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In this study, the concept of a Localmovingwindow along thewavelength range in vibrational spectroscopic data
was used to build reduced PCA models for characterizing agro-food products and detecting the presence of un-
usual ingredients or contaminants in an untargeted way. For each selected wavelength window in a locally re-
duced calibration set, a PCA analysis was performed and score residuals were extracted and used as to define
thresholds to be applied to the spectral score residuals of the sample being investigated.When a residual at a cer-
tainwavenumber exceeded defined thresholds, the samplewas suspected of being abnormal, indicating the pos-
sible presence of unusual ingredients and allowing non-targeted analysis. Themethodwas applied to liquid UHT
milk samples spiked with varying levels of melamine. Samples spiked at levels higher than 100 ppmwere easily
detected using this method, which would not have been possible using classical techniques such asMahalanobis
distance, usually applied as an outlier detection method.
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1. Introduction

The concept of a movingwindow along one dimension in numerical
data has long been used for different objectives. One of the main appli-
cations is the Savitzky–Golay filter, which is applied to a set of digital
data points in order to smooth the data (i.e., to increase the signal-to-
noise ratio without greatly distorting the signal) [1]. This technique is
widely used as preprocessing tool in vibrational spectroscopy in order
to avoid increasing the noise and complexity of the spectrum typically
found when performing derivatives in the data. This moving window
averaging technique fits successive subsets of adjacent data points
with a low-degree polynomial using the linear least squares method.
It uses information from a localized segment of the spectrum to calcu-
late the derivative at a particular wavelength, rather than the difference
between adjacent data points. In most cases, this avoids the problem of
noise enhancement from the simple difference method.

The concept of a moving window is popular in the area of evolving
data (e.g., environmental data). Techniques such as Evolving Factor
Analysis (EFA) provide an estimation of the regions or windows
where the concentration of the different components is evolving [2].
One example is the Fixed Size Moving Window EFA (FSMWEFA),
where the eigenvalues are calculated for sub-matrices of equal size
moving in the same direction as the experiment is performed [3]. The
moving window concept has also been applied in correlation
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spectroscopy and time series analysis using methods such as Singular
Spectrum Analysis (SSA) [4,5], also called Dynamic Principal Compo-
nent Analysis (DPCA) [6], where the aim is to make a decomposition
of the original series into the sum of a small number of independent
and interpretable components such as a slowly varying trend, oscillato-
ry components and structureless noise [7]. This is done by treating the
signal as a set of repeated overlapping windows along the variable
range. In the case of correlation spectroscopy, the dataset is split into a
series of relatively small windows where their covariance maps in suc-
cession [8,9] or correlation coefficients [10] are calculated.

The concept of a movingwindow has been also used in combination
with classical chemometric tools, such as Principal Component Analysis
(PCA) or Partial Least Squares (PLS) regression, in the field of multivar-
iate statistical process control (MSPC) where models possess the ability
to automatically change their properties during online operations
(adaptive models) [11], usually applied to vibrational spectroscopic
data in order to select an optimal range of wavelengths, among others.
Moving Window PCA (MWPCA) was first developed by Liu et al. [12]
within the context of complex nonlinear time-varying processes with
an algorithm called Moving Window Kernel PCA (MWKPCA), based
on an iterative procedure for adapting the data mean and covariance
matrix in the feature space and then approximating the eigenvalues
and eigenvectors of the Gram matrix. Another version of MWPCA was
proposed by Ryu et al. [13] to detect the presence of peak shift in spec-
tra. With this technique, a moving window is constructed from a small
data segment along the wavenumber axis where a PCA is performed
in order to detect peak shifts and interpret highly correlated spectra.
moving window PCA for the untargeted detection of contaminants in
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Fig. 1. FT-MIR spectra of the ‘clean’ liquidmilk dataset (in grey) and the 12 samples spiked
with melamine (in black).
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In the regression domain, methods such as Moving Window Partial
Least Squares Regression (MWPLSR) [14] and, most recently, Moving
Window Variable Importance in Projection (MW-VIP) [15] have been
proposed and compared, with regard to reducing model errors, with
classical methods for wavelength selection.

