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ABSTRACT

To manage negative energy balance and ketosis in 
dairy farms, rapid and cost-effective detection is needed. 
Among the milk biomarkers that could be useful for this 
purpose, acetone and β-hydroxybutyrate (BHB) have 
been proved as molecules of interest regarding ketosis 
and citrate was recently identified as an early indicator 
of negative energy balance. Because Fourier transform 
mid-infrared spectrometry can provide rapid and cost-
effective predictions of milk composition, the objective 
of this study was to evaluate the ability of this technol-
ogy to predict these biomarkers in milk. Milk samples 
were collected in commercial and experimental farms 
in Luxembourg, France, and Germany. Acetone, BHB, 
and citrate contents were determined by flow injection 
analysis. Milk mid-infrared spectra were recorded and 
standardized for all samples. After edits, a total of 548 
samples were used in the calibration and validation 
data sets for acetone, 558 for BHB, and 506 for citrate. 
Acetone content ranged from 0.020 to 3.355 mmol/L 
with an average of 0.103 mmol/L; BHB content ranged 
from 0.045 to 1.596 mmol/L with an average of 0.215 
mmol/L; and citrate content ranged from 3.88 to 16.12 
mmol/L with an average of 9.04 mmol/L. Acetone and 
BHB contents were log-transformed and a part of the 
samples with low values was randomly excluded to ap-
proach a normal distribution. The 3 edited data sets 
were then randomly divided into a calibration data set 

(3/4 of the samples) and a validation data set (1/4 
of the samples). Prediction equations were developed 
using partial least square regression. The coefficient 
of determination (R2) of cross-validation was 0.73 for 
acetone, 0.71 for BHB, and 0.90 for citrate with root 
mean square error of 0.248, 0.109, and 0.70 mmol/L, 
respectively. Finally, the external validation was per-
formed and R2 obtained were 0.67 for acetone, 0.63 for 
BHB, and 0.86 for citrate, with respective root mean 
square error of validation of 0.196, 0.083, and 0.76 
mmol/L. Although the practical usefulness of the equa-
tions developed should be further verified with other 
field data, results from this study demonstrated the po-
tential of Fourier transform mid-infrared spectrometry 
to predict citrate content with good accuracy and to 
supply indicative contents of BHB and acetone in milk, 
thereby providing rapid and cost-effective tools to man-
age ketosis and negative energy balance in dairy farms.
Key words: Fourier transform mid-infrared 
spectrometry, milk, acetone, β-hydroxybutyrate, citrate

INTRODUCTION

Fourier transform mid-infrared (FT-MIR) spec-
trometry is a method of choice to perform composition 
and quality controls during routine liquid milk testing. 
It allows a fast and nondestructive quantification of 
milk chemical properties to avoid reference methods, 
which are usually tedious, expensive, and time consum-
ing. Today, FT-MIR spectrometry is used worldwide 
to predict contents of fat, protein, urea, and lactose 
in official milk-recording schemes and milk payment 
systems. In addition, several studies undertaken over 
the last decade demonstrated the potential of FT-MIR 
to predict detailed milk composition (De Marchi et al., 
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2014), for example, fatty acid profile (Rutten et al., 
2009; Soyeurt et al., 2011), protein composition (Bon-
fatti et al., 2011), lactoferrin (Soyeurt et al., 2012), 
minerals (Soyeurt et al., 2009), technological proper-
ties of milk (e.g., coagulation properties, curd firmness, 
and cheese yield; De Marchi et al., 2014), and the 
physiological state of the cow (e.g., methane emissions; 
Vanlierde et al., 2015), pregnancy status (Lainé et al., 
2014), body energy status (McParland et al., 2011), 
energy intake, and efficiency (McParland et al., 2014). 
Hence the analysis of milk by FT-MIR spectrometry 
offers the opportunity to record a whole range of new 
phenotypes to develop tools enabling profitability and 
sustainability of the dairy sector (Gengler et al., 2015) 
as well as genetic and genomic evaluations (Gengler et 
al., 2016).

