
lable at ScienceDirect

Analytica Chimica Acta xxx (2016) 1e9
Contents lists avai
Analytica Chimica Acta

journal homepage: www.elsevier .com/locate/aca
Regression models based on new local strategies for near infrared
spectroscopic data

F. Allegrini a, *, J.A. Fern�andez Pierna b, W.D. Fragoso c, A.C. Olivieri a, V. Baeten b,
P. Dardenne b

a Univ. Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmac�euticas, IQUIR, CONICET, Argentina
b Valorisation of Agricultural Products Dpt, Walloon Agricultural Research Centre, Gembloux, Belgium
c Departamento de Química, Universidade Federal da Paraíba, Campus I, Jo~ao Pessoa, Brazil
h i g h l i g h t s
* Corresponding author.
E-mail address: allegrini@iquir-conicet.gov.ar (F. A

http://dx.doi.org/10.1016/j.aca.2016.07.006
0003-2670/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: F. Allegr
Analytica Chimica Acta (2016), http://dx.doi
g r a p h i c a l a b s t r a c t
� New local regression models based
on PLS scores.

� Rapid quantification of five major
constituents in corn seeds using near
infrared spectroscopy.

� Statistically significant predictions
improvement with respect to global
PLS.
a r t i c l e i n f o

Article history:
Received 7 April 2016
Received in revised form
23 June 2016
Accepted 5 July 2016
Available online xxx

Keywords:
Local regression models
Near infrared spectroscopy
Partial least squares regression
a b s t r a c t

In this work, a comparative study of two novel algorithms to perform sample selection in local regression
based on Partial Least Squares Regression (PLS) is presented. These methodologies were applied for Near
Infrared Spectroscopy (NIRS) quantification of five major constituents in corn seeds and are compared
and contrasted with global PLS calibrations. Validation results show a significant improvement in the
prediction quality when local models implemented by the proposed algorithms are applied to large data
bases.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Since years, near infrared spectroscopy has been used to provide
calibration models based on collected databases of many kinds of
samples such as soils [1e3], fuels [4,5], grains [6e8] and others.
Recent studies indicate the necessity to define the optimal size of a
llegrini).
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sample set in order to build calibration models with the highest
possible accuracy. Although a large number of samples might be
better in terms of product variability characterization, the cost of
analyzing such large number of samples would be significantly
higher [9]. This is often also justified by the accuracy required on
the calibration models, which requires considerable research to
optimize the calibration procedure and then the development of
robust models. Anyhow, quite often, large databases have been
collected by companies during years, avoiding the development of
robust protocols due to the huge variability covered for the studied
based on new local strategies for near infrared spectroscopic data,
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products. This kind of data bases leads to what is normally known
as global calibrations.

Until now, large datasets lead to global calibrations, which in
principle are expected to be very robust to sample composition
variation. However often nature presents dependencies that are
much more complex than those that can be captured with a simple
linear and global parametric model. As databases get larger, they
may increase the complexity in terms of variability and thus, what
is normally seen as an advantage of global calibrations turns into a
problem. This could be the case when samples to be predicted have
not been observed because of the inclusion of new components or
changes/drifts on the instruments, etc. A solution could be to
accommodate this by specifying a complex parametric model with
many parameters. Sometimes this can be successfully done, but
finding the appropriate model can be very challenging, and can
result in difficult-to-interpret coefficients. As a way to solve the
situation previously stated, one of the main alternatives is a group
of methods based on local regression principles [10e12]. These
methods attempt to improve the prediction of unknown samples
by means of calibration models, which are built according to the
similarity between the sample to be predicted and the calibration
samples. Instead of constraining to have a model with a parametric
form, assume that the data locally, around some neighborhood of x,
can be well approximated by a parametric form enamely low order
polynomials.