In this study, aMWPCAmethodwas studied and applied to the char-
acterization of various agro-food products using vibrational spectro-
scopic analysis tools such as mid-infrared (MIR). The objective was to
exploit the huge amount of information contained in the data generated
by such techniques, which could support the concept of data-driven dis-
covery or untargeted analysis [16,17]. New crises of adulteration/con-
tamination with illegal ingredients other than known ones continue to
occur from time to time. By relying only on targeted analysis methods,
adulteration could get out of control and analysis would become
trapped in a cycle of ‘adulteration, targeted analysis, and new adultera-
tion’, and so on [18]. In contrast to targeted analysis, which uses infor-
mation from known possible unusual ingredients, an untargeted
experiment registers all information within a certain correlation/simi-
larity, including data fromnewproducts. Untargeted detectionmethods
are therefore required for screening products for a range of known and
unknown adulterants [19]. Untargeted analysis will mean alerts can be
given more rapidly and fraud detected more easily. Until now,
untargeted analysis has been associated mainly with direct analysis
techniques, such as mass spectrometric-based metabolomics or
isotope-assisted methods. Only a few studies have linked untargeted
analysis with vibrational spectroscopic methods. Moore et al. [19] de-
veloped non-targeted screening tools to detect adulteration in skimmed
milk powder using NIR spectroscopy; Xu et al. [20] investigated the fea-
sibility of using FT-NIR spectroscopy and chemometrics for the rapid
analysis of poplar balata in Chinese propolis and Lu et al. [18] developed
a method for the untargeted detection of protein adulteration in yogurt
by removing unwanted variations in pure yogurt. In all these cases, the
approach involved building statistical models based on the measured
fingerprints of a large representative set of normal and abnormal sam-
ples, and then applying these models to unknown samples in order to
characterize them. More recently, the FOSS company (Foss, Hillerød,
Denmark) has developed an Abnormal Spectrum Screening Module
(ASM) where new milk samples are automatically compared to
the spectra of the natural (not contaminated) historical dataset obtain-
ed with the MilkoScan™ FT120 (//www.foss.fr/industry-solution/
products/milkoscan-ft1/), then outliers are detected by a combination
of the residuals from the PCA on natural samples and the Mahalanobis
distance [21].

For this study, a movingwindowwas selected along thewavelength
axes in vibrational spectroscopic data. For each selected window in the
calibration stage, PCA was performed by fixing the number of principal
components and applying them to a validation or test set. The spectral
score residuals in the calibration set were extracted and used to define
thresholds to be applied to the spectral score residuals of the validation
set. When a residual at a certain wavenumber exceeded the defined
thresholds, the sample was suspected of being abnormal, indicating
the possible presence of unusual ingredients and allowing untargeted
analysis. A key challenge in all studies in this area is to define ‘normal’
and ‘abnormal’ according to fingerprint properties. In this study, this
was solved by using a local technique that allowed, for each sample,
the most spectroscopically similar samples in the calibration set to be
selected before the application of MWPCA.

The study used, as an example, is the case ofmilk contaminatedwith
melamine. Melamine (2,4,6-triamino-1,3,5-triazine) is a chemical com-
pound rich in nitrogen.When combinedwith formaldehyde, it produces
melamine resin, which is widely used in textiles, plastics, adhesives,
flame-resistant products and some cleaning agents. Melamine has
been illegally added to food/feed to artificially elevate the protein con-
tent value of products [22–24]. Since the discovery of melamine con-
tamination in infant milk formula in China, strict regulations have
been enforced throughout the world and many papers have been
Please cite this article as: J.A. Fernández Pierna, et al., Use of a multivariate
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published on the use of such methods as wet chemistry, chromatogra-
phy, mass spectrometry and vibrational spectroscopy to detect mela-
mine in both raw and powdered milk [25,26]. In this study, liquid
ultra-high temperature (UHT) milk was contaminated with melamine
at various levels ranging from 0.01% to 1% (100–10,000 ppm) andmea-
sured using Fourier Transform Mid-Infrared (FT-MIR) spectrometry in
order to test the performance of the proposed Local MWPCA method
and determine its limits of detection.