Over the range of traits potentially predictable by 
FT-MIR spectrometry, biomarkers of negative energy 
balance state and ketosis are of primary importance for 
optimized fertility, health, and welfare of high-yielding 
dairy cows. The extent and the duration of the postpar-
tum negative energy balance have been identified as one 
of the major factor influencing fertility and health of 
dairy cows (Collard et al., 2000; Butler, 2003). Bjerre-
Harpøth et al. (2012) mentioned that citrate content, 
among various metabolites measured in milk, had the 
greatest response during a period of negative energy 
balance. Baticz et al. (2002) concluded that content 
of citrate should be measured by easy and automated 
method such as FT-MIR technology to evaluate the 
energy status of cows. Furthermore, (sub)clinical ke-
tosis, caused by excessive body fat mobilization due 
to severe negative energy balance, is one of the most 
frequent production diseases, with a prevalence ranging 
from 7 to 43% in the first 2 mo of lactation (Suthar 
et al., 2013). Ketosis negatively affects milk yield and 
reproductive performances; it also increases the risk 
of subsequent diseases such as displaced abomasum 

(Duffield, 2000). The major ketone bodies in milk (i.e., 
BHB, acetone, and acetoacetate) are the most common 
indicators of ketosis in milk (Enjalbert et al., 2001).

Previous studies attempted to predict acetone con-
tent in milk by using FT-MIR spectrometry. As shown 
in Table 1, these studies differ in the reference method 
used to quantify acetone content but also in the num-
ber of samples used. Coefficients of determination of 
calibration and of cross-validation ranged from 0.39 to 
0.80 (Table 1). Except Hansen (1999), these authors 
did not perform external validation. de Roos et al. 
(2007) investigated the prediction of BHB by FT-MIR 
spectrometry. Using 1,069 samples, they obtained a R2 
of cross-validation of 0.63 and a standard error of cross-
validation of 0.065 mmol/L. Using FT-MIR predictions 
of acetone and BHB contents in milk, van Knegsel et 
al. (2010) and van der Drift et al. (2012) investigated 
the opportunity of such predictions for the detection 
of ketosis in dairy cows. To our knowledge, no study 
had reported calibration statistics for the prediction 
of citrate contents in milk by FT-MIR spectrometry 
although FT-MIR predictions of citrate have been used 
in the work of Bjerre-Harpøth et al. (2012).

The objectives of this study were (1) to build cali-
brations predicting acetone and BHB contents in milk 
and to evaluate their usefulness for use on field with 
an external validation data set and (2) to assess the 
potential of FT-MIR spectrometry to predict citrate 
content in milk. The first novelty of this work lies in the 
combination of data from cows of different breeds col-
lected in different countries and production systems as 
well as in the combination of spectral data from several 
apparatus of different brands. The merging of spectral 
data relies on the FT-MIR standardization procedure 
developed by Grelet et al. (2015). This method brings 
possible the collation of the data set, thereby increas-
ing the robustness of calibrations and the use of the 
developed calibrations by all standardized instruments. 

Table 1. Overview of calibration and validation statistics from various studies aiming at predicting acetone content in milk by Fourier transform 
mid-infrared spectrometry; reference method for quantifying acetone, number of samples used, root mean square error (RMSE), standard error 
of cross-validation (SECV), and R2 are presented1

Reference   Reference method

Calibration

 

Cross validation

 

External validation

N RMSE R2 SECV RMSE R2 N RMSE R2

Hansen, 1999   Vanilin test 302 — —   — 0.240 0.80   58 0.270 0.81
Heuer et al., 2001   Gas chromatography 180 — —   0.210 — —   — — —
de Roos et al., 2007   Continuous flow analyzer 1,063 — —   0.184 — 0.72   — — —
Hanuš et al., 2011   Microdiffusion 

photometric
14 — 0.65   — — —   — — —

Hanuš et al., 2014   Microdiffusion 
photometric

89 — 0.39   — — —   — — —

1RMSE and SECV are expressed in mmol/L.
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The second novelty of this work is to provide a detailed 
external validation procedure to assess the robustness 
of the calibrations developed.