Although there is a large heterogeneity of local regression
methods, their basic principles come from a methodology known
as LocallyWeighted Regression (LWR) [13]. In LWR, the influence of
each calibration sample on the quantification of an unknown
sample is weighted according to their proximity. This leads to a
customized PCR model for each test sample. A simplification of
LWR consists on LOCAL algorithms [14,15], where instead of a
continuous weighing, samples are selected or discarded for the
prediction in a discrete way according to a distance limit. This
means that if the distance to a test sample calculated for a cali-
bration sample is below the established limit, it will be included in
the model and if it is above that limit it will be taken out. The main
difference among different LWR and LOCAL methods is the way the
distance between samples and the weights are determined.

Another alternative to perform local regression is the Compar-
ison Analysis using Reconstructed Near Infrared and Constituent
Data (CARNAC), which instead of using metric distances between
spectral samples uses a method combining Fast Fourier Trans-
formed spectra and reference values [16].

Some recent applications of local regression methods showed
their utility when applied to soil samples [3]. In these cases, the
metrics were built as complex indexes which combine different
ways of measuring distances between samples. However, the way
to select the optimal number of samples is left to the user criteria,
despite the fact this latter aspect is essential in local methods.
Moreover, there is no strict comparison of the performance of the
local regression methods proposed with respect to global calibra-
tion. Together with the latter, many other examples of applications
of local calibrations to different types of data sets can be found in
the literature [17e19].

In this work, two novel approaches to perform sample selection
in local regression methods are presented and compared: the Local
Calibration by Percentile Selection (LCPS) and the Local Calibration
by Customized Radii Selection (LCCRS). These local selection
methodologies share two important features: (1) they are based on
an attempt to rationalize and automatize the decision about the
number of samples used to build each local model and, (2) they
operate on PLS scores space, meaning that the distance between
samples is measured considering spectral similarities but also
reference values coincidences. To test both approaches the results
Please cite this article in press as: F. Allegrini, et al., Regression models
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in the context of the quantification of five constituents in corn seeds
were analyzed.
2. Material and methods

2.1. Sample set

As presented in Table 1 datasets ofmore than 3000 corn samples
were available for each parameter (moisture, protein, fiber, fat and
ash). These parameters, which represent the major constituents of
corn seeds and were measured by the corresponding reference
methods. NIR spectra for all samples were collected using a FOSS
NIRSystem 5000 working in the 1100e2498 nm range every 2 nm.
The set named as “protein extra” refers to an extra set of samples
that was only available for protein determination and that was used
to test the robustness of the models presented in Section 2. For all
the data sets, outliers were detected using a Mahalanobis distance
based criterion:

MDik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtk � tiÞSTcal

ðtk � tiÞT
q

MDi0 > MDcal0 þ 3sMDcal

where MDik is the Mahalanobis distance between samples i and k,
calculated in the PLS latent variable space, through the corre-
sponding score vectors (tk and ti). STcal

is the covariance matrix
calculated from the calibration scores matrix (Tcal). Finally, MDi0
and MDcal0 are the Mahalanobis distances for a given sample and
for the remaining samples in the set to the calibration center
respectively, ‘

�
’ indicates mean value and ‘s’ standard deviation.

For each sample, MDcal0 is computed by excluding the sample un-
der study. This outlier filter is similar to the well-known GH crite-
rion [20,21] with the difference that it does not divide the
Mahalanobis distance by the number of dimensions, in order to be
consistent with the way the algorithms used to perform local
calibration work. The practical significance of the GH is that it in-
dicates when a predicted value for a given sample is outside the
limits defined by the population that make up the calibration set.
Since the MD distances were calculated from the projections of the
sample spectra onto the PLS latent space, the outlier detection
criterion is taking into account both spectral and concentration
information.

To finish this section, it is important to remark that the number
of samples presented in Table 1 correspond the result of applying
the previous outlier detection methodology both, over the cali-
bration and test sets, i.e. they refer to the filtered datasets and not to
the original ones.
2.2. Local Calibration by Percentile Selection (LCPS)

The LCPS strategy consists on first ranking, for each test sample
to be predicted, the calibration samples according to their prox-
imity to that unknown sample, using the Mahalanobis distance as
farness measure. A number of samples is then selected to build a
local calibrationmodel adapted to the test sample under study. This
local calibration set includes all samples within a certain percentile
of all the previously computed Mahalanobis distances. Several al-
ternatives have been studied and concluded that the best choice for
the percentile was a value of 15% for the five calibrated parameters
(see Section 3 for additional details). Fig. 1 shows a flow chart for
the LCPS algorithm.
based on new local strategies for near infrared spectroscopic data,



Table 1
Description of the data sets for each parameter.