2. Local moving window PCA

The general principle of the proposed methodology is to compute,
for each sample, the PCA residuals at different windows throughout
the spectrum range and compare them with those in the calibration
set. In order to get better performances, as an initial step, the concept
of a local method is applied to each unknown sample [27]. This involves
using a nonparametric method based on a subset of n spectra selected
by the correlation coefficient between the spectrum of the unknown
and the ‘clean’ spectra of the calibration database. This enables a ‘local’
PCA model to be built at each window of the procedure. The next step
involves specifying a window through the wavelength range where
only the n calibration spectra previously selected are used to build a
PCA model. The PCA scores and loadings are extracted to reconstruct
each wavelength of the window and compute the residuals for each
sample. The residual of the central point is computed and stored. This
step is repeated for each window until the whole spectral wavelength
range has been covered. For each PCA model built for calibration, the
corresponding scores and loadings are saved for the prediction of the
unknown spectrum and the computation of its central point residuals.
Once the whole spectral range has been covered, the residuals of each
window are set at an absolute value and scaled by mean and standard
deviation. A standard deviation amplifier is then set in order to define
the residual limits. Residuals are the noisy part of PCA and correspond
to the part of the spectra that is not explained by the model, and they
usually have small values. The residuals of each wavelength of the un-
known spectrum are therefore examined in order to compute the num-
ber of residuals surpassing the limit, known as the ‘hit number’. If the hit
number is greater than a defined threshold, the sample is considered to
be lying outside the local calibration and is considered to be ‘abnormal’
or ‘unusual’.

In summary, the procedure is as follows:

1) Set up a library of ‘clean’ samples (reference set) of a given product.
moving window PCA for the untargeted detection of contaminants in
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Fig. 2. First derivative spectra, the GH criterion and the LWPCA results, respectively, for each locally selected sample in the calibration set (in grey) and the spectrum of the sample to be
characterized (in black).
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Fig. 3. Three repetitions of the same clean sample (in bold) and the differences two by two
(dotted lines).
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2) For each unknown new spectrum, search the n closest spectra from
the clean dataset based on the highest correlation with each spec-
trum of the library. The n value depends on the variability covered
by the samples in the clean dataset. A large range of n values should
be tested and externally validated to select the optimal one.

3) Compute a PCA model with the selected spectra for each window
along the wavelength range. The choice of the width of the window
is a crucial step, however as far as we know there are no general
guidelines. In Press at al. [28] a rough guideline is proposed, which
indicates that the maximum number of data points that should be
used can be calculated based on the wavelength interval used and
the peak width of the narrowest peak or FWHM (full width at half
ofmaximum). The number of PCA components has been selected ac-
cording to a previous global PCA performed in the clean dataset. In
such PCA the number of components is selected taking into account
only those that explain more than 99% of the variability of the clean
dataset.

4) Compute the residual limits of the PCA model for each central point
of the windows; absolute values of the residuals are standardized at
each wavelength in order to reach a unique limit of 3 for all the
wavelengths. This value corresponds to the 99.7% confidence inter-
val in the clean dataset considering the hypothesis of Gaussianity
of the residuals.

5) Use the PCAmodel to project the unknown new spectrum and com-
pute its residuals.

6) Check if these residuals are within PCA residual limits by counting
the number of times the limits are exceeded and the sum of the
exceeded values above the threshold.

7) Restart the procedure at step 2 for the next unknown new spectrum.

In addition to the residuals, the Global H (GH) criterion [29]was also
computed for the central point of calibration and prediction sets at each
interval. This GH criterion is amodification of theMahalanobis distance,
H, in which H∗H (H squared) is divided by the number of dimensions,
used to derive H. The practical significance of the GH is that it indicates
when a predicted value for a given sample is outside the limits defined
by the population that make up the calibration set. For the GH, the limit
of reliable results is usually 3.00, but not a general value exists as it can
(slightly) decrease with the number of dimensions [30]. Samples con-
taining variables with GH higher than 3.00 should be regarded as possi-
ble outliers or a possible case of contamination/adulteration.

3. Experiment

3.1. Materials and method

In order to assess the performance of this technique, a dataset of
300 samples of raw milk and processed liquid UHT milk was used as a
‘clean’ dataset. Another 12 liquid UHTmilk samples were contaminated
with melamine at various levels ranging from 0.01% to 1%
(100–10,000 ppm). All these samples were measured in triplicate
using a Standard Lactoscope FT-MIR automatic (Delta Instruments,
Drachten, The Netherlands) in the 397.31–4000 cm−1 range with a res-
olution of 8 cm−1. The spectrawere cleaned up in order to remove irrel-
evant information and the final wavenumber ranges used (in cm−1)
were 972.05–1589.22, 1720.38–1782.09 and 2746.43–2970.16. Fig. 1
shows all the FT-MIR spectra of the ‘clean’ milk (in grey) and the 12
spiked samples. No clear evidence of contamination could be observed
directly from the raw spectra.