MATERIALS AND METHODS

Sampling

The sampling was undertaken from August 2013 to 
June 2014. Milk samples were collected by 4 organiza-
tions from 3 countries in both research and commercial 
farms (Table 2). After removing subsets of samples 
thawed during transport or poorly preserved and subsets 
of samples showing issues during spectra acquisition or 
during reference analysis, the initial data set included 
566 samples. A total of 256 milk samples originated 
from 2 experimental farms from cows at 7 to 56 d post-
calving to focus on the postpartum period when cows 
are at the greatest risk of metabolic disorders due to 
negative energy balance. Several 82 samples were col-
lected in Neumühle experimental farm (Germany) from 
Holstein cows fed mainly with maize silage. A total of 
174 samples were recorded in the Poisy experimental 
farm (France) from Abondance and Montbéliarde cows 
fed with fresh grass during summer or with hay and 
maize during winter season. In addition, 310 samples 
were collected in commercial farms by Milk Recording 
Organizations. Several 200 samples were collected by 
Clasel in the west of France, from Holstein and Nor-
mande cows fed mainly with maize silage during winter 
and grass during summer. Samples were selected at 
the laboratory based on milk parameters known to be 
related to ketosis status such as fat to protein ratio. 
In Luxembourg, 110 samples were collected by Convis 
s.c. from Holstein cows fed mainly with maize silage 
supplemented by grazing during summer. For all cows, 

milk samples were collected by using sampling systems 
approved by ICAR. Morning and evening samples were 
pooled to obtain daily milk and 2 identical samples 
were generated to be analyzed by FT-MIR and refer-
ence analysis.

Fourier Transform Mid-Infrared Analysis

All samples were analyzed fresh by local milk record-
ing organizations. A total of 10 different instruments, 
located in 5 laboratories, were used in the study. The 
instruments were located in Germany (6), France (2), 
and Belgium (2). Table 3 provides the technical infor-
mation related to the instruments used in this study. 
To combine them into a common database, the spectra 
recorded from all these instruments were standardized 
into a common format using the piece-wise direct stan-
dardization method and the protocol developed within 
the OptiMIR project (Grelet et al., 2015). For each 
spectrum, the standardized Mahalanobis distance (GH) 
was calculated and no spectrum was considered as an 
outlier.

Reference Analysis

The samples dedicated to the reference analysis were 
sent to the Walloon Agricultural Research Center (CRA-
W, Gembloux, Belgium) to be analyzed. Samples from 
Germany and France were frozen before being sent, 
and the samples from Luxembourg were preserved with 
bronopol at 0.01% and analyzed fresh. The BHB and 
acetone content in milk were analyzed by a continuous 
flow analyzer (Scan ++, Skalar, Breda, the Nether-
lands) using the procedure described by de Roos et al. 
(2007). Citrate was also analyzed with continuous flow 
analyzer, based on enzyme-catalyzed reaction. Citrate 

Table 2. Characteristics of the 4 sample sources

Item N   Region   Breed   Feed   DIM

Neumühle 82   West of Germany   Holstein   Maize silage   7–56
Poisy 174   East of France   Abondance and Montbéliarde   Fresh grass or hay and maize silage   7–56
Clasel 200   West of France   Holstein and Normande   Maize silage or fresh grass   7–305
Convis 110   Luxembourg   Holstein   Maize silage supplemented by 

grazing during summer
  5–60

Table 3. Characteristics of the Fourier transform mid-infrared instruments used in the study1

Brand   Type
Number of 
instruments

Frequency reported by 
constructors (cm−1)

Number of 
wavenumbers Resolution

Foss Electric A/S (Denmark)   FT 6000 3 926 to 5,010 1,060 Unknown
Foss Electric A/S (Denmark)   FT+ 2 926 to 5,010 1,060 Unknown
Bentley (United States)   FTS 5 649 to 3,999 899 8 cm−1