Moisture Protein Protein extra Fiber Fat Ash

Number of calibration samples 3341 3394 1469 1669 2955 2939
Number of test samples 2302 2430 0 1333 1957 1791
Calibration mean valuea 11.81 46.49 46.87 4.31 1.79 6.72
Calibration standard deviationa 1.39 2.02 1.62 1.20 1.28 0.62
Calibration minimuma 4.55 38.09 40.77 2.48 0.1 4.99
Calibration maximuma 15.5 52.86 52.52 8.86 13.05 9.04

a Expressed as % w/w.

Fig. 1. Flow chart for LCPS algorithm.
Fig. 2. Flow chart for LCCRS algorithm.
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2.3. Local Calibration by Customized Radii Selection (LCCRS)

The LCCRS algorithm does also use the Mahalanobis distance to
build local calibration models. However, the main difference with
LCPS, is that a variable number of calibration samples is selected for
each test sample. Specifically, a customized range of radii around a
given test sample is set through a two-step procedure: (1) themean
and the standard deviation of the Mahalanobis distances (MD and
sMD) are computed for the test sample with respect to all calibra-
tion samples, (2) a set of radii is defined by dividing the interval
MD ± 3sMD in six equally spaced values. These radii are then tested
by gradually increasing the distance from the test sample, until a
user-defined number of calibration samples is reached. Fig. 2 shows
a flow chart for the LCCRS algorithm.
2.4. LCPS, LCCRS and other clustering methods

A local calibration sample subset can be understood as a cluster
representing a particular test sample. Just as the classical aggre-
gation k-NN algorithm [22,23], here the similarity between samples
is understood as the proximity between them in the multivariate
space. LCPS takes a closer given percentile, determining the size of k
(number of neighbors included in the model) as a fraction of the
size of the global set of samples. LCCRS does not fix the size of k as it
only sets a minimum amount that must be achieved. However,
LCCRS operates as close as possible to the test sample, increasing
the radius only if the minimum value for k is not reached in the
shortest distance. In both methodologies presented the objective is
always to find a calibration set of samples spatially nearest the test
Please cite this article in press as: F. Allegrini, et al., Regression models
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sample.
These methods follow the ideas of unsupervised density-based

strategies such as DBSCAN (Density Based Spatial Clustering of
Applications with Noise) and OPTICS (Ordering Points to Investi-
gate the Clustering Structure) [24e27]. In these methods, a cluster
is defined as a region in the multivariate space with high density of
samples that is separated from other clusters by regions with low
sample density. Both approaches, i.e., DBSCAN and OPTICS, can be
related to the single linkage clustering techniques and the common
idea with LCCRS is that for each object of a cluster the neighbor-
hood of a given radius has to contain at least a minimal number of
other objects. However, the final aim of LCPS and LCCRS algorithms
is not the same. While unsupervised density based methods try to
reveal clusters of different shapes and densities, the local methods
proposed here work in a supervised way and what they try to do, is
to identify, in the PLS score space, a cluster in the global calibration
set containing the test sample, and then build a calibration using
the samples of that cluster, avoiding the samples with different
characteristics which may lead to instabilities in the model. The
LCPS and LCCRS algorithms accept less dense clusters, meaning that
if a test sample is projected into the latent variable space and the
density of samples around it is not high enough, this will not limit
the selection of a particular subset to perform local calibration.

3. Results and discussion

Fig. 3 shows the plots of the first vs. second PLS scores corre-
sponding to the global calibrations sets for each studied parameter,
together with the projected scores for the validation sets. The
distributional match between the two sets is due to the usage of
based on new local strategies for near infrared spectroscopic data,



Fig. 3. Plots of first vs. second global PLS scores for the five parameters. Left panels, calibration sets, right panels, projected score plots for the validation sets.
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Kennard Stone algorithm [28], to separate samples in a homoge-
neous way and to ensure a basic condition of first order calibration
which is that the test samples should be well represented by the
universe of calibration samples.