The procedure described in the previous section was applied and
used to detect adulteration in the 12 spiked samples. For this specific
case, the optimal parameters for the Local moving window PCA have
been determined as previously explained. For the local step, after opti-
mization, a subset of n=15 spectra from the clean dataset has been se-
lected according to its correlation with each unknown spectrum. When
applying the full width at half of maximum criterion, the width of the
Please cite this article as: J.A. Fernández Pierna, et al., Use of a multivariate
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window has been fixed to 11 data points. The number of PCA compo-
nents in each model has been fixed to 2 (99% of variance) based on a
global PCA performed on the clean dataset.

3.2. Software

For all the computations, chemometric analyses and graphics,
Matlab v2007b programs (The Mathworks, Inc., Natick, MA, USA)
were used. PCA models were derived using the svd algorithm [31] in-
cluded in the PLS Toolbox (Eigenvector Research, Inc., Manson, WA,
USA).

4. Results

Fig. 2 shows the first derivative spectra, the GH criterion and
the Local MWPCA results, respectively, for each locally selected sample
in the calibration set (in grey) and the spectrum of the sample
to be characterized (in black). For the first sample, contaminated
with 10,000 ppm ofmelamine, the three criteria allow abnormal behav-
ior to be detected. For samples with contamination lower than
1,000 ppm, the results show that no clear conclusions can be drawn
when looking directly at the spectra. Applying the GH criterion allows
abnormalities at levels higher than 500 ppm to be detected. The Local
MWPCA procedure enables contamination at levels up to 100 ppm to
be detected, but at that level these results show that the detection of
melamine in milk becomes unstable, indicating that the technique has
probably reached its limit of detection. This contradicts findings report-
ed in previous publications, which suggested that NIR spectroscopy
could be used to detect melamine at levels lower than 1 ppm [32,33].
Norris [34] wrote that “those people responsible for developing calibra-
tions for constituents at ppm levels must demonstrate the impact of the
possible noise sources on their results before suggesting possible limits
of detection”, which was not done in the publications previously cited.
In this study, in line with the recommendation made by Norris [34],
three spectral replicates for each sample were collected. Then, for each
clean sample, the differences between replicates were calculated two
by two and the noise level was estimated as the average standard devi-
ation of all differences. As example, Fig. 3 shows the three repetitions for
a clean sample, when, different patterns were clearly visible. When ap-
plying this to all the available samples, the noise level (differences be-
tween replicates) reached an average estimated standard deviation of
200 μlog.

In Fig. 4, melamine contamination from 0.01% (100 ppm) to 1%
(10,000 ppm) produced an optical density (OD) (or difference at the
main peak (1558 cm−1)) of 0.15 Absorbance Units (UA). As indicated
in Table 1, a concentration of 0.005% (50 ppm) did not produce
moving window PCA for the untargeted detection of contaminants in
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Fig. 4.Maximum covariance at 1558 cm−1.
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differences in the spectra larger than 0.000750 μlog. These values were
completely masked in the noise.

For the sake of comparison, the outcomes of the proposed study
have been compared to those of the use of combined T2 and Q statistics
after a global PCA on the whole set of clean samples. These statistics
were able to easily detect contamination at levels up to 0.1%
(1000 ppm) and in a less extension at levels of 0.05% (500 ppm), how-
ever they were unable to detect contamination at lower values.

5. Conclusion

In this study, a Local MWPCAmethodwas used for the characteriza-
tion of an important agronomical product and the detection of possible
contaminants using vibrational spectroscopy. This application illustrat-
ed the potential of this method for detecting abnormal spectra in sam-
ples and its capacity to reduce the level of detection obtained with
classical techniques. The study was based on using liquid UHT samples
contaminatedwithmelamine,making it a targeted study, but themeth-
od could be used for detecting abnormalities (inadvertent or deliberate
contamination) in the data and as an initial step prior to further analy-
ses. Local MWPCA could also be used in routine lab as a control chart
to detect the deviation in time of the instruments, comparing daily a
sample from a common batch of milk to previous samples from the
same batch. It could be used easily in a reception/production plant for
rapid and online quality control. In addition, with the local selection of
the most spectroscopically similar samples, the spectral library could
be built using different products, which could lead to the development
of a unique global model.
Table 1
Optical Density (in Absorbance Units— UA) and S/N ratio for each level of melamine con-
tamination (in percentage and ppm).

% Melamine ppm Optical Density (OD) (SD noise = 0.000200)
S/N

1 10,000 0.150000 750
0.1 1,000 0.015000 75
0.01 100 0.001500 7.5
0.005 50 0.000750 3.75
0.001 10 0.000150 0.75
0.0001 1 0.000015 0.075
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