1Number of wavenumbers is the total data points numbers of the raw spectra before interpolation and area selection.
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is converted into oxaloacetate and acetate, catalyzed by 
citrate lyase, and oxaloacetate decarboxylases into py-
ruvate. Oxaloacetate and pyruvate are then reduced by 
nicotinamide dinucleotide (NADH) into malate and 
lactate, which are catalyzed by malate and lactase de-
hydrogenase. Decrease of NADH is stoichiometric with 
citrate content, and the remaining NADH is measured 
by optical density at 340 nm. Ranges of analysis of 
the continuous flow analyzer provided by the supplier 
are 0.02 to 1 mmol/L for acetone, 0.04 to 2 mmol/L 
for BHB, and 0.03 to 24 mmol/L for citrate; otherwise 
values are estimated by extrapolation. All samples were 
analyzed twice, and samples with variation higher than 
5% were re-analyzed. Standard error of laboratory, 
which is the repeatability of the reference method, was 
calculated. From the 566 samples, for each component 
the samples with missing value or with value under 
the lower limit of detection of the respective analysis 
were removed, leading to 558, 548, and 506 samples, 
respectively, for BHB, acetone, and citrate data set.

Calibration and Validation

Preliminary statistics indicated that acetone and 
BHB values were not normally distributed, with a 
higher proportion of low values. When performing cali-
bration, this type of distribution gives too much weight 
to the low values, leading to a low accuracy in predict-
ing high values. Therefore, editing of data was needed 
to use a more balanced data set between low and high 
values. Several samples in the cloud of low values were 
randomly removed to obtain a reduced data set cover-
ing the same range of values, but giving less weight on 
low values. Visual inspection of the data indicated that 
this large number of low values was situated between 
0.025 and 0.085 mmol/L for acetone. Hence, 66% of 
these data was randomly removed. After this edit, the 
number of samples for acetone was 224. The same pro-
cess was used for BHB values for which the large num-
ber of samples with low values was situated between 
0.100 and 0.250 mmol/L, thereby bringing the number 
of data to 434. A logarithmic (10) transformation was 
then applied on both acetone and BHB reference values 
to approach a normal distribution. Figure 1 shows the 
distribution of the acetone data set before and after 
the logarithmic transformation and after removing ran-
domly a part of the low values. The citrate reference 
data set was normally distributed, and it was therefore 
not further edited. For all data sets, a quarter of the 
data was randomly excluded in the calibration process 
to be used as an external validation.

As pretreatment of FT-MIR spectra, a first deriva-
tive was used with a gap of 5 wavenumbers, associ-
ated with an autoscale preprocess only for acetone and 

BHB. The spectral area selected were 968.1 to 1,577.5 
cm−1, 1,731.8 to 1,762.6 cm−1, 1,781.9 to 1,808.9 cm−1, 
and 2,831.0 to 2,966.0 cm−1. Detailed evaluation of the 
spectra based on previous knowledge has permitted the 
selection of those wavenumber bands. Noisy areas in-
duced by water were removed. And to bring the models 
as robust as possible, only the wavenumbers with a 
spectral response highly correlated between different 
instruments when analyzing common samples were 
used. Calibrations were done using partial least square 
(PLS) regression. Cross-validations were performed 
on the calibration data sets using 10 subsets randomly 
constituted, and samples with residuals higher than 
2.5 times the SD of the global residuals were consid-
ered as outliers (Rousseeuw et al., 2006). Models were 
then applied on the external validation data sets. Both 
cross-validation and validation results were expressed 
in terms of R2, root mean square error (RMSE), and 
ratio performance/deviation (RPD). The goal of the 