In large datasets as the presently studied, samples may often
present a rather wide dispersion in the multivariate space. In
addition, it is apparent from Fig. 3 that the inclusion of a large
variety of samples belonging to different sub-populations, leads to
Please cite this article in press as: F. Allegrini, et al., Regression models
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the formation of clusters which appear isolated from themain bulk.
In consequence, a global PLS model including all calibration sam-
ples, does not take into account that a specific test sample could be
significantly different from most of the calibration samples, even if
it the former is not an outlier. This sample heterogeneity introduces
non-linearities in the system [29,30], which are difficult to model
by a conventional PLS algorithm, even if the number of latent var-
iables is increased. Thus global models should be less accurate
based on new local strategies for near infrared spectroscopic data,



Fig. 4. RMSECV (A) and RMSEP (B) vs. MD percentile for different calibration set sizes for the determination of protein content.
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compared with local models built with samples located in the
neighborhood of the test sample under scrutiny.

As explained above, for the LCPS algorithm, the main parameter
to be tuned is the percentile, i.e. the relative number of calibration
samples to be selected for local model building. To rationalize this
selection, a leave one out cross validation strategy changing the
percentile value was applied. After that, in order to verify this se-
lection, the results were contrasted with the RMSEP values calcu-
lated over an independent test data set. The study was first focused
on the determination of the protein content, as for this parameter,
an extra set of samples was available (see description as “protein
extra” in Table 1) to be added to the total number of samples pre-
sented in Table 1. This larger number of samples provided, then, the
opportunity to test the robustness of the chosen percentile with
respect to the number of selected samples. Fig. 4A and B respec-
tively show the changes in RMSECV and RMSEP for increasing
number of samples in the calibration set, as the percentile of
Mahalanobis distance is gradually increased. It can be seen that the
variation of these values for the global model (percentile ¼ 100%) is
almost independent on the size of the calibration set.

On the other hand, when the LCPS strategy is applied, the
Fig. 5. RMSECV (A) and RMSEP (B) vs. M
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corresponding RMSE values strongly varies as a function of the
calibration size. Smaller RMSECV and RMSEP values are observed
for percentiles in the range 10e20%. In Fig. 5A and B, the results
when the same analysis is extended to the remaining parameters
(using the total number of samples specified in Table 1) are dis-
played. This figure clearly shows that prediction error values for
validation and test set, changes with the percentile for all studied
parameters (see Table 1 for the number of calibration samples for
these models).

From Figs. 4 and 5, we suggest the 15th percentile as a general
good choice for the five parameters evaluated, although one may
consider using the 10th percentile if the calibration set is large
enough (as is the case for ash, moisture and protein). Only fiber
(with less than 2000 samples in the calibration set) and oil showed
significant increase in the RMSECV and RMSEP when the 10th
percentile was used instead of the 15th percentile for the data sets
detailed in Table 1 and represented in Fig. 4.

As previously discussed, in the LCCRS strategy there are two
parameters affecting the sample selection: (1) the radii, and (2) the
minimal number of local selected samples. The former was fixed to
6, which is considered an adequate value to reach a reasonable
D percentile for the five parameters.

based on new local strategies for near infrared spectroscopic data,



Fig. 6. Samples selected for LCPS and LCCRS for three different test samples.
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trade-off between computational cost and exhaustive-enough in-
terval scanning. This latter aspect has to do with the fact that, as
long as the number of radii is larger, it will allow for a more detailed
scan of the interval established for each test sample. In
Please cite this article in press as: F. Allegrini, et al., Regression models
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consequence the number of calibration samples will remain as
close as possible to the minimum amount set by the user to build
each local model. To tune this second parameter, the previous
approach employed to select the optimal percentile for LCPS was
based on new local strategies for near infrared spectroscopic data,



Table 2
Statistical predictive results obtained by each model for different parameters.

