BMP (m3 kg�1 VS) eDOM (kg eDOM kg�1 VS)

0.147 0.147 0.088
0.635 0.589 0.821
0.389 0.389 0.698
0.073 0.076 0.083
0.125 0.406 0.135
0.055 0.052 0.052
0.020 0.020 0.0075
5.1% 5.1% 1.1%

= 112) of the biochemical methane potential (BMP) and the enzymatically digestible

Prediction of the eDOM (kg eDOM kg�1 VS) by the chemical composition

MLR PLS Local

C.-V. Val. C.-V. Val. C.-V. Val.

0.763 0.874 0.740 0.821 0.947 0.937
0.041 0.030 0.042 0.036 0.019 0.021
5.8% 4.3% 6.1% 5.1% 2.7% 3.0%
2.0 2.8 2.0 2.4 4.4 4.0
5.5 4.0 5.6 4.8 2.5 2.8

0.900 0.924 0.929 0.909 0.948 0.901
0.026 0.023 0.022 0.025 0.018 0.026
3.8% 3.3% 3.2% 3.6% 2.5% 3.7%
3.2 3.6 3.7 3.3 4.4 3.2
3.5 3.1 3.0 3.4 2.4 3.5
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The reliability of the prediction models of the eDOM with the
chemical composition as a predictor using a multispecies (multi-
product) dataset are shown in Table 4. The generally higher predic-
tion performances (R2Med and RPDMed) of the local models
compared to the MLR and PLS models can be explained by the rea-
sons mentioned above. Owing to their prediction performances
(R2Med and RPDMed), the prediction models of the eDOM are
always more reliable compared to those of the BMP (Table 4). It
can be explained by: (1) the higher accuracy of the eDOM method
(relative SEL of 1.1%) compared to the BMP method (relative SEL of
5.1%) (Table 3); (2) the fact that the eDOM has been determined on
more homogenous samples (dried and milled with a 1 mm screen)
compared to the BMP (ensiled with a particle size of 1–2 cm). To
improve the prediction models of the BMP by the chemical compo-
sition, the BMP should be determined on the sample particle size as
the chemical composition, on dry samples milled through a 1 mm
screen. However, in the present study a particle size of 1–2 cm has
been used for the BMP assays to be closer to the industrial bio-
methanation process.

The correlation between the BMP and the eDOM is of 0.59
(p-value < 0.05). This is not high enough to build a reliable regression
between these methods. It can be explained by different particle
sizes of these two assays, as explained above, and by difference
of degradation of the chemical components of the anaerobic diges-
tion process for which each of these methods has been optimized.
The eDOM method has been developed to predict the anaerobic
digestion of the plant biomasses in the rumen. Whereas, the BMP
method has developed to predict an anaerobic digestion that lasts
for a much longer time in a biogas fermenter compared to a rumen.
Therefore, chemical components which are not or slowly degraded
in the rumen are partially degraded in the biogas process (Grieder
et al., 2011, 2012).

The higher correlation of cellulose with the eDOM than with the
BMP (Table 2) can be explained by this. Therefore, cellulose is one
example of a component which seems to be much less degraded in
the rumen compared to the biogas process. Further, cellulose has a
negative effect on the MLR prediction model of the eDOM with the
linear matrix of the chemical composition as a predictor whereas
this effect is positive for the same type of MLR prediction model
of the BMP.

For prediction models which are at least semi-quantitative
(R2Med P 0.70 and RPDMed P 1.8 of cross-validation and valida-
tion), the non-linear matrix of the chemical composition generally
improves the prediction performances for the BMP and eDOM
(Table 4). It can be explained by the fact that there are also non-lin-
ear effects to be taken into account to build a prediction model of
Table 5
Prediction performances for the cross-validation (C.-V.) and the validation (Val.) of the bio

Prediction of the BMP (m3 kg�1 VS) by the NIR spec

Green-dried S

C.-V.
n = 588

Val.
n = 112

C
n

Local
R2Med 0.851 0.808 0
MedRE 0.031 0.032 0
Relative MedRE 7.9% 8.4% 7
RPDMed 2.6 2.3 2
MedRE ⁄ SEL�1 1.5 1.6 1