Figure 1. Effect of editing the acetone data set on the distribution 
of values: (A) Original data set after preliminary editing (n = 548), 
(B) data set after logarithmic transformation and removing randomly 
low values (n = 224).
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RPD criterion is to show simultaneously the accuracy 
of predictions and the global variability of the reference 
values (Williams and Sobering, 1993). The RPD is de-
fined as the ratio SD/RMSE as RMSE can be the one 
calculated in cross-validation or the one of a validation 
set. When the RPD is between 1.5 and 2, the model 
can discriminate low from high values; a RPD between 
2 and 2.5 indicates that rough quantitative predictions 
are possible, and a RPD between 2.5 and 3 or above 
corresponds to good and excellent prediction accuracy 
(Nicolaï et al., 2007). Then, to illustrate the usefulness 
of the developed equations for the detection of subclini-
cal ketosis, the percentage of data well-classified into 
2 classes (low vs. high values) was calculated based 
on a threshold 0.15 mmol/L for acetone (de Roos et 
al., 2007), and the same classification was done with a 
threshold of 0.2 mmol/L for BHB (Denis-Robichaud et 
al., 2014). All computations and chemometric analysis 
were carried out with programs developed in Matlab 
v7.5.0. (The Mathworks Inc., Natick, MA) and the PLS 
toolbox v. 4.11 (Eigenvector Research Inc., Wenatchee, 
WA).

RESULTS AND DISCUSSION

Reference Analysis

Descriptive statistics of the initial data set are pro-
vided in Table 4. Content of BHB in the milk samples 
analyzed ranged from 0.045 to 1.595 mmol/L with an 
average of 0.215 mmol/L and a standard deviation of 
0.174 mmol/L. On average, BHB content was higher in 
the present data set than in the data set of de Roos et 
al. (2007; average of 0.146 mmol/L with value ranging 
from −0.021 to 3.960) and of Denis-Robichaud et al. 
(2014; average of 0.18 mmol/L with value ranging from 
−0.03 to 1.09 mmol/L). Acetone content in the milk 
samples analyzed ranged from 0.020 to 3.355 mmol/L 
with an average of 0.103 mmol/L and a standard 
deviation of 0.260 mmol/L. These values were in the 
same range than values presented by de Roos et al. 
(2007; from −0.021 to 3.960 mmol/L with an average 
of 0.146 mmol/L) and by Denis-Robichaud et al. (2014; 
from −0.03 to 2.63 with an average of 0.100 mmol/L). 
Citrate content in milk samples analyzed ranged from 
3.88 to 16.12 mmol/L with an average of 9.04 mmol/L 

and a standard deviation of 2.21 mmol/L. Calculated 
standard errors of the laboratory were respectively 
0.005, 0.006, and 0.216 mmol/L for BHB, acetone, and 
citrate, meaning that the reference method was precise 
and did not affect the statistics obtained in the calibra-
tion step.

Considering their respective molar mass of 104.11, 
58.08, and 192.12 g/mol, these 3 molecules are present 
in milk on average at a level of 21.7 ppm for BHB, 
5.8 ppm for acetone, and 1,684.31 ppm for citrate. 
Dardenne et al. (2015) mentioned that using FT-MIR 
technology, constituents cannot be detected below 100 
ppm. Therefore, it is worth noting that calibration of 
BHB and acetone contents in milk cannot be done by 
the specific spectral response of these molecules in milk 
but by indirect links with global milk composition.

BHB Cross-Validation and Validation Results

After edits to obtain a more balanced data set be-
tween low and high values, the BHB data set contained 
433 samples of which 325 samples were randomly in-
cluded into the calibration data set. Because the best 
results were obtained using a log-transformation of the 
reference data, only these results are presented here. 
A PLS model was done using 8 latent variables, and 7 
samples were considered as outliers and discarded. In 
the calibration data set, after removing the outliers, 
BHB content ranged from 0.045 to 1.595 mmol/L with 
an average of 0.235 mmol/L and a standard deviation 
of 0.193 mmol/L. The average of predicted values is 
0.219 mmol/L, which is slightly smaller than the aver-
age of reference values; this is due to the slope between 
reference and predicted values of 1.1842 that can be ob-
served in Figure 2A. Table 5 shows the cross-validation 
statistics. The RMSE of cross-validation obtained is 
0.109 mmol/L, with an R2 of cross-validation of 0.71 
and a RPD of 1.77. The error is relatively high due 
to the lack of precision of the model on high values of 
the data set (Figure 2A), combined with the artificial 
removal of a series of samples with low values. The 
bias on high values might be induced by the logarith-
mic transformation of the reference data, giving more 
weight to low values in the model. However, when using 
a threshold of 0.200 mmol/L, 86.5% of the samples were 
well classified, with 87.4% of samples with low content 