Parameter Model

Global LCPS LCCRS 15% random

Moisture
A 24
RMSEP 0.40 0.34 0.33 0.42
REP % 3.4 2.8 2.8 3.6
R2 0.92 0.95 0.95 0.91
Q2 0.92 0.93 0.94 0.90
Protein
A 24
RMSEP 0.72 0.62 0.63 0.78
REP % 1.5 1.3 1.4 1.7
R2 0.87 0.90 0.90 0.85
Q2 0.87 0.90 0.89 0.85
Fiber
A 22
RMSEP 0.42 0.40 0.41 0.47
REP % 9.9 9.3 9.4 10.8
R2 0.88 0.89 0.89 0.85
Q2 0.87 0.89 0.89 0.84
Fat
A 22
RMSEP 0.27 0.22 0.23 0.29
REP % 14.8 12.4 12.7 16
R2 0.97 0.98 0.98 0.97
Q2 0.96 0.97 0.97 0.95
Ash
A 24
RMSEP 0.32 0.30 0.29 0.34
REP % 4.8 4.5 4.4 5.2
R2 0.74 0.78 0.79 0.71
Q2 0.72 0.77 0.77 0.70

p(t): probability associated to the t value obtained by a one tail randomization t-test
for the comparison between each local strategy and the GLOBAL predictions; REP%:
Relative Error of Prediction, calculated as [RMSEP/(mean calibration reference
values)]�100; R2: correlation coefficient for predicted vs. actual values plot; Q2:
cross-validation correlation coefficient, i.e., correlation coefficient for predicted vs.
actual values plot obtained after a leave one out cross validation performed using a
particular model.
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applied. Using again the protein data set, this analysis led to a
minimal number of 100 local samples, which showed to be the
smaller number of samples for which the RMSECV and the RMSEP
is not significantly different than the minimum in all five
parameters.

As it was anticipated during the methods description section,
these two strategies led different number of samples chosen to
build the local model. LCPS is based in percentiles, and always se-
lects the same number of samples, independently of the test
sample, because this number is a fixed fraction of the global cali-
bration set. In contrast, in LCCRS the number of samples included in
the model is strongly dependent on the position of the test sample
in the global PLS score space. If the first region around a sample,
defined by the first radius, contains lesser samples than the mini-
mal number of samples required to build the local model, LCCRS
will expand the search to a second radius value, and so on. As a
consequence, it is likely that more samples than the minimal limit
set by the user will be included. Fig. 6 shows this behavior for three
different test samples, representing three possible situations: the
numbers of selected samples by LCCRS is smaller, similar or larger
than for LCPS. As in Fig. 3, to represent the samples in the latent
variable space, first and second scores values were chosen. As ex-
pected, this selection can be explained on the basis that the first
two latent variables gather the largest possible amount of
explained variance. However, is important to make clear that to
decide this latter number that this was not the final number of
latent variables used to run the models tested. Then, firstly a leave-
Please cite this article in press as: F. Allegrini, et al., Regression models
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one-out cross validation for each parameter was performed, using
the global data set (the optimal number of factors obtained by this
procedure is shown in Table 2). After that, as doing a cross valida-
tion for each new test sample would demand toomuch considering
that the proposed models are intended to be applied at online
prediction systems, we employed two different strategies. For LCPS
the same number of latent variables as the global model was used
together with classical PLS calibration. On the other hand, for LCCR
a weighted version of the PLS algorithm was applied. This version
uses the number of factors determined over the global model, but it
weights the prediction for each latent variable by taking into ac-
count the stability of the regression coefficients and the size of the
residuals. This means that the lower the standard deviation of the
regression coefficients and the residuals obtained for a particular
number of latent variables, the highest the weighting value that the
PLS prediction using that amount of latent variables will receive.
The other combinations (LCPS with weighting PLS and LCCRS with
classical PLS) were also tested but the best results were obtained by
the versions presented here.