PLS
R2Med 0.796 0.832 0
MedRE 0.036 0.030 0
Relative MedRE 9.3% 7.9% 8
RPDMed 2.2 2.4 2
MedRE ⁄ SEL�1 1.8 1.5 1

n, number of samples.
the BMP and eDOM. Indeed, most of the parameters of the non-lin-
ear matrix for both of these parameters are made of non-linear pre-
dictors. These predictors can be found in Supplementary
information. Nevertheless, there is no additional improvement of
the prediction performances when the non-linear matrix is com-
bined with the local model (Table 4). This means that local model
already takes into account the non-linear effects because the local
models are specific regressions built for each sample by selecting
its most similar neighbors in terms of chemical composition in
the used dataset. For the MLR and PLS models which have unsuc-
cessful performances of predictions (R2Med < 0.70 and/or RPD-
Med < 1.8 of cross-validation or validation) (Table 4), the use of
the non-linear matrix induces a much better model’s cross-valida-
tion reliability (R2Med, RPDMed and MedRE) compared to the
model’s validation reliability (Table 4). This means that the use
of the non-linear matrix in non-reliable models induces an over fit-
ting of the predicted variable in cross-validation. Therefore, these
models are not robust enough to predict independent samples sim-
ilar to the analyzed biomasses. It is not the case of the prediction
models which are at least semi-quantitative. They are robust
enough to predict independent samples similar to the analyzed
biomasses owing to their prediction performances of validation
which are close to those of cross-validation (Table 4). For future
prediction of the BMP and eDOM with the build models, the MedRE
of validation should be considered, except if it is lower than the
MedRE of cross-validation. In this case, the lower and therefore less
performant MedRE of cross-validation should be considered. This
can happen because the validation set has a smaller number of
samples compared to the cross-validation set.

3.3. Near infrared spectrum as a predictor

The descriptive statistics for the BMP datasets of the analyzed
biomasses used to build prediction models with the NIR spectrum
as a predictor are shown in Table 3. The datasets corresponding to
each presentation form (green-dried, silage-dried and silage-wet)
have different numbers of samples because for some samples there
was not enough substrate to take the NIR spectrum of the silage-
dried and/or the silage-wet presentation form of the biomass. As
for the dataset of the BMP prediction models by the chemical com-
position, the 3 NIR spectrum datasets (green-dried, silage-dried
and silage-wet) have a wide range of BMP values with data well
spread around the range (Table 3). This is important to develop
reliable prediction models, as explained in Section 3.2.

Owing to their prediction performances (R2Med P 0.80 and
RPDMed P 2.3 of cross-validation and validation) (Table 5), the
chemical methane potential (BMP) based on the near infrared (NIR) spectrum.

trum

ilage-dried Silage-wet

.-V.
= 428

Val.
n = 89

C.-V.
n = 465

Val.
n = 90

.863 0.850 0.848 0.849

.028 0.031 0.028 0.030

.5% 8.0% 7.3% 7.8%

.7 2.6 2.6 2.6

.4 1.6 1.4 1.5

.802 0.771 0.781 0.778

.034 0.038 0.034 0.037

.9% 9.9% 8.7% 9.5%

.2 2.1 2.1 2.1

.7 1.9 1.7 1.8



B. Godin et al. / Bioresource Technology 175 (2015) 382–390 389
local (specific regression and non-linear) models of the BMP with
the NIR spectrum as a predictor are reliable enough to be used
for quantitative purposes using a multispecies (multiproduct)
dataset. The MedRE of these local models are between 0.028 and
0.031 m3 kg�1 VS (Table 5). These local models are reliable enough
to estimate rapidly, cheaply, easily and quantitatively the BMP by
NIR. Such models can possibly be further used for biomethanation
plant management and optimization. Owing to their R2Med and
RPDMed of cross-validation and validation values of R2Med P 0.70
and RPDMed P 1.8, the PLS (linear regression) models are only
reliable enough to be used for semi-quantitative screening pur-
poses using a multispecies (multiproduct) dataset. Therefore, their
MedRE are globally less performant compared to the local models.
The MedRE of these PLS models is between 0.030 and
0.038 m3 kg�1 VS (Table 5). The ratio of the MedRE to the SEL is
lower for the local models as compared to the PLS models (Table 5).
Therefore, the MedRE of the local models is closer to SEL compared
to the PLS models. The local models have higher prediction perfor-
mances (R2Med, RPDMed and MedRE) compared to the PLS models,
as explained in Section 3.2.

To increase further the prediction performances of the BMP by
the NIR models, the BMP method of the present study could be
adapted by getting a better SEL. To achieve this enhancement,
the samples could be dried and milled with a 1 mm screen instead
of being ensiled (wet) with a particle size of 1–2 cm. This new pre-
sentation form of the biomass would decrease the degree of heter-
ogeneity of the sample but it would be less close to industrial
conditions of biomethanation. It would most probably increase
the laboratory BMP but not the industrial biomethanation process
BMP. The SEL could also be improved by increasing the number of
replicates but this means that the method will get more expensive.