Table 4. Descriptive statistics of the results from the reference analysis for BHB, acetone, and citrate

Component   Unit N Minimum Maximum Mean SD SEL1

BHB   mmol/L 558 0.045 1.596 0.215 0.174 0.005
Acetone   mmol/L 548 0.020 3.355 0.103 0.260 0.006
Citrate   mmol/L 506 3.88 16.12 9.04 2.21 0.216
1SEL = standard error of laboratory.
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of BHB and 85.0% of samples with high content of 
BHB well classified (Table 6), thereby demonstrating 
the usefulness of this equation to detect cows with an 
abnormally high content of BHB.

A data set of 108 samples was then used to per-
form an external validation. The BHB content ranged 
from 0.058 to 0.755 mmol/L with an average of 0.204 
mmol/L and a standard deviation of 0.136 mmol/L 
(Table 5). The average of predicted values, which is 
0.198 mmol/L, is comparable to the mean of reference 
values, showing a slope close to 1 between reference and 
predicted values in the validation step (Figure 2B). The 
RMSE of validation was 0.083 mmol/L, with an R2 of 
0.63 and a RPD of 2.33. The distribution of the data 
in the validation data set was slightly different than in 
the calibration data set, mainly due to reference values 
in average lower. Considering the lack of precision of 
the model for high values, this difference between the 
distribution of the calibration and validation data sets 
probably explained the difference in the cross-validation 
and validation statistics. The R2 highly depends on the 
distribution of the data and especially on the range of 
data (Davies and Fearn, 2006). The R2 of validation is 
lower than the R2 of cross-validation probably because 
of a reduced range of values (Figure 2B). However, the 
RMSE of validation is better, probably due to a higher 
proportion of samples with a relatively low content of 
BHB. Nevertheless, the accuracy shown by the model 
is satisfying and brings the RPD of validation higher 
than 2, which is the considered limit to start screen-
ing. Therefore, the equation developed in this study 
can provide an indicative value of the BHB content. 
When classifying the data of the validation data set 
into 2 classes by using a threshold of 0.200 mmol/L, 
90.8% of the samples were well classified, with 90.9% of 
samples with low BHB content and 90.6% of samples 
with high BHB content properly classified (Table 6). 
Therefore, one can conclude that the model is not good 
enough to provide precise quantitative values of milk 
BHB, especially when BHB content is elevated, but it 
can allow discrimination between high and low values 
of BHB with an acceptable rate of good classification.

Figure 2. Plot of BHB reference values from flow injection analysis 
and BHB values predicted from Fourier transform mid-infrared analy-
sis (A) for the cross-validation (n = 325) and (B) for the validation 
(n = 108).

Table 5. Cross-validation and validation statistics for BHB, acetone, and citrate contents in milk1

Item N No. of LV
No. of 
outliers Minimum Maximum Mean R SD Mean P RMSE R2 RPD

BHB (mmol/L)
  Cross-validation 325 8 7 0.045 1.596 0.235 0.193 0.219 0.109 0.71 1.77
  Validation 108 — — 0.058 0.755 0.204 0.136 0.198 0.083 0.63 2.36

Acetone (mmol/L)
  Cross-validation 168 7 2 0.020 3.355 0.190 0.397 0.146 0.248 0.73 1.60
  Validation 56 — — 0.021 1.968 0.179 0.306 0.145 0.196 0.67 2.03

Citrate (mmol/L)
  Cross-validation 380 9 2 3.88 16.12 9.03 2.26 9.02 0.70 0.90 3.21
  Validation 126 — — 4.44 15.16 9.08 2.03 9.10 0.76 0.86 2.96
1Number of samples used, number of latent variables (LV), descriptive statistics of the reference values [minimum, maximum, mean (mean R), 
and SD], mean of the predicted values (mean P), root mean square error (RMSE), R2, and RPD (ratio SD of calibration/RMSE) are presented.
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Acetone Cross-Validation and Validation Results