Fig. 7 shows plots of predicted vs. reference values for the five
studied parameters, considering the two local strategies applied,
and comparing with the results obtained using the global data set.
From the inspection of these plots it is evident that predicted pa-
rameters using the presently described local strategies, show a
smaller dispersion with respect to nominal values. This latter
observation is a graphical representation of what is then confirmed
by the numerical results shown in Table 2: LCPS and LCCRS lead to a
smaller RMSEP than the global calibration.

To verify that the results shown in Fig. 7 for the comparison of
LCPS and LCCRS to global models, were not a consequence of a
particular combination of samples in the calibration set, from the
maximum number of samples available in the protein data set
(4863 samples), 30 different calibrations sets were built by
randomly taking the 70% of the total number of samples (3394
samples). For the global models, the average error ± standard de-
viation for these 30 models was 0.720 ± 0.002. On the other hand,
for LCPS and LCCRS they were 0.627 ± 0.005 and 0.657 ± 0.010,
respectively. This is a way to confirm that the judicious selection of
local calibration sets by the strategies proposed in this work, leads
to better prediction ability than the global model, with that
improvement being independent from random variations of the
samples used to generate the global calibration.

Table 2 collects the statistical predictive RMSEP results for LCPS,
LCCRS and global strategies. As expected for any local model, the
distribution of the calibration set as close as possible around the
test sample, and no the reduction of the number of samples in
calibration set itself, is the critical factor leading to RMSEP
improvementwhen comparing global to local models. To verify this
assumption for the proposed algorithms, additional models were
built with 15% of samples selected randomly (results presented in
the last column of Table 2) from the whole calibration set. This
means, that for these “random” models, calibration samples were
not necessarily locally distributed around the test sample. It could
be argued that comparisonwith a random selection of 15% is unfair
because to give random selection the same chance, it would be
necessary to try a range of different random percentages and pick
the one with the best performance on the test set. However it
should be noted that the higher the percentile when doing a
random selection the closer the system is to global calibration and
consequently the RMSEP over the test set tends to decrease as the
percentile gets larger. This is the reasonwhy fixing this value at 15%
is, in principle, a reasonable choice to differentiate this random
comparison trial, with the one performed with the complete global
data set.

As expected, for the five studied parameters, LCPS and LCCRS
based on new local strategies for near infrared spectroscopic data,



Fig. 7. Predicted vs. reference values for the five parameters and two models.
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furnished smaller RMSEP values than both the global and random
models. Moreover, although random models were built with the
same number of calibration samples as the LCPS model, they pre-
sented the worst results.
Please cite this article in press as: F. Allegrini, et al., Regression models
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In order to check the statistical significance of the improvement
in the RMSEP values for each local strategy when compared to the
global model, a randomization t-test [[31], [32]] was applied. When
the one-tail version of this test is used, an associated probability p
based on new local strategies for near infrared spectroscopic data,
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smaller than the critical value of 0.05 means that the RMSEP of one
of themethods is significantly lower than the RMSEP obtained from
the other method being compared. This was the case for the five
parameters when either LCPS or LCCRS were compared to the
global calibration. On the other side, if p exceeds the critical value
means that no significant differences were found. This is the case
when LCPS and LCCRS are compared between each other. Finally
the same test was used to verify that the random local models lead
to worse predictions than the global model.

4. Conclusion

In this study, two different local strategies based on the PLS
algorithm, were carefully investigated in the context of the quan-
tification of five parameters in corn seeds. These strategies showed
to be an efficient alternative to optimize predictions, when
compared to global models, allowing a statistically significant
reduction of the RMSEP without need of preprocessing methods. In
addition to this feature, the simplicity and speed of the algorithms
developed, based on Mahalanobis distance measures in PLS scores
space, allows their application to on-line predictions.

Finally, the following perspectives of the present work can be
outlined: (1) extension of the proposed methodologies to the pre-
diction of more than one product from a unique and large data set,
i.e., as there is a local selection of the most spectroscopically similar
samples, the spectral library can be multi-products, which can also
drive to the development of unique predictions with consequent
savings in time and effort required to develop and maintain indi-
vidual calibration models and (2) design an algorithm-fast method
to find from an interval of percentiles, the optimal value according
to each new test sample to be predicted.
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