There is generally no significant difference (p-value P 0.05)
between the MedRE of each pair of cross-validation and validation.
This means that the built NIR models are robust enough to predict
the BMP of independent samples similar to the analyzed biomasses
with a comparable MedRE of validation. However, this difference
between the MedRE is significant (p-value < 0.05) for the PLS model
of biomasses presented under its green-dried form to the NIR spec-
trometer. For this pair of MedRE, the validation MedRE has a signif-
icantly lower value compared to the cross-validation MedRE. It can
be explained by the fact that the validation set has a smaller num-
ber of samples compared to the cross-validation set. For this spe-
cific pair of MedRE, the less performant MedRE of the cross-
validation should be considered for future BMP predictions with
that model, whereas the MedRE of validation should be taken into
account for the other pairs of MedRE of the other models.

The presentation form (green-dried, silage-dried and silage-wet
form; different water contents and particle sizes) of biomasses to
the NIR spectrometer did not have an obvious influence on the pre-
diction performances (R2Med, RPDMed and MedRE) of the BMP
(Table 5). Thus, there is no presentation form (water content,
ensiled or not, particle size) of the biomass to clearly prefer for
the NIR models to predict the BMP. This means that these models
mostly depend on the main NIR peaks of the infrared spectrum
because when a high content of water is present in a sample (like
the silage-wet form) then smaller NIR peaks will be hidden by the
water NIR peaks. It suggests that NIR can potentially be used for
online BMP analysis of wet plant biomasses as process control.

Based on the prediction model performances (R2Med, RPDMed
and MedRE) of the BMP, the local NIR models are much more reli-
able and the PLS NIR models are slightly more reliable, as com-
pared to the prediction models with the chemical composition
(Tables 4 and 5). This can be explained by the fact that with the
NIR spectrum all the main chemical components and their interac-
tions are taken into account whereas the chemical composition is
only made of a few chemical components.
To compare the prediction performances of NIR prediction
models of the same variable but of other studies, the relative pre-
diction error (relative MedRE in the present study) can also be used
in addition to the coefficient of determination of prediction (R2Med
in the present study) and the RPD of prediction (RPDMed in the
present study). In comparison to other studies of NIR PLS models
to predict the BMP (Lesteur et al., 2011; Raju et al., 2011;
Doublet et al., 2013; Triolo et al., 2014), the NIR local and PLS mod-
els of the present study have higher and similar prediction perfor-
mances, respectively (Table 5). The relative prediction error of the
present study NIR local and PLS models are always below 8.5% and
10% (Table 5), respectively, whereas in these other studies it is
always above 11% (Lesteur et al., 2011; Raju et al., 2011; Doublet
et al., 2013; Triolo et al., 2014). This means that these other NIR
models always have a higher relative prediction error, as compared
to the present study. It can be explained by the relative SEL of
approximately 5% (Table 3) which is comparable with the best
SEL of the BMP observed in the literature (Doublet et al., 2013;
Pham et al., 2013). It is also important to have a calibration dataset
with a wide range and high variability in the parameter to be pre-
dicted, and high spectral variability. This was achieved in the pres-
ent study by the use of a multispecies (multiproduct) dataset with
similar plant species coming from different harvest periods and
different cropping conditions (year, area, cultivar, nitrogen fertil-
ization level). When comparing the coefficient of determination
of prediction and RPD of prediction between previous studies
(Lesteur et al., 2011; Raju et al., 2011; Doublet et al., 2013; Triolo
et al., 2014) and the present study, the NIR models of only two of
them (Doublet et al., 2013; Triolo et al., 2014) reaches similar per-
formances to prediction quantitatively the BMP (coefficient of
determination P 0.80 and RPD P 2.3). However, this can be
explained by: (1) the sample size of the independent set to predict
the BMP which is much smaller in these two studies (approxi-
mately 2–5 times smaller) (Doublet et al., 2013; Triolo et al.,
2014), as compared to the present study (Table 5); (2) they deter-
mined the BMP on more homogenous samples (dried and milled
with a 1 mm screen) compared to the present study (ensiled with
a particle size of 1–2 cm), as explained in Section 3.2.

In comparison to the NIR prediction models of the BMP on the
basis of their coefficient of determination of prediction (R2Med in
the present study) and RPD of prediction (RPDMed in the present
study) (Table 5), the NIR prediction model of the eDOM is much
more successful. Its coefficient of determination and RDP are 0.95
and 4.6, respectively (Decruyenaere et al., 2009). The explanation
about the reason of this difference of the prediction performances
of models to estimate the BMP and eDOM is given in Section 3.2.
4. Conclusions

The most reliable prediction models of the biochemical meth-
ane potential (BMP) of various plant biomasses using a multispe-
cies dataset were those based on the near infrared (NIR)
spectrum compared to those based on the chemical composition.
The NIR predictions of the local models were able to estimate
quantitatively, rapidly, cheaply and easily the BMP. Such a model
could be further used for biomethanation plant management and
optimization. The predictions of non-linear models were more reli-
able compared to those of linear models. The accuracy of the BMP
method should be improved to enhance further the BMP prediction
models.
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