After edits to obtain a data set balanced between 
low and high values, the acetone data set contained 
224 samples of which 168 samples that were randomly 
selected and included in the calibration data set. The 
remaining 56 samples were included in the validation 
data set. In the calibration data set, acetone content 
ranged from 0.020 to 3.355 mmol/L with an average 
of 0.190 mmol/L and a standard deviation of 0.397 
mmol/L. A PLS model was done using 7 latent vari-
ables, and 2 samples were considered as outliers. The 
average of predicted values is 0.146 mmol/L; this high-
lights the slope effect of 1.6295 that can be observed in 
Figure 3A between reference and predicted values. The 
RMSE of cross-validation was 0.248 mmol/L, with an 
R2 of 0.73 and a RPD of 1.60 (Table 5). This RMSE 
was in a similar range to the one obtained by Hansen 
(1999) in cross-validation (0.240 mmol/L), by Heuer 
et al. (2001; 0.210 mmol/L), and de Roos et al. (2007; 
0.184 mmol/L). Similarly to the BHB model, the ac-
etone model was relatively imprecise when acetone val-
ues were high (Figure 3), and this lack of precision on 
high values affected dramatically the RMSE. However 
when classifying the data of the validation data set into 
2 classes by using a threshold of 0.150 mmol/L, 93.4% 
of the samples were properly classified, with 95.5% of 
samples with low acetone content and 84.4% of samples 
with high acetone content well classified (Table 7).

In the validation data set, acetone content ranged 
from 0.021 to 1.968 mmol/L with an average of 0.179 
mmol/L and a standard deviation of 0.306 mmol/L. 
The slope between reference and predicted values is 
confirmed in validation step with an average of predict-
ed values of 0.145 mmol/L and a slope of 1.5033 (Fig-
ure 3B). The RMSE of validation was 0.196 mmol/L, 
with an R2 of 0.67 and a RPD of 2.03 (Table 5). Even 
if the R2 was slightly lower in validation than in cross-
validation (0.67 instead of 0.73), the RMSE was also 
lower (0.196 instead of 0.248), meaning that the error 
was lower in the validation data set. Similarly than for 
BHB, these results can be explained by the distribution 

of both validation and calibration data sets. The RMSE 
of validation is lower than the one obtained by Hansen 
(1999). In the latter study, the validation data set was 
constituted by samples from New Zealand, whereas the 
calibration data set included with samples collected in 
Norway, Sweden, and Denmark. When classifying the 
data of the validation data set into 2 classes by using a 

Table 6. Results of classification of BHB predictions into 2 classes (% of samples; using a threshold of 0.200 
mmol/L) for cross-validation and validation data sets

Item (%)
Low BHB content (<0.200 

mmol/mL)
High BHB content (>0.200 

mmol/mL)
Global good 
classification

Cross-validation n = 198 n = 120 86.5%
  Predicted low 87.4% 15.0%
  Predicted high 12.6% 85.0%

Validation n = 77 n = 32 90.8%
  Predicted low 90.9% 9.4%
  Predicted high 9.1% 90.6%

Figure 3. Plot of acetone reference values from flow injection anal-
ysis and acetone values predicted from Fourier transform mid-infrared 
analysis (A) for the cross-validation (n = 168) and (B) for the valida-
tion (n = 56).
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threshold of 0.150 mmol/L, 89.3% of the samples were 
properly classified, with 93.0% of samples with low ac-
etone content and 76.9% of samples with high acetone 
content well classified (Table 7). Therefore, similarly 
to the BHB model, the acetone model seems to be not 
appropriate to provide precise quantitative values, es-
pecially when acetone content is elevated, but it can 
allow discriminating high from low acetone values.

Citrate Cross-Validation and Validation Results

The calibration data set for citrate contained 380 
samples and the validation data set included 126 
samples. In the calibration data set, citrate content 
ranged from 3.88 to 16.12 mmol/L, with an average of 
9.03 mmol/L and a standard deviation of 2.26 mmol/L. 
The PLS model was done with 9 latent variables and 2 
samples were considered as outliers. The slope between 
predicted and reference values is close to 1 (Figure 4) 
and the average of predicted values is comparable to 
the average of reference values, with respectively 9.03 
and 9.02 mmol/L. The RMSE of cross-validation ob-
tained was 0.70 mmol/L, which is very low compared 
with mean or standard deviation, leading to an RPD 
of 3.21 (Table 5), indicating a fair estimation of citrate 
content and the use of the model for screening (Wil-
liams, 2004). The R2 of cross-validation of the model 
was 0.90 (Figure 4A).

In the validation data set, the citrate content ranged 
from 4.44 to 15.16 mmol/L, with an average of 9.08 
mmol/L and a standard deviation of 2.06 mmol/L 
(Table 5). The RMSE was 0.76 mmol/L, and the R2 
and the RPD were respectively 0.86 (Figure 4B) and 
2.96. Hence, these results were satisfactory, thereby al-
lowing the use of citrate as a potential novel biomarker 
in milk potentially useful for management and breeding 
of dairy cows.

Implications

Because standardized spectra were used in the devel-
opment of the prediction equations for BHB, acetone, 

and citrate content in milk, these equations can be used 
on all standardized instruments from the OptiMIR net-
work (Grelet et al., 2015), thereby allowing the utiliza-
tion of these new biomarkers in the development of 
breeding and management tools for dairy cows. Hence, 
the equations developed in the frame of this project 
have been disseminated throughout the OptiMIR net-

Table 7. Classification of the acetone predictions into 2 classes (% of samples; using a threshold of 0.150 
mmol/L) for cross-validation and validation data sets

Item (%)
Low acetone content (<0.150 

mmol/mL)
High acetone content (>0.150 

mmol/mL)
Global good 
classification

Cross-validation n = 134 n = 32 93.4%
  Predicted low 95.5% 15.6%
  Predicted high 4.5% 84.4%

Validation n = 43 n = 13 89.3%
  Predicted low 93.0% 23.1%
  Predicted high 7.0% 76.9%

Figure 4. Plot of citrate reference values from flow injection analy-
sis and citrate values predicted from Fourier transform mid-infrared 
analysis (A) for the cross-validation (n = 380) and (B) for the valida-
tion (n = 126).
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work. In laboratories, the spectra are extracted from 
the instruments, stored into external database, and 
standardized before application of the equations. With 
automation and IT development, these steps can be run 
daily, producing a quick feedback on field. Taking into 
account the precision of the different calibrations, the 
predictions could be used for herd management, or at 
individual level by using thresholds or relative values to 
cope with low accuracy. In 2015, advisory tools for the 
detection of cows potentially suffering from (sub-)clini-
cal ketosis or from energy deficit have been deployed 
in Alsace region in France (Pezon, 2015) and in Lux-
embourg and are still under development in Germany, 
United Kingdom, and the Walloon Region of Belgium 
(Baugnies, 2015). Further studies will investigate the 
opportunity of using these traits as indicators of health 
traits and fertility in breeding programs.

CONCLUSIONS

This work confirmed the usefulness of the FT-MIR 
spectrometry to predict milk biomarkers such as the 
content in milk of acetone, BHB, and citrate. Cross-val-
idation statistics of the developed equations for acetone 
and BHB were similar or better than previous work and 
highlighted the opportunity to use these predictions for 
the detection of cows with high or low levels of ketone 
bodies in milk rather than for the determination of their 
exact content. Such results are expected given that the 
low concentration of BHB and acetone in milk implies 
only an indirect calibration of these components. Ad-
ditionally, external validation statistics were provided 
in this work and confirmed the cross-validation results. 
Although further research is warranted to demonstrate 
the interest of mid-infrared predicted citrate as a useful 
biomarker for the dairy industry, this study showed that 
the development of FT-MIR calibration for citrate con-
tent in milk is promising. Finally, this work emphasized 
the usefulness of the standardization of mid-infrared 
spectra from different FT-MIR spectrophotometers to 
merge data sets and create more robust calibrations 
that can be used through a large network